DETERMINATION OF THE EFFICIENCY OF A COOLED TURBINE STAGE TESTED IN A COMPRESSION TUBE FACILITY

Luca Porreca and Rémy Dénos

Von Karman Institute for Fluid Dynamics, Turbomachinery Department
1640 Rhode Saint Genèse
Belgium
Contact: denos@vki.ac.be
Table of contents

Method to derive efficiency
Determination of the mass flow
Effect of the coolant flows
Shaft power
 - acceleration
 - rotor inertia
Losses evaluation
 - mechanical and disk windage
 - heat transfer
Efficiency calculation
 - analysis of the results
Conclusions
Definition of the efficiency: Mechanical Method

- Areodynamic efficiency

$$\eta_{\text{areo}} = \frac{P_{\text{shaft}} + P_{\text{mech}} + P_{\text{wind}} + P_{\text{Heat}}}{\int \int \int \int m_{01} C_p T_{01} ds + \dot{m}_{\text{Coolants}} C_p T_{\text{Coolants}} - \int \int \int \int m_{03} C_p T_{03,is} ds + \dot{m}_{\text{leaks}} C_p T_{\text{leaks}}}

\text{with } T_{03,is} = T_{01} \left(\frac{P_{03}}{P_{01}} \right)^{\frac{\gamma - 1}{\gamma}}
Determination of the mass flow

- The stage mass flow is calculated using a model of the facility
- Results for 3 operating conditions:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Ct3 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and ½ stage</td>
<td></td>
</tr>
<tr>
<td>0% rotor cooling [kg/s]</td>
<td>15.27</td>
</tr>
<tr>
<td>2% rotor cooling [kg/s]</td>
<td>15.35</td>
</tr>
<tr>
<td>3% rotor cooling [kg/s]</td>
<td>15.36</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>+/- 1.6 %</td>
</tr>
<tr>
<td>Dispersion</td>
<td>+/- 0.21 %</td>
</tr>
</tbody>
</table>
Table of contents

Method to derive efficiency
Determination of the mass flow
Effect of the coolant flows
Shaft power
 - acceleration
 - rotor inertia
Losses evaluation
 - mechanical and disk windage
 - heat transfer
Efficiency calculation
 - analysis of the results
Conclusions

\[
\eta_{aero} = \frac{P_{Shaft} + P_{mech} + P_{wind} + P_{Heat}}{\dot{m}c_p T_0 1 - \left(\frac{P_{03}}{P_{01}} \right)_{\gamma}^{\gamma-1} + m_{Coolant} C_p \Delta T_{0_Coolant}}
\]
- The NGV internal coolant flow is taken into account:

- Isentropic power:

$$P_{is} = \dot{m}_{Stator} \cdot C_p(T_{01} - T_{03,is}) + \dot{m}_{StatCool} \cdot C_p(T_{0c} - T_{03,is})$$

<table>
<thead>
<tr>
<th></th>
<th>With cooling</th>
<th>Without cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet mass flow [kg/s]</td>
<td>10.27</td>
<td>10.6</td>
</tr>
<tr>
<td>Coolant mass flow [kg/s]</td>
<td>0.33 (3%)</td>
<td>0</td>
</tr>
<tr>
<td>Real power [kW]</td>
<td>1023.3</td>
<td>1023.3</td>
</tr>
<tr>
<td>Isentropic power [kW]</td>
<td>1094.5</td>
<td>1103.3</td>
</tr>
<tr>
<td>Efficiency at midspan</td>
<td>0.935</td>
<td>0.927</td>
</tr>
<tr>
<td>Difference %</td>
<td>~ 0.9 %</td>
<td></td>
</tr>
</tbody>
</table>
Rotor Coolant

The rotor film coolant flow is taken into account:

- The coolant flow must be mixed with the main flow
- The rotor is performing as a radial compressor
 - the pumping work is taken into account

<table>
<thead>
<tr>
<th>Test #006 3% condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage mass flow [kg/s]</td>
</tr>
<tr>
<td>Coolant mass flow [kg/s]</td>
</tr>
<tr>
<td>P real [kW]</td>
</tr>
<tr>
<td>P isentropic [kW]</td>
</tr>
<tr>
<td>P pumping [kW]</td>
</tr>
<tr>
<td>$T_{02_{abs}}$ with cooling</td>
</tr>
<tr>
<td>$T_{02_{abs}}$ without cooling</td>
</tr>
<tr>
<td>η with cooling</td>
</tr>
<tr>
<td>η without cooling</td>
</tr>
</tbody>
</table>
Table of contents

Method to derive efficiency
Determination of the mass flow
Effect of the coolant flows
Shaft power
 - acceleration
 - rotor inertia
Losses evaluation
 - mechanical and disk windage
 - heat transfer
Efficiency calculation
 - analysis of the results
Conclusions

\[
\eta_{aero} = \frac{P_{Shaft} + P_{mech} + P_{wind} + P_{Heat}}{\dot{m}c_p T_{01} \left[1 - \left(\frac{P_{03}}{P_{01}} \right)^{\gamma-1} \right] + \dot{m}_{Coolant} C_P \Delta T_{0Coolant}}
\]
Rotor acceleration

- No power absorption system
- Rotor is accelerated during the test time
- Shaft power \[P_{Shaft} = I \frac{\partial \omega}{\partial t} \omega \]
- Acceleration is derived by a linear fitting
Table of contents

Method to derive efficiency
Determination of the mass flow
Effect of the coolant flows
Shaft power
 - acceleration
 - rotor inertia
Losses evaluation
 - mechanical and disk windage
 - heat transfer
Efficiency calculation
 - analysis of the results
Conclusions

\[\eta_{aero} = \frac{\int I \frac{d\omega}{dt} - P_{\text{mech}} + P_{\text{wind}} + P_{\text{Heat}}}{\dot{m}c_p T_{01} \left[1 - \left(\frac{P_{03}}{P_{01}} \right)^{\gamma - 1} \right] + \dot{m}_{\text{Coolant}} C_p \Delta T_{0\text{Coolant}}} \]
Rotor inertia evaluation

The inertia of the cooled rotor is evaluated:

- **Experimental set-up:**

 Period 1: The mass is falling down, the rotor is accelerated.

 Period 2: The mass is laying in the floor, the rotor is decelerated by the mechanical friction.

- **Results:**

 - Rotor inertia = 17,715 kg·m² disp = +/- 0.41 %

Quadratic regression coefficients from the periods 1 and 2 *(Paniagua 1997)*
Table of contents

Method to derive efficiency

Determination of the mass flow

Effect of the coolant flows

Shaft power
 - acceleration
 - rotor inertia

Losses evaluation
 - mechanical and disk windage
 - heat transfer

Efficiency calculation
 - analysis of the results

Conclusions
Mechanical losses

- Free deceleration of the rotor due to the losses:
 \[P_{\text{Loss}} = P_{\text{mech}} + P_{\text{Disk}} + P_{\text{ventilation}} \]

- Loss correlation:
 \[\text{Engine RPM} = \text{N}_{\text{mech}} \times \text{RPM} \]

- Numerical optimisation procedure:
 - Find the loss coefficients which provide the best fitting with the measured free deceleration
 - Axial loading is taken into account

- Axial loading is taken into account

- Losses:
 - Stator losses
 - Rotor losses
 - Bearing losses
 - Ventilation losses

- Losses:
 - Mechanical losses
 - Disk losses
 - Ventilation losses

- Evaluation:
 - 0% condition
 - 3% condition
 - Power [kW]
 - % of total power

- Results:
 - Power [kW]:
 - 14.31
 - 14.29
 - % of total power:
 - 0.93%
 - 0.96%
Table of contents

Method to derive efficiency
Determination of the mass flow
Effect of the coolant flows
Shaft power
 - acceleration
 - rotor inertia
Losses evaluation
 - mechanical and disk windage
 - heat transfer
Efficiency calculation
 - analysis of the results
Conclusions

\[\eta_{aero} = \frac{\int \frac{\partial \omega}{\partial t} \omega + P_{\text{mech}} + P_{\text{wind}} + P_{\text{Heat}}}{m c_p T_{01} \left[1 - \left(\frac{P_{03}}{P_{01}} \right)^{\frac{\gamma-1}{\gamma}} \right] + m_{\text{Coolant}} C_p \Delta T_{0\text{Coolant}}} \]
Heat transfer

- Evaluate the heat transfer in the control domain (no work is provided)

• Rotor :
 • Measured T_{gas} and T_{wall} history
 • Heat flux
 • Nusselt distribution \((\text{Didier 2000, Chana 2000}) \)
 - heat transferred to the rotor blades
 - heat transferred to the rotor endwalls

• Stator :
 From LS89 measurements \((\text{Arts 1990}) \)

 \[
 \begin{array}{c|c}
 \text{Re High } P/p \text{ Nom} & 52.94 \\
 \text{Total heat [kW]} & 52.94 \\
 \% of power & 3.65 \%
 \end{array}
 \]
Table of contents

Method to derive efficiency
Determination of the mass flow
Effect of the coolant flows
Shaft power
 - acceleration
 - rotor inertia
Losses evaluation
 - mechanical and disk windage
 - heat transfer
Efficiency calculation
 - analysis of the results
Conclusions

\[\eta_{aero} = \frac{I \frac{\partial \omega}{\partial t} + P_{mech} + P_{wind} + P_{Heat}}{\dot{m} c_p T_{01} \left[1 - \left(\frac{P_{03}}{P_{01}} \right)^{\gamma - 1} \right]} + \dot{m}_{\text{coolant}} C_p \Delta T_{0\text{coolant}}} \]
Efficiency results

<table>
<thead>
<tr>
<th>0%</th>
<th>T_{01}</th>
<th>P_{01}</th>
<th>Press ratio</th>
<th>Mass flow</th>
<th>P_{real}</th>
<th>P_{isentr}</th>
<th>Acc</th>
<th>Rpm</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>480,74</td>
<td>2,221</td>
<td>2,690</td>
<td>15,265</td>
<td>1526,1</td>
<td>1743,1</td>
<td>1154,5</td>
<td>6513,2</td>
<td>0,8761</td>
</tr>
<tr>
<td>Std %</td>
<td>1,11</td>
<td>0,52</td>
<td>2,55</td>
<td>0,19</td>
<td>1,24</td>
<td>2,20</td>
<td>1,26</td>
<td>0,24</td>
<td>2,30</td>
</tr>
</tbody>
</table>

→ Accurate inlet pressure measurements

→ Large dispersion in ρ is provided by the inaccuracy of P_{03}

Kiel probe, stage inlet

Kiel+thermocouple stage inlet and outlet
Efficiency results

Take into account the exit pressure P_{04}: lower test to test dispersion

Pressure ratio π is evaluated as: $\pi^* = \frac{P_{01}}{P_{04} + \Delta P_0}$

<table>
<thead>
<tr>
<th>%</th>
<th>T_{01}</th>
<th>P_{01}</th>
<th>Press ratio*</th>
<th>Mass flow</th>
<th>P_{real}</th>
<th>P_{isentr}</th>
<th>Acc</th>
<th>Rpm</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>480,74</td>
<td>2,221</td>
<td>2,751</td>
<td>15,26</td>
<td>1526,1</td>
<td>1778,6</td>
<td>1154,5</td>
<td>6513,2</td>
<td>0,8582</td>
</tr>
<tr>
<td>Std %</td>
<td>1,11</td>
<td>0,52</td>
<td>0,84</td>
<td>0,19</td>
<td>1,24</td>
<td>1,51</td>
<td>1,26</td>
<td>0,24</td>
<td>1,35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>T_{01}</th>
<th>P_{01}</th>
<th>Press ratio*</th>
<th>Mass flow</th>
<th>P_{real}</th>
<th>P_{isentr}</th>
<th>Acc</th>
<th>Rpm</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>480,66</td>
<td>2,223</td>
<td>2,671</td>
<td>15,36</td>
<td>1488,7</td>
<td>1744,3</td>
<td>1123,6</td>
<td>6520,5</td>
<td>0,8519</td>
</tr>
<tr>
<td>Std %</td>
<td>1,06</td>
<td>0,62</td>
<td>0,72</td>
<td>0,23</td>
<td>1,68</td>
<td>1,15</td>
<td>1,95</td>
<td>0,22</td>
<td>1,34</td>
</tr>
</tbody>
</table>
Efficiency results

- the pressure P_{04} is not uniform

Presence of 6 module struts

Total pressure in plane 04

![Graph showing pressure distribution with probes and struts labeled]
Efficiency results

- 1 and ½ stage configuration:

Accurate efficiency evaluation
single test uncertainty +/- 1.44%

Most sensitive parameters:

Pressure ratio
- large dispersion detected in P_{03}
- take into account P_{04}

Acceleration
- dispersion is affecting sensibly the efficiency
Conclusions

A complete overall efficiency analysis is presented

- The mass flow is calculated thanks to an accurate modelling of the facility

- The effect of the NGV and rotor coolant flow is analysed:
 - non negligible contribution of the NGV coolant (3% of \dot{m}_{Stage})
 - small influence of the rotor coolant (0.7 % of \dot{m}_{Stage})

- An accurate evaluation of the mechanical losses ($\sim 1.4 \%$ of P_{tot}), heat transfer ($\sim 3 \%$ of P_{tot}) and rotor inertia is performed

efficiency is calculated and critical parameters are identified
Future plans

- Improve the accuracy of the exit rotor pressure measurements:
 - investigate the pressure variation at the stage exit
 - install rakes of Kiel probes

- Improve the accuracy of the rotor acceleration
 - investigate the accuracy of the actual system
 - design a new RPM detection system if required