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This course is 
concerned with 
transmission, either of 
electromagnetic wave 
along a cable (i.e. a 
transmission line), or, 
an electromagnetic 
wave through the 
‘ether’. 
 
 
During the first half of 
these lectures we will 
develop the differential 
equations which 
describe the 
propagation of a wave 
along a transmission 
line.  Then we will use 
these equations to 
demonstrate that these 
waves exhibit reflection 
and have impedance 
and above all transmit 
power. 
 
During the second half 
of these lectures we will 
look at the behaviour of 
waves in free space and 
in particular different 
types of antennae for 
transmission and 
reception of 
electromagnetic waves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

0. Introduction 
 
 

 
An ideal transmission line is defined to be a link 
between two points in which the signal at any point 
equals the initiating signal. 
 
I.e. that transmission takes place instantaneously 
and that there is no attenuation. 
 
Real world transmission lines are not ideal, there is 
attenuation and there are delays in transmission 
 
 
 
 
 
Notation : 
 

x  means x is complex 
 

j xxe β  is short-hand for { }( )Re j x txe β ω+
 

 
        which equals -- { }cosx t x xω β+ + ∠  
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There are many 
examples where the 
wave equation is used:   
 
For example  
 
waves on a string 
(planar waves, where A 
is the amplitude of the 
wave),  

 
 
 
or in a membrane 
(where there is  
variation in both x and 
y) and the equation is of 
the form: 
 

2 2 2
2

2 2 2

A A Av
t x y

 ∂ ∂ ∂= + ∂ ∂ ∂ 
 

 
Note: 
 
The constant v is called 
the wave speed and 
comes from the fact that 
the general solution to 
the wave equation is: 
 

( )A f x vt= ±  
 
 
 

 

0.1. The Wave Equation 
 
The generalised form of the wave equation is as 
follows: 
 

2
2 2

2

A v A
t

∂ = ∇
∂

 

 
 
 
We will be looking at planar waves for which the 
wave equation is one-dimensional and appears as 
follows: 
 

2 2
2

2 2

A Av
t x

∂ ∂=
∂ ∂

 

 
Where A could be:- 
 
Either the Voltage (V) or the Current (I) – 
as in waves in a transmission line --- which we will 
deal with first.  
 
Or the Electric Field (E) or Magnetic Field (H) – 
as in Electromagnetic Waves in free space which 
will come in later lectures. 

 
 
 
 
 
 

A
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. 
 
 
 
 
The diagram 
represents a short 
length of a wire pair 
(which could for 
example be a coaxial 
cable).  Shown are 
the inductance of the 
wire, the capacitance 
developed between 
the wires and the 
relevant voltages and 
currents.   
 
 
L : Loop inductance 
per unit length 
 
C : Shunt capacitance 
per unit length 
 
 
Note : 
 

AA A x
x

δ∂≈ +
∂

 

(Where A is V or I) 
 
Since in the limit xδ is 
infinitesimally small.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Eq. 1.1) and 1.2) are 
the“telegrapher’s 
equations” because 
they were crucial to 
the early development 
of long distance 
telegraphy. 

 

1. Electrical Waves – Olver pp 269-272 

1.1. Telegrapher’s Equations 

 
 

The voltage across the capacitor is CV  and across 

inductor is . .L
dIV L x
dt

δ= hence  

              C L
V IV V V V x V L x
x t

δ δ∂ ∂= − ⇒ + = −
∂ ∂

 

Capacitor current  is .C
dq dVI C x
dt dt

δ= = ∴  sum at A: 

 .I VI x I C x
x t

δ δ∂ ∂ + = − ∂ ∂ 
 

V IL
x t

∂ ∂= −
∂ ∂

  (1.1)    I VC
x t

∂ ∂= −
∂ ∂

(1.2) 

VV x
x

δ∂+
∂

II x
x

δ∂+
∂

.C xδ

.L xδ I x
x

δ∂−
∂

xδ
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. 
Differentiate 
both (1.1) and 
(1.2) with 
respect to x.   
 
Then in (1.1) 
substitute for 
I
x

∂
∂

using 

equation (1.2). 
 
Similarly in 
(1.2) substitute 

for V
x

∂
∂

using 

equation (1.1). 
 
 
Note: any 
function of the 
form f(ωt ± βx) 
would do (this 
Is known as 
D’Alembert’s 
solution).  The 
chosen 
function where 
we have a sin 
wave travelling 
at velocity 
±ω/β is ideal 
for our purpose 
 
 
Waves can 
travel either 
forward or 
backward 
(e.g.reflections)  
along a 
transmission 
line. We 
distinguish 
between the 
two by using 
the + and the – 
subscript. 
Hence BV  is 
the complex 
amplitude of 
the forward 
voltage wave. 

1.2. Travelling Wave Equations 
 
The Telegrapher’s Equations lead to the following 
expressions in V and I. 
 

2 2

2 2. . (1.1. )IL
t

V VLC a
txx

∂ ∂ −  ∂ ∂
∂ =

∂
∂=

∂
 

2 2

2 2. . (1.2. )VC
t

I ILC a
txx

∂ ∂ −  ∂ ∂
∂ =

∂
∂=

∂
 

 
Try a solution for V in (1a) of the form:      j x j tV Ae eβ ω=  
 
Substituting (into (1.1a)): 

2 2. . .j x j t j x j tAe e LC Ae eβ ω β ωβ ω− = −  
Hence: 

.LCβ ω= ±  - Phase constant      (1.3) 
 
Since β can be positive or negative we obtain expressions 
for voltage and current waves which move forward 
(subscript F) and backward (subscript B) along the 
transmission lines. 
 

( ){ }j x j x j t
F BV e V e V e eβ β ω−= +R                (1.4) 

( ){ }j x j x j t
F BI e I e I e eβ β ω−= +R                 (1.5) 
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G = shunt 
conductance / 
unit length 
 
 
R = shunt 
resistance / 
unit length 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.3. Lossy Transmission Lines 
 
Our expressions have been derived for a lossless 
transmission line and therefore do not include resistance 
along the line or conductance across the line 
 
If we wanted to derive the relevant expressions for a lossy 
transmission line then our equivalent circuit would 
become : 
 
 

R esistance (R )
co

nd
uc

ta
nc

e(
G

)

I I  +  δ I

V V + δ

R δ x
lδ x

G δ x C δ x

δ x

A

Analysis of this circuit leads to similar expressions to 
those arrived at for V and I for a lossless line.   
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For simplicity 
we assume 
that V and I 
have a time 
dependence of 

j te ω
. (As has 

already been 
demonstrated 
for lossless 
lines.) 
 
 
 
 
 
 
i.e. 

( )j tI f e ω=
then 

dI j I
dt

ω=
 
 
 
 
 
 

 
 
 
Using Kirchoff’s voltage law to sum voltages and ignoring 
second order terms such as δzδI we get: 

( ) 0V R xI j L xI V Vδ ω δ δ− − − + =  
 

i.e.   ( )V R j L I
x

δ ω
δ

= − +  & in the limit :  

                     ( )V R j L I
x

ω∂ = − +
∂

  

               c.f. 
V IL j LI
x t

ω∂ ∂= − = −
∂ ∂

     (1.1) 

 
 
 
 
Similarly using Kirchoff’s current law to sum currents will 
give us: 

( ) 0I G xV j C xV I Iδ ω δ δ− − − + =  
 

i.e. ( )I G j C V
x

δ ω
δ

= − +  & in the limit :  

                      ( )I G j C V
x

ω∂ = − +
∂

  

              c.f. I VC j CV
x t

ω∂ ∂= − = −
∂ ∂

    (1.2) 
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So now our expressions for voltage and current gain an 
extra term 

( ) ( )( ){ } ( . .   1.4)j x j x j t
F BV e V e V e e c fβ β ωα α− + += +R  

( ) ( )( ){ } ( . .  1.5)j x j x j t
F BI e I e I e e c fβαβ ωα + +−= +R  

 
 
We therefore define a new term the propagation constant 

 
 

jγ α β= +  
Where the phase constant 

.LCβ ω= ±  as before 
 
and  the real term corresponds to the attenuation along 
the line and is known as the attenuation constant  
 
At high frequencies where L Rω >>  & C Gω >>  then the 
expressions approximate back to those for the lossless 
lines. 
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Our 
expressions for 
voltage and 
current contain 
2 exponential 
terms.The one 
in terms of x 
i.e. j xe β±  Gives 
the spatial 
dependence of 
the wave and 
hence the 
wavelength 

2πλ
β

=    

 
The other j te ω  
gives us the 
temporal 
dependence of 
the wave and 
hence its 
frequency

2
f ω

π
=  

 
 
 
 
 
 
 
 
 
 
 
 
 

1.4. Wave velocity -- v 
 
For a wave velocity v, wavelength λ and frequency f:  
 

v f λ=  
 

2
2

v ω π
π β

=  

 
Substituting in for ω using . (1.3)l cβ ω= ±  we obtain 

1v
LC

= (1.6) 

 
 
 
 
 
 
Note:  
 
If the device is air cored, then the velocity is the velocity of 
light in free space (see next page) 
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1.5. Sample Calculation- wave length 
 
Ethernet Cable has L  = 0.22 µHm-1 and C = 86 pFm-1. 
 
What is the wavelength at 10 MHz ? 
 
 
If we set βx = 2π then x is equal to one wavelength. 
So wavelength  λ= 2π/β 
 
From (1.3):     LCβ ω=  
 

Hence the wavelength is  λ 2
LC
π

ω
=  

  
                                        

6 6 12

2
2 *10 *10 0.22 *10 *86 *10

π
π − −

=  

 
                                         = 23 metres 
 
Compare this with the wavelength in free space: 
 

6

6
300.10 30
10.10

vv f
f

λ λ= ⇒ = = =  metres 
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Pictured across 
is the Santa 
Maria in a 
heavy storm. 
The ship is in 
serious trouble 
(as you can 
see) and we 
certainly 
cannot ignore 
the effect of the 
waves. 
 
 
However a 
much smaller 
schooner 
caught in the 
same storm 
fares much 
better.  
 
If a circuit is 
one quarter of 
a wavelength 
across then 
one end is at 
zero the other 
at a maximum, 
an eighth 
across then the 
difference is 

2 of the 
amplitude 
 
In general if the 
wavelength is 
long in 
comparison to 
our Electrical 
circuit (Boat !) 
then we can 
use Ohm’s law 
without 
considering 
transmission 
line effects.  A 
good rule of 
thumb would 
be a factor of 
16. 

1.6. When is AC – DC ? 
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This example further 
illustrates when wave 
theory is important 
and when it is not. 

1.7. Example – When Is Wave Theory relevant? 
 
A designer is creating a circuit which has a clock rate 
of 5 MHz and has tracks for which the inductance (L) 
and capacitance  (C) per unit length are: 
 
L=0.5 µHm-1 

C = 60pFm-1 
 

wavelength = 2
LC
π

ω
(see sample calculation 1-3) 

                  =
6 6 12

2
2 5 10 0.5 10 60 10

π
π − −× × × × × ×

 

                   =36.5m 
 
36.5 m is much greater than 200 mm (the size of the 
circuit board) so that wave theory is irrelevant. 
 
 
Note: The problem is even less relevant when you 
consider mains frequencies i.e. 50 Hz because the 
wavelength comes out at approximately 1000 km !!! 
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. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since ( )j t xe ω β−  and 

( )j t xe ω β+  represent 
waves travelling in 
opposite directions 
they can be treated 
separately.  This 
leads to two 
independent 
expressions in V 
and I. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Characteristic Impedance  Olver – pp 269-272 

2.1. Derivation 
 
Recalling the solutions for I & V (equations 1.4&1.5): 

( ){ }j x j x j t
F BV e V e V e eβ β ω−= +R  

( ){ }j x j x j t
F BI e I e I e eβ β ω−= +R  

Hence  

          { }j x
F

j t
B

jxI jj I e
x

I ee β β ωββ − +∂
∂

−=  

 { }j
F

tj jx x
BCjCVC e eV e

t
Vj β β ωωω −− −∂− =

∂
 

Since according to the second Telegrapher’s Equation: 

(1.2)I VC
x t

∂ ∂= −
∂ ∂

 

We can equate the above. We can also separate the 
forward and backward travelling waves: 
 
Equating and Separating terms: 

F
F

F
FI j Cj V V

CI
β β

ω
ω= − ⇒ =−  

B B
B

B

I j Cj V V
CI
βω
ω

β ⇒ = −= −  

Note: If we consider FV and BV  to have the same sign 
then, due to the differentiation, FI  and BI  have 
opposite signs.  

This is important as we will see later. 
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IMPORTANT: A 
common 
misconception is to 
assume that the 
characteristic 
impedance Z0 is an 
impedance per unit 
length it is not:  
 
Z0 IS THE TOTAL 
IMPEDANCE, of a 
line of any length if 
there are no 
reflections. 
 
 
 
In the absence of 
reflections then the 
current and voltage 
are everywhere in 
phase.  l and c are 
both real and hence 
so is z0.   
 
If there are 
reflections then the 
current and voltage 
of the advancing 
wave are again in 
phase but not 
(necessarily) with 
the current and 
voltage of the 
retreating wave. 
 
The line we have 
analysed has no 
resistors in it and yet 
z0 is ohmic. 
   
The characteristic 
impedance does not 
dissipate power it 
stores it. 

 
The Characteristic impedance, z0 is defined as the 
ratio between the voltage and the current of a 
unidirectional wave on a transmission line at any 
point:  

0
F

F

VZ
I

=  

z0 is always positive. 
 
From our expression in &F FI V  overleaf and our 
definition of characteristic impedance it follows that: 

0Z C
β

ω
=  

and since: 
LCβ ω= ±  (1.3) 

 

0
LZ C= (2.1) 

2.2. Summarizing 
1) For a unidirectional wave:- 
     0V Z I=  at all points. 
 
2) For any wave :- 
    0F FV Z I=  and 0B BV Z I= −  .  
    Hence FV  and FI  are in phase   
               BV  and BI  are in antiphase. 
 
3) For a lossless line Z0 is real with units of ohms. 
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. 

2.3. Characteristic Impedance – Example 1 
 

Q - We wish to examine a circuit using an oscilloscope.  The 
oscilloscope probe is on an infinitely long cable and has a 
characteristic impedance of 50 Ohm.  
What load does the probe add to the circuit? 
 
A -   
1. Since the cable is infinitely long there are no reflections 
 

2. For a wave with no reflections 0
V Z
I

= at all points, hence the probe 

behaves like a load of 50 Ohms. 

2.4. Characteristic Impedance – Example 2 
Q – A wave of FV = 5 volts with a wavelength (λ) of 2 metres has a 
reflected wave of BV = 1 volts.  If Z0 = 75 Ohms what are the voltage 
and current 3 metres from the end of the cable. 

2πβ π
λ

= =  

 
From Equation 1.4        ----         xj xj

F BV V e V eβ β−= +  
X = - 3 Therefore       ----          3 35 j jV e e voltsπ π−= +  

Also                                          
0 0

xj xjF BV VI e e
Z Z

β β−= −  

3 35 1
75 75

j je e ampsπ π−= −  
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. 
       
 
Consider a load added 
to the end of a 
transmission line: 
 
 
 
 
 
 
 
 
 
 
In the immediate 
vicinity of the load, we 
take equations 4 and 
5 and say that since x 
is equal to nought all 
the exponential terms 
reduce to j te ω and 
hence can be 
cancelled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Reflection – Olver pp273-274 

3.1. Voltage reflection coefficient 
 
 
 
 
 
 
 
 
 
 
 
 

At the load: ( )LB BF L FV Z I Z IV IV= =+ = +  
And remembering from our derivation of Characteristic 
impedance that 

0F FI Z V=         &  0B BI Z V− =      
i.e. relative to vF and vB , IF and IB have opposite signs 

Hence:   ( )
0

F
F

B
B BF L LZ I I V VV V Z

Z
−+ = + =  

From which: 
0

0

B L

F L

V Z Z
V Z Z

−=
+

 

The Voltage Reflection Coefficient, Lρ , is defined as 
the complex amplitude of the reverse voltage wave 
divided by the complex amplitude of the forward 
voltage wave at the load: 

B
L

F

V
V

ρ = Î
0

0

L
L

L

Z Z
Z Z

ρ −=
+

 (3.1) 

-X 

ZL
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*I is the complex 
conjugate. 
 
If  

*

I A jB
then

I A jB

= +

= −

 

 
*
I  and V  are peak 
values, power is 
calculated on RMS 
hence the factor of ½. 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is the power 
dissipated in the load 
so it is reduced by any 
value of Lρ greater 
than nought.  Hence 
that power must be 
being reflected back 
down the line which is 
logical bearing in mind 

Lρ is defined as the 
proportion of the 
voltage reflected back. 
 
 
 
 
 
 

3.2. Power Reflection 
 
Mean Power dissipated in any load : 

{ }*1 Re
2

V I  

At the load: 
 

0

(1 )

(1 )

F L

F
L

V

VI

V

Z

ρ

ρ

=

=

+

−
 

Hence: 

( )( )
2

* *

0

1 1 1 1
2 2

F
L L

V
V I

Z
ρ ρ= + −  

( )
2

2*

0

1
2
F

L L L

V

Z
ρ ρ ρ= + − −  

but 
*

L Lρ ρ− is imaginary so: 

{ } ( )
2

2*

0

1 Re 1
2 2

F
L

V
V I

Z
ρ= −  

Therefore: 
 
The fraction of power reflected from the load is: 

2

Lρ  
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. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If there is total 
reflection then Lρ  is 
1 and the VSWR is 
infinite. Zero reflection 
leads to a VSWR of 1 
 
 
 
 
 
 
 
 
 
Standing waves can 
be detected by 
measuring voltages 
along a transmission 
line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3. Standing Waves 
 
Reflections result in standing waves being set up in 
the transmission line.  The Voltage Standing Wave 
Ratio (VSWR)  is simply a measurement of the ratio 
of the maximum electric field to the minimum electric 
field. 

i.e. Maximum electrical field
Minimum electrical field

F B

F B

V V
VSWR

V V
+

= =
−

 

The VSWR can be stated in terms of the reflection 
coefficient Lρ  

1 1
11

B

LF

LB

F

V
V

VSWR
V
V

ρ
ρ

+ +
= =

−−
 

Or alternatively (and more usefully) the reflection 
coefficient Lρ can be stated in terms of the VSWR 
(which can be measured). 
 

1
1L

VSWR
VSWR

ρ −=
+

 (3.2) 
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i.e. that the load is 
equal to the 
characteristic 
impedance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4. Summarizing 
 
¾ For full power transfer we require 0Lρ =  

 
¾ When 0Lρ =  a load is said to be “matched” 

 
¾ The advantages of matching are that:  

 
1) We get all the power to the load 
2) There are no echoes 

 
¾ The simplest way to match a line to a load is to 

set: 
0 LZ Z=  

Since -  

Voltage reflection coefficient is 0

0

L
L

L

Z Z
Z Z

ρ −=
+

 

¾ Fraction of power reflected = 
2

Lρ  

 
 

¾ Reflections will set up standing waves (in just the 
same way as you get with optical waves).  The 
Voltage Standing Wave Ratio (VSWR) is given 
by: 

( )
( )
1
1

L

L

VSWR
ρ
ρ

+
=

−
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3.5. Example - Termination (e.g. of BNC lines) 
 
 
We know that the characteristic impedance of a cable 
is given by: 
 

0 (2.1)LZ C=  
 
and we know that the voltage reflection coefficient is: 

0

0

     (3.1)L
L

L

Z Z
Z Z

ρ −=
+

 

So in order to avoid unwanted reflections we need a 
ZL to terminate our coaxial cable which has the same 
impedance as the characteristic impedance of the 
cable. 
 
 
The capacitance per unit length of a coaxial cable is 
given by 

02
ln( / )

rC
b a

πε ε=  

Where b is the outside diameter and a is the inside 
diameter. 
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Note: since the field 
strength comes from 
the total current 
flowing this explains 
how coaxial cables 
shield field.  The inner 
conductor carries 
current flowing in one 
direction the outer 
field in the opposite 
direction.  Hence 
summing the currents 
for a surface which 
includes both inner 
and outer conductors 
you get a total current 
of 0 and hence a field 
strength of 0 !! 
 
 
 
 
 
 
 
 

We can work out the inductance per unit length L of 
the cable from Ampere’s law: 

J

DH .

  
 
The Data Book p. 11 gives Ampere’s law as: 

( ). .
.

C S

H dl J D dS= +∫ ∫� �  

Where S is any surface bounded by a closed curve C. 
 
In the absence of a changing electric field 

.
D  we can 

simplify the equation to: 
( ). .

C S

H dl J dS=∫ ∫� �  

and, since J is the current density then: 
.

S

J dS I=∫�  for the surface shown below 

I

H

Surface (S) Closed curve (C)

r

 
Hence the field strength H is given by: 

2
IH
rφ π

=  
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So for example if you 
have an input 
impedance of 50 
Ohms for a television 
aerial socket then the 
aerial lead should 
also have a 
characteristic 
impedance of 50 
Ohms. 

For a length of coax the total magnetic flux ψ  is given 
by integrating the field strength between the inner and 
outer conductors. 

 
 
 

( )0
0 ln

2
b

a

I bH dr aφ

µψ µ
π

= =∫  

and L
I

ψ=  

 
Hence the Inductance per unit length L is : 
 

( )0 ln
2

bL a
µ
π

=  

Hence 

0

0
0

0

0

ln( / )
2

2
ln( / )

ln( / )
2

r

r

b a
LZ C

b a

b a

µ
π

πε ε

µ
π ε ε

= =

=

 

 
Which gives a typical value for Z0 of 48.2Ω.  Hence 
we use a 50 Ω resistor to terminate our coax. 

 

2b

2a



 3-8

. 

3.6.  Example - Ringing 
 
Why do square waves cause ringing even at low data rates ? 
 
 
 
 

G
en

er
at

or

L
oa

d

 
 
 
The ringing is caused by multiple reflections. The original wave is 
reflected at the load this reflection then gets reflected back at the 
generator etc etc. 
 
We will illustrate this by looking at the step change in voltage V 
when the device is switched on. 
 
 
 
 
 
 
 
 
 
 

ZG Z0 ZL 

V 

Ringing 
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Analytically 

1. At switch on a pulse VF  is generated & travels towards the 
load.   

 For an unreflected wave  0
F

F

V Z
I

=   

   At the generator by Ohm’s law F
G

F

V V Z
I
− =  Î   0

0
F

G

ZV V
Z Z

=
+

 

2. Part of the pulse is then reflected at the load as 2 L FV Vρ=  
3. V2 is reflected at the generator as V3 etc 
4. The amplitude at the Load asymptotically approaches V 

P Lo
ad Position

Time Time

VF

VF+V2

V
Volts at P

VF+V2+V3

VF

V2

V3

G
en

er
at

or
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3.7. ¼ Wave Matching 

 
 
 
 
 
 

 
 

The impedance of a line is only Z0 in the absence of reflections.  
With reflections the impedance of the line at a point B is a function 
of the: 
 
¾ Intrinsic impedance Z0 
¾ Impedance of the load ZL 
¾ Distance from the load 
¾ Wavelength 

0

0 0

0 0
0 0

0 0

The general expression for impedance at x is

( )

( ) ( )
( ) ( )

j x j xB
j x j x

F B F

j x j xj x j xF B B

F

j x j x j x j x
L L L

j x j x j x j x
L L L

Ve e
V V e V e VZ x Z
I V V Ve ee e VZ Z

e e Z Z e Z Z eZ Z
e e Z Z e Z Z e

β β
β β

β ββ β

β β β β

β β β β
ρ
ρ

−
−

−−

− −

− −

+
+= = =

−−

+ + + −= =
− + − −

 

ZL 

-X 

B 
b 
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( )
( )

0
0

0

0
0

0

Replace exponential with sin and cos & substitute in x=-b
2 cos 2 sin
2 sin 2 cos

( tan )
( tan )

L

L

L
b

L

Z b j Z b
Z

Z b j Z b
Z jZ bZ Z
Z jZ b

β β
β β

β
β

+
=

+
+=
+

 

 

A quarter of a wavelength back from the load we have b = λ/4 
We also know that β = 2π/λ hence substituting in we get 

( )
( )

0
0

0

( tan / 2 )
( tan / 2 )

L
b

L

Z jZ
Z Z

Z jZ
π
π

+
=

+
 

Since ( )tan / 2π = ∞ 
The impedance at this point is: 

2
0

b
L

ZZ
Z

=  

This expression is important when we are trying to connect two 
lines of different impedances and we don’t want to have any 
reflections.  It leads to the concept of the Quarter Wave transformer 
which is described in the next section. 
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3.7.1. Example - Quarter Wave transformer 
 
Two lines one with an impedance of 50 Ω and the second with an 
impedance of 75 Ω are to be linked what should be the impedance 
of a quarter wavelength section of line in order to eliminate 
reflections?  
 
 
 
 
 
 
 
WE want Z at b to equal 50 Ohms the Z0 of line 1 so there is no 
reflection back along the line. Hence 

2 2
0 050

75b
L

Z ZZ
Z

= ⇒ =  

i.e. Z0=61.2Ω 
 

The graph below shows how z varies along the ¼ wavelength 
section.  Note this solution is only valid for one frequency. 

λ/4

Z0line 1=50Ω Z0 line 2=75Ω Z0=?? 

b 
Second line appears as ZL = 75Ω to 
the ¼ wave link 

Z0line 1  =   50Ω Z0 line 2  =  75Ω 
Z0  =  61.2Ω 

2 2.5 3
50

60

70

Zb ( )b

.β b
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. 
 
 
 
 
 
 
 
 
 
 
 
 
An electron placed in 
an electric field 
experiences a force F 
which is dependent on 
the charge e on the 
electron and the 
electric field strength 
E.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An electron moving 
with velocity v in a 
magnetic field B also 
experiences a force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Electromagnetic Fields 

4.1. Definitions 
 

¾ Electric field 
 
 
 
 
 
 
 
We define Electric Field E  such that 

F eE=  
 

¾ Magnetic Flux 
 
 

 
 
 
 
 
 

We define Magnetic Flux Density, B  such that 
F ev B= ×  

 
 

 
 

 

eF

 

N S e 
F 

v
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As we can see electric 
fields and magnetic 
fields are closely 
related.  One can give 
rise to the other and 
vice versa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Permittivities and 
permeabilities are 
often expressed 
relative to that of free 
space  
e.g. ε=ε0εr . Where ε0 
is he permeabilitiy of 
free space. 
 
 
 
Note: The electric field 
and magnetic field 
equations have been 
deliberately formulated 
to appear similar. 
 

Electric fields are not only created by charge (such 
as the charge on the plates of a capacitor)  
 
but also by a changing magnetic field. 
 
Magnetic fields are created not only by moving 
charges i.e. current in a coil or aligned spins in an 
atom (as in a permanent magnet),  
 
but also by changing electric fields (this is Maxwells 
Displacement current which we will discuss later) 
 

 
In addition to the above we have to allow for the 
charges and currents in materials and for this we 
define two new quanitities: 
 

Electric Flux      : D 
 

Magnetic Field : H 
 

In Linear materials D and E and B and H are directly 
related by the permittivity  ε  and permeability µ of 
the material 
  

D= εE 
 

H=B/µ 
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¾ Representation of Flux Density B 
 
Flux Density B is represented by a vector field in 
which 
 
 
 
 
 
 
 
The Strength of the field = the Number of flux lines 
per unit area 
The Direction of the field = the Direction of the flux 

lines. 

 

 

 
Unit Volume 
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We will be using both 
the Maxwell-Faraday 
and the Maxwell-
Ampere laws later in 
the lectures to derive 
the equations for 
Electromagnetic 
waves in free space. 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2. The Laws of Electromagnetism 
 

4.2.1. Maxwell’s Laws 
 

Maxwell-Faraday:    . .
c s

E dl B d s= −∫ ∫ &�  

Maxwell-Ampere:    ( ). .
c s

H dl J D d s= +∫ ∫ &�  

 

The Maxwell-Faraday Law 
•

∇ × = −E B  implies that a 

changing magnetic flux 
•
B  has rings of field E round 

it. 
 
 
 
 
 
 

The Maxwell-Ampere Law 
•

∇ × = +H J D  implies that 

a steady current J or a changing electric flux 
•
D has 

rings of H field around it. 
 
 
 
 
 
 
 

B
E .

J

DH .
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If the divergence of B 
is zero then that 
implies that the  flux 
lines which are used to 
represent the flux 
density are continuous 
i.e. unbroken loops 

 
4.2.2. Gauss’s Laws 

                   Gauss:     
. 0
. ρ

∇ =
∇ =

B
D

 

      

The divergence ∇  gives a measure of the difference 
between the number of flux lines entering a volume 
as are leaving it, i.e.: 
 
 

 
        ∇ .X is +ve                 ∇ .X = 0              ∇ .X is –ve
 
Hence Gauss’ Laws: 

. 0

. ρ
∇ =
∇ =

B
D

  

1) The  flux lines B are continuous … i.e. that they 
are never broken. A flux line exiting from the 
north pole of a magnet will return to that 
magnet at the south pole. 

2) The flux-lines D are continuous except when 
broken by point charges.  Specifically that lines 
of D begin and end on point charges. 

+ - 

+
-  
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5. Electromagnetic Waves 

5.1. Derivation of Wave Equation 
 
Consider an infinite plane z = 0 in which, at all points 

( ),0,0 j t
xE e ω=E  and  ( )0, ,0 j t

yB e ω=B  
 
 

 
 
Hence E and B are perpendicular and uniform 
In the plane z = zδ , the fields will have varied by the 
rates of change of B and E with Z as shown above. 

yB

x
x

EE z
z

δ∂+
∂

y
y

B
B z

z
δ

∂
+

∂

zδ

x

y

z

xE
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Note : 
 
D&  is the 
displacement 
current. 
 
  You all know that: 

.
c

H dl I=∫�  

 
applies in a wire.  
Maxwell added the 
term D&  to take into 
account situations 
such as a wire with a 
break in it carrying 
an a.c. current. The 
displacement current 
allows us to take into 
account the effect of 
the gap formed by 
the break. 
 
 
Note: We ignore 
second order terms 

hence we have yB
t

∂
∂

 

And not 
2

yB
t z

∂
∂ ∂

 

 
 
 
 
 
 
Note:  
 
Although we show B 
on our diagram and 
not H because we 
are integrating in 
free space B and H 
are directly related 
by the scalar µ. 
Ie, B Hµ= .  
Similarly D and E 
are directly by the 
permittivity D Eε=  

If we now take a section of plane dimensions xδ  x yδ
We can use the diagram above to evaluate Maxwell’s 
equations end therefore derive the wave equation. 

. .
c s

E dl B d s= −∫ ∫ &�  (Maxwell-Faraday Data Book p 11:) 

yx
x x

yx

BEE z x E x z x
z t
BE

z t

δ δ δ δ δ
∂∂ ⇒ + − = − ∂ ∂ 

∂∂
⇒ = −

∂ ∂

 

 ( ). .
c s

H dl J D d s= +∫ ∫ &�  (Maxwell-Ampere) 

y x
y y

y x

H DH z y H y z y
z t

H D
z t

δ δ δ δ δ
∂  ∂

⇒ − + + = ∂ ∂ 
∂ ∂

⇒ = −
∂ ∂

 

yB

xE
x

x
EE z
z

δ∂+
∂

y
y

B
B z

z
δ

∂
+

∂

yδ

xδ

zδ
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Wave velocity is 
defined by:  

1 1. .velocity c f
lcµε

=

 
This agreed with the 
measured value and 
help substantiate the 
theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The next step is to eliminate B from the first equation 
and D from the second. Since B H and D Eµ ε= = : 
We get the following equations in E and H: 

yx HE
z t

µ
∂∂ = −

∂ ∂
     (5.1) 

y xH E
z t

ε
∂ ∂= −
∂ ∂

      (5.2) 

These are exactly similar to the Telegrapher’s 
Equations: 

                   
V IL
x t

∂ ∂= −
∂ ∂

  (1.7)    
I VC
x t

∂ ∂= −
∂ ∂

(1.8) 

 
Applying the same technique of differentiating eq. 5.1 
and substituting in from 5.2 and vice versa we end up 
with the equations for electromagnetic waves in free 
space. 

2 2

2 2. . .H
t

E E
z tz

µ µ ε∂ ∂ −  ∂ ∂
∂



∂=


=
∂ ∂

 

2 2

2 2. . .E
t

H H
z tz

ε µ ε∂ ∂ −  ∂ ∂
∂



∂=


=
∂ ∂

 

Which have the same form and therefore similar 
solutions to the equations for waves in transmission 
lines. 
All of the results which we obtained from the 
Telegrapher’s Equations can be reused for the 
equations for Electromagnetic waves. 
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Note: The vectors E 
and H are 
orthogonal to one 
another hence the 
subscripts x and y in 
our expression for η. 

 

5.2. Intrinsic Impedance 
 
 

For EM Waves We define a quantity: 
 
 η = the intrinsic impedance. 
 
is a function of the permeability and the permittivity in 
the same way that Z the characteristic impedance 
was a function of the inductance and capacitances 
per unit length. 
 

0

           (5.3)

c.f.      (2.1)LZ C

µη ε=

=
 

η links E & H in the same way that Z the 
characteristic impedance linked V & I.   
 

  c. f.  xF xB

yF B

B

By

F

F

V VZE E
H IH I

η = = −= = −  
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6. Reflection and refraction of waves 

6.1. Reflection of Incident wave normal to the plane of the 
reflection 

This is a special case which could be derived by analogy with 
reflection of V and I. More satisfactory and relatively simple is to 
obtain the same results by matching boundary conditions: 
 
At the boundary between two media the electric and magnetic 
field are continuous.  That is the total field in medium 1 is equal to 
the total field in medium 2. 
 
Hence: xI xR TE E E+ =  
and      yI yR yTH H H− =  
  
Eliminating H using   η 
gives us   

1 1 2/ / /xI xR TE E Eη η η− =  
 
Eliminating ET gives us: 

( )
( )

2 1

1 2

xR

xI

E
E

η η
η η

−
=

+
        (6.1) 

 

Incident Wave

Transmitted Wave

Reflected Wave

ExI

HyI=ExI /η1

Ex-

HyR=ExR /η1

HT=ET /η2

ET

Medium 1 Medium 2
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6.2. Reflection from a dielectric boundary of wave at 
oblique incidence 

The behaviour of the reflected and transmitted waves will depend 
on the orientation of E with respect to the boundary. We therefore 
split the incident waves into two polarised parts. 

E (perp to plane of
     incidence)

H(in plane of
     incidence)

Plane of incidence

Reflecting Plane

E 

 
Perpendicularly polarised - electric field at right angles to incident 
plane 

H (perp to plane of
     incidence)

E (in plane of
     incidence)

Plane of incidence

Reflecting Plane

H 

 
Parallel polarised - electric field in incident plane 
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6.2.1. Snell’s Law of refraction 
 

Before calculating the reflection and refraction coefficients we 
need to know the angles at which the reflected and refracted 
waves will be travelling. 

θi

A

C E

D
B

θt

θt

θi

θr

Medium 1

Medium 2

 
The wave travels  in medium 1 from C to B in the same time as it 
does from A to D in medium 2.  

Hence 1

2

CB v
AD v

=  but sin  and sini tCB AB AD ABθ θ= =   Î 1

2

sin
sin

i

t

v
v

θ
θ

=  

We know that 
0

1

r

v
µε ε

=  and that µη
ε

=  

Î

1
2

2 1

1 2

sin
sin

i

t

θ ε η
θ ε η

 = = 
 

 Snell’s Law of Refraction  (6.2) 

By a similar argument it can be shown that the angle of reflection 
is equal to the angle of incidence. 

 
I.e. r iθ θ=  
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6.2.2. Incident and Reflected Power 

 
θi

A

C E

D
B

θt

θt

θi

θr

Medium 1

Medium 2

 
The next step is to consider the power striking the surface AB and 
to equate that to the power leaving that surface. The incident 
power density is (remembering that η is the intrinsic impedance) 

2

1

cosi
i

E θ
η

 - (The cosθ term comes from the angle of incidence) 

Hence: 
2 2 2

1 1 2

cos cos cosi r t
i r t

E E Eθ θ θ
η η η

= +  

Remembering that 
1

2
2 1

1 2

ε η
ε η

 
= 

 
and that cos cosr iθ θ=  we get: 

1
2 22

2
2 2

1

cos1
cos

r t t

i i i

E E
E E

ε θ
ε θ

 
= − 

 
 (6.3) 
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6.2.3. Perpendicularly polarised waves 
 

Having got our expression for power we can consider the two sets 
of waves starting with the perpendicularly polarised waves. 
In these waves the electric field is perpendicular to the plane of 
incidence i.e. parallel to the boundary between the two media. 
Summing the electric fields we get 

t r iE E E= +  
Combining this with equation 6.3 which was: 

1
2 2 22

2
2 2 2

1

cos1 1
cos

R T T T

I I I I

E E Ek
E E E

ε θ
ε θ

 = − = − 
 

 

Where 
1
2

2

1

cos
cos

t

i

k ε θ
ε θ

 =  
 

 

We get the following: 

( ) ( )
2 22

2 1 1 (1 ) 2 1 0R R R R

I I I I

E E E Ek k k k
E E E E

     
= − + ⇒ + + + − =     

     
 

 

Hence: 
1 1

2 2
1 2
1 1

2 2
1 2

cos cos  =    
cos cos

R I T

I I T

E
E

ε θ ε θ
ε θ ε θ

  −
 
  +

 

 
This expression contains the angle of the transmitted wave, 
however we can use Snell’s law to obtain a more useful 
expression which contains only the angle of incidence. I.e. 

( )
( )

1/ 2
22

1
1/ 2

22

1

cos sin
=     (6.4)   

cos sin

I I
R

I
I I

E
E

εθ θε
εθ θε

− − 
 
  + −  
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6.2.4. Parallel Polarised Waves 
 

H (perp to plane of
     incidence)

E (in plane of
     incidence)

Plane of incidence

Reflecting Plane

H 

 
 

In this case E is no longer parallel to the reflecting plane. Our 
boundary condition applies to the component of E parallel to the 
reflecting plane. I.e. 

cos cos cosI I R I T TE E Eθ θ θ− =  
Following through the algebra our expression for the ratio of 
reflected to incident waves becomes: 

( ) ( )
( ) ( )

1/ 2
22

1
1/

2

1

11

22
2

2

cos sin
=     (6.5)

cos sin

I I
R

I
I I

E
E

ε
ε

ε

εθ θε
ε θε θ ε

− − 
 
  + −  

This is similar to equation (6.4) but in this equation the numerator 
can become zero  i.e. no reflected wave.  The angle at which this 
occurs is known as the Brewster Angle. 
Zero reflection at the Brewster Angle explains why Polarised 
sunglasses cut down reflections. 
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6.2.5. Comparison between reflections of parallel and 
perpendicularly polarised waves 

 
 
 
 
 
 
 
 

Graph of R

I

E
E

 versus angle of incidence

 

The graphs show the values of R

I

E
E

 
 
 

 for two different permittivity 

ratios. As the ratio 2

1

ε
ε increases three effects can be seen.   

 
¾ The Brewster angle increases 

¾ The value of R

I

E
E

 
 
 

 for the perpendicularly polarized wave 

tends to -1 i.e. perfect antiphase at all angles 

¾ The value of R

I

E
E

 
 
 

 for the parallel polarized wave tends to 1 

i.e. perfect phase at all angles 
 
When 2

1

ε
ε = ∞ then total reflection occurs at all angles of 

incidence. 
 

0 45 90
1

0

1

a) Permittivity Ratio of 2

Perpendicular( ),θ 2

Parallel( ),θ 2

.θ
180
π

0 45 90
1

0

1

b) Permittivity Ratio of 10

1

1

Perpendicular( ),θ 10

Parallel( ),θ 10

900 .θ
180
π



 6-8

6.3. Total Internal Reflection 
 

Graph of R

I

E
E

 versus angle of incidence 

 
The previous section showed graphs for 2

1

ε
ε  > 1.  I.e. our wave is 

moving from a lower density medium to a higher one.  If instead  
2

1

ε
ε  < 1 then the phenomenon known as total internal reflection 

can occur.   
 
This is shown in the graph above at all angles of incidence where: 

2 2

1
Sin εθ ε≥   

Then R

I

E
E

 = 1 i.e. the magnitudes of the incident and the reflected 

waves are equal. 
 
 

0 45 90
1

0

1

b) Permittivity Ratio of 1/2

1.5

1

Perpendicular( ),θ 0.5

Parallel( ),θ 0.5

900 .θ
180
π
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6.4. Comparison of Transmission Line & Free Space Waves 
Symbols: 
V: Voltage Volts E Electric Field Volts m-1 

I: Current Amps H Magnetic Field Amps m-1 

l: Inductance Henry m-1 µ permeability Henry m-1

c: Capacitance Farad m-1 ε Permittivity Farad m-1

Z Characteristic 
impedance 

Ohms η Intrinsic impedance Ohms 

Equations: 
( ) ( ){ }j t x j t x

F BV e V e V eω β ω β− += +R ( ) ( ){ }j t z j t z
x xF xBE e E e E eω β ω β− += +R  

( ) ( ){ }j t x j t x
F BI e I e I eω β ω β− += +R  ( ) ( ){ }j t z j t z

y yF yBH e H e H eω β ω β− += +R  

0
F B

F B

V V Lz CI I
= − = =  xF xB

yF yB

E E
H H

µη ε= − = =  

Wave velocity 1
LC

=  Wave Velocity 1
µε

=  

LCβ ω=  β ω µε=  

0

0

LB
L

LF

V Z Z
V Z Z

ρ −= =
+

 2 1

2 1

xB
L

xF

E
E

η ηρ
η η

−= =
+

 

Power Reflection 2
Lρ=  Power Reflection 2

Lρ=  

Wave Power 
*1Re

2
V I =  

 
 Wave Power 

*1Re
2
E H = × 

 
 

ω: Frequency, radians s-1,  β: Spatial frequency, radians m-1Note 

The Wave Power ( )* 21 Re
2

E H Wm−= ×  is the complex Poynting 

Vector and will be derived in the next lecture
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. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.5. Example – Characteristic Impedance 
 
A printed circuit board is one millimetre thick and has 
an earthing plane on the bottom and has εr = 2.5  & 
µr = 1 
 
Estimate the characteristic impedance of a track 2 
mm wide. 

0
LZ C=  

AC
d

ε≈  so:     
12

0

1

22.5 8.85 10
1

44

rC
d

pFm

ωε ε −

−

≈ = × × ×

=
 

 

Wave Velocity 1 1
LC εµ

= =  

                     
Hence : 

12 7

12

1

6

0 12

2.5 8.85 10 4 10
44 10

0.63

0.63 10
44 10

120

L
C

Hm

LZ C

εµ π

µ

− −

−

−

−

−

× × × ×= =
×

=

×= =
×

= Ω
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6.6. Example – Electromagnetic Waves 
 
Diamond has εr = 5.84  & µr = 1. What power fraction 
of light is reflected off an air/diamond surface? 
 
Recalling that for Transmission lines: 
 

0

0

LB
L

LF

V Z Z
V Z Z

ρ −= =
+

 

Similarly for E-M Waves:  
xB Diamond air

L
xF Diamond air

E
E

η ηρ
η η

−= =
+

 

 
 

Now 
0

0

0

0

1
5.84

r

rDiamond

Air

So

µ µ
ε εηµη ε η µ
ε

= = =  

 
2

2 1 0.41
1 0.41

17.5%

Lρ − =  + 
=
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The aim of an 
antenna is to get 
signal power from the 
transmitter to the 
receiver circuit as 
efficiently as possible. 
 
 
 
 
 
 
 
 
 
Almost any guide 
carrying an 
electromagnetic wave 
will radiate part of the 
wave if its end is 
open.  The ideal 
antenna however 
sends as much 
radiation as possible 
in the desired 
direction and with the 
minimum of internal 
reflection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Antennae 
 
Transmitter

Receiver

 
 
 
 

7.1.  Slot and aperture antennae 
The electromagnetic waves in a guide will radiate if 
you chop its end off (very ineffiecient) 
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Horn antennae such 
as these work very 
well but they are 
bulky and therefore 
unwieldy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A laser can be 
thought of as an 
aperture antenna and 
the output roughly 
approximates to a 
plane wave. 

 
7.1.1. Horn Antennae 

More wave is radiated if the end of the guide is flared.
 

 
Bigger aperture so 

- less diffraction and more gain 
- The launched wave is more similar to a 

plane wave. 
- There is a gradual change between the 

electrical wave where the characteristic 
impedance is Z and the radiated wave where 
the intrinsic impedance is η hence less 
reflection. 

 
7.1.2. Laser  
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If the end of a 
transmission line is 
left open circuit, the 
current at the end is 0 
and the reflection 
coefficient is 1. The 
telegraphers’ 
equations show that 
¼ of a wavelength 
back from the load 
the voltage must be 0 
so a current source is 
needed to drive the 
wave.  Opening out 
the two bars of the 
transmission line has 
surprisingly little 
effect on the current 
distribution and the 
exposed oscillating 
current radiates and 
electromagnetic 
wave. 
 
 
 
 
 
 
At long wavelengths 
a half-wave dipole 
becomes 
impractically big.  A 
shorter dipole still 
radiates, with the 
obvious penalty that 
more of the wave is 
reflected from the 
antenna back down 
the waveguide. 

7.2. Dipole Antennae 
 

7.2.1. Half-Wave Dipole 

λ/2

λ/4

I

z

 
 
 

7.2.2. Short Dipole 
L <<λ/2
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Conductors reflect 
radio waves because 
E=0 at the conductor 
(that’s why mirrors are 
shiny). A single dipole 
placed above a 
conductor radiates 
like one half of a 
dipole pair. Long 
wave radio masts are 
like this, and can be 
formed by covering 
the ground with wire 
mesh. 
 
 
 
 
 
 
 
The Loop antenna is 
like the half-wave 
dipole except that it 
behaves like a 
transmission line 
whose end is a short 
circuit and is therefore 
driven by a voltage 
source. 
 
 

7.2.3. Half Dipole 

 

7.3. Loop Antennae 

λ/4

Short Circuit a λ/4
transmission line..  

then open it out..

To get a loop antenna  
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Inside a portable 
radio you will find a 
ferrite rod wound with 
copper wire.  This is 
the long wave 
antenna. It has 
several loops and a 
ferrite core. The  core 
concentrates the 
electromagnetic 
waves into the 
antenna and the 
whole arrangement is 
essentially half of a 
transformer. 
 
 
 
 
 
 
 
 
 
 
 
Another way of 
concentrating the 
electromagnetic 
waves is using a 
parabolic mirror. 
Placing a source (S) 
at the focus of a 
parabaloid can result 
in a very directive 
beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Receiver

F e r r i te
R o d

 

7.4. Reflector Antennae 
 

S
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Antennae can also be 
joined into an array.  
The array must (of 
course) be correctly 
designed so that the 
signals combine in 
phase … i.e. that they 
add up rather than 
cancel out.   

7.5. Array antennae 
 
 
 
 
 

a b

ejα ejβ

 
 
 
 
 
Exploit superposition effects to get a highly directional 
wave as long as the spacings (a,b) and the phase 
relationships (ejα,ejβ) are correct. 
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Outside the 
plates H is 
always 
orthogonal to the 
integration path 
c ,except at 
infinity (the path 
has to loop back 
somewhere) but 
at infinity H 
tends to zero.  
Hence when we 
perform the 
integral 

.
c

H dl∫� we only 

need to consider 
the component 
of Hy between 
the plates. 

.
s

J dS∫�  is the 

current flowing 
along the plates, 
Hence Æ 
 
 
 
 
 

7.6. The Poynting Vector 
Let an electromagnetic wave hit the end of a parallel 
plate transmission line: 
 

V

I

d
Ex

Hy

c

w

 
 
From the Maxwell-Ampere law we know that 

xis in the same direction as E  the electric
field and is therefore orthog

                         . .

.

onal to i.e. = 

.

0

c s

c s

H dl J D dS

H

But D
dS

Hence dl J dS

•

• = + 
 

=

∫ ∫

∫ ∫

� �

� �
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The Poynting 
vector is defined 
to be the cross 
product, E x H.  
The complex 
Poynting vector 
is defined to be 
          ½ E x H*. 
 

 
 
 
Solving           

.H w Iy =  

Also the electric field and the voltage are 
related by: 

.xE d V=  
So the transmission line wave power is: 

* *1 1
2 2

x yV I E H wd=   

 
The intensity of an electromagnetic wave 

( )* 21 Re
2

E H Wm−= ×   

This expression is known as the complex 
Poynting Vector and the direction of 
power flow is perpendicular to E and H  
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7.6.1. Example – Duck a la microwave 

 
A duck with a cross-sectional area of 0.1m2 is heated 
in a microwave oven. If the electromagnetic wave is: 
 

( ){ } ( ){ }1 1Re 750 , Re 2j t z j t z
x yE e Vm H e Amω β ω β− −− −= =  

 
What power is delivered to the duck ? 
 

Power  = ( )*1 .
2
E H Area×  

            =( )750 2 0.1× ×  
            = 75 W 
 

 
 
 
.
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Where I is intensity … 
not current 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Actually impossible to 
make but useful as a 
definition !! 

8. Radio 

8.1. Radiation Resistance 
 
Antennae emit power, so they can be modelled as 
resistors: 
 
The radiation resistance, Ra, of an antenna is that 
resistance which in place of the antenna would 
dissipate as much power as the antenna radiates. 
 
 

( )2

.antenna
s

a

I dS
R

RMScurrent
=

∫�
 

8.2. Gain 
 
The gain(G) of an antenna is the factor by which its 
maximum radiated intensity exceeds that of an 
isotropic antenna if they emit equal power from an 
equal distance. 
 
G= Maximum value of I antenna at distance r 
                  Iisotropic at distance r 
 
Provided that . .antenna isotropic

s s

I dS I dS=∫ ∫� �  

An Isotropic antenna is a hypothetical device which 
radiates equally in all directions 
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The area of radio 
wave intercepted by a 
parabolic dish antenna 
is pretty obvious, but 
in principle a half 
wave dipole could 
have no area at all 
and yet still receive 
power from a radio 
wave.  Hence we 
need to define an 
effective area. 
 

8.3. Effective Area 
 
 
 
The effective area, Aeff , of an antenna is that area of 
wavefront whose power equals that received from the 
wavefront by the antenna. 
 
 
Aeff =                Power collected by antenna 
           Wave intensity (i.e. power/area) into antenna 
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8.4. Example – Power Transmission 
 
If two half-wave dipoles are 1 km apart and one is 
driven with 0.5 amps (RMS) at 300 MHz, what power 
is received by the other ? 
 
[ G = 1.64, Ra=73 Ω, Aeff=0.13 m2] 
 
Ans –  
 
Intensity r metres from an isotropic antenna  
                               = Transmitted power/(4πr2) 
Intensity r metres from this antenna 

                               
2

24
ai RG
rπ

=  

 
Power received by receiving antenna  
                                = Intensity x Aeff 

                               
2

24
a

eff
i RG A
rπ

=  

                               
( )

2

2
0.5 731.64 0.13

4 1000π
×= × ×  

                               =0.3 µW 

 
 
 


