Electromagnetic Fields and Waves

Reference: OLVER A.D.
Microwave and Optical Transmission John Wiley \& Sons, 1992, 1997
Shelf Mark: NV 135

Tim Coombs - tac1000@cam.ac.uk, 2003
WebSite:
www2.eng.cam.ac.uk/~tac1000/emfieldsandwaves.htm

This course is
concerned with
transmission, either of
electromagnetic wave
along a cable (i.e. a
transmission line), or,
an electromagnetic
wave through the
ether'.

During the first half of these lectures we will develop the differential equations which describe the propagation of a wave along a transmission line. Then we will use these equations to demonstrate that these waves exhibit reflection and have impedance and above all transmit power.

During the second half of these lectures we will look at the behaviour of waves in free space and in particular different types of antennae for transmission and reception of electromagnetic waves.

0. Introduction

An ideal transmission line is defined to be a link between two points in which the signal at any point equals the initiating signal.
I.e. that transmission takes place instantaneously and that there is no attenuation.

Real world transmission lines are not ideal, there is attenuation and there are delays in transmission

Notation :

\bar{x} means x is complex
$\bar{x} e^{j \beta x} \quad$ is short-hand for $\operatorname{Re}\left\{x e^{j(\beta x+\omega t)}\right\}$
which equals -- $x \cos \{\omega t+\beta x+\angle \bar{x}\}$

	0.1. The Wave Equation
There are many examples where the wave equation is used:	The generalised form of the wave equation is as follows:
For example waves on a string (planar waves, where A is the amplitude of the wave),	$\frac{\partial^{2} A}{\partial t^{2}}=v^{2} \nabla^{2} A$
or in a membrane (where there is variation in both x and y) and the equation is of the form: $\frac{\partial^{2} A}{\partial t^{2}}=v^{2}\left(\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial y^{2}}\right)$	We will be looking at planar waves for which the wave equation is one-dimensional and appears as follows: $\frac{\partial^{2} A}{\partial t^{2}}=v^{2} \frac{\partial^{2} A}{\partial x^{2}}$
	Where A could be:-
the wave speed and comes from the fact that the general solution to the wave equation is: $A=f(x \pm v t)$	Either the Voltage (V) or the Current $(\mathrm{I})-$ as in waves in a transmission line --- which we will deal with first.
	Or the Electric Field (E) or Magnetic Field (H) as in Electromagnetic Waves in free space which will come in later lectures.

0. Introduction 0-2
0.1. The Wave Equation 0-3
1. Electrical Waves - Olver pp 269-272 1-1
1.1. Telegrapher's Equations 1-1
1.2. Travelling Wave Equations 1-2
1.3. Lossy Transmission Lines 1-3
1.4. Wave velocity -- v 1-6
1.5. Sample Calculation- wave length 1-7
1.6. When is AC - DC ? 1-8
1.7. Example - When Is Wave Theory relevant? 1-9
2. Characteristic Impedance Olver - pp 269-272 2-2
2.1. Derivation 2-2
2.2. Summarizing 2-3
2.3. Characteristic Impedance - Example 1 2-4
2.4. Characteristic Impedance - Example 2 2-4
3. Reflection - Olver pp273-274 3-1
3.1. Voltage reflection coefficient 3-1
3.2. Power Reflection 3-2
3.3. Standing Waves 3-3
3.4. Summarizing 3-4
3.5. Example - Termination (e.g. of BNC lines) 3-5
3.6. Example - Ringing 3-8
3.7. $1 / 4$ Wave Matching 3-10
3.7.1. Example - Quarter Wave transformer 3-12
4. Electromagnetic Fields 4-1
4.1. Definitions 4-1
4.2. The Laws of Electromagnetism 4-4
4.2.1. Maxwell's Laws 4-4
4.2.2. Gauss's Laws 4-5
5. Electromagnetic Waves 5-1
5.1. Derivation of Wave Equation 5-1
5.2. Intrinsic Impedance 5-4
6. Reflection and refraction of waves 6-1
6.1. Reflection of Incident wave normal to the plane of the reflection 6-1
6.2. Reflection from a dielectric boundary of wave at oblique incidence 6-2
6.2.1. Snell's Law of refraction 6-3
6.2.2. Incident and Reflected Power 6-4
6.2.3. Perpendicularly polarised waves 6-5
6.2.4. Parallel Polarised Waves 6-6
6.2.5. Comparison between reflections of parallel and perpendicularly polarised waves 6-7
6.3. Total Internal Reflection 6-8
6.4. Comparison of Transmission Line \& Free Space Waves. 6-9 6.5. Example - Characteristic Impedance 6-10
6.6. Example - Electromagnetic Waves 6-11
7. Antennae 7-1
7.1. Slot and aperture antennae 7-1
7.1.1. Horn Antennae 7-2
7.1.2. Laser 7-2
7.2. Dipole Antennae 7-3
7.2.1. Half-Wave Dipole 7-3
7.2.2. Short Dipole 7-3
7.2.3. Half Dipole 7-4
7.3. Loop Antennae 7-4
7.4. Reflector Antennae 7-5
7.5. Array antennae 7-6
7.6. The Poynting Vector 7-7
7.6.1. Example - Duck a la microwave 7-9
8. Radio 8-1
8.1. Radiation Resistance 8-1
8.2. Gain 8-1
8.3. Effective Area 8-2
8.4. Example - Power Transmission 8-3

Differentiate both (1.1) and (1.2) with respect to x .

Then in (1.1) substitute for
$\frac{\partial I}{\partial x}$ using
equation (1.2).
Similarly in (1.2) substitute for $\frac{\partial V}{\partial x}$ using equation (1.1).

Note: any function of the form $f(\omega t \pm \beta x)$ would do (this Is known as D'Alembert's solution). The chosen
function where we have a sin wave travelling at velocity $\pm \omega / \beta$ is ideal for our purpose

Waves can

 travel either forward or backward(e.g.reflections) along a transmission line. We distinguish between the two by using the + and the subscript. Hence $\overline{V_{B}}$ is the complex amplitude of the forward voltage wave.

1.2. Travelling Wave Equations

The Telegrapher's Equations lead to the following expressions in V and I .

$$
\begin{align*}
& \frac{\partial^{2} V}{\partial x^{2}}=-L \cdot \frac{\partial}{\partial t}\left(\frac{\partial I}{\partial x}\right)=L \cdot C \cdot \frac{\partial^{2} V}{\partial t^{2}} \tag{1.1a}\\
& \frac{\partial^{2} I}{\partial x^{2}}=-C \cdot \frac{\partial}{\partial t}\left(\frac{\partial V}{\partial x}\right)=L \cdot C \cdot \frac{\partial^{2} I}{\partial t^{2}} \tag{1.2a}
\end{align*}
$$

Try a solution for V in (1a) of the form: $\quad \bar{V}=\bar{A} e^{j \beta x} e^{j o t}$

Substituting (into (1.1a)):

$$
-\beta^{2} \bar{A} e^{j \beta x} e^{j \omega t}=-\omega^{2} \cdot L \cdot C \cdot \bar{A} e^{j \beta x} e^{j \omega t}
$$

Hence:

$$
\beta= \pm \omega \sqrt{L . C} \quad \text { - Phase constant }
$$

(1.3)

Since β can be positive or negative we obtain expressions

 for voltage and current waves which move forward (subscript F) and backward (subscript B) along the transmission lines.$$
\begin{align*}
& V=\boldsymbol{R} e\left\{\left(\overline{V_{F}} e^{-j \beta x}+\overline{V_{B}} e^{j \beta x}\right) e^{j \omega t}\right\} \tag{1.4}\\
& I=\boldsymbol{R} e\left\{\left(\overline{I_{F}} e^{-j \beta x}+\overline{I_{B}} e^{j \beta x}\right) e^{j \omega t}\right\} \tag{1.5}
\end{align*}
$$

	Using Kirchoff's voltage law to sum voltages and ignoring second order terms such as $\delta z \delta l$ we get: $V-R \delta x I-j \omega L \delta x I-(V+\delta V)=0$ i.e. $\frac{\delta V}{\delta x}=-(R+j \omega L) I$ \& in the limit :
$\begin{align*} & \begin{array}{l} \text { i.e. } \\ I=f\left(e^{j e x}\right) \\ \text { then } \\ \frac{d I}{d t}=j \omega I \end{array}, ~ \tag{1.1} \end{align*}$	$\begin{aligned} \frac{\partial V}{\partial x} & =-(R+j \omega L) I \\ \text { c.f. } \frac{\partial V}{\partial x} & =-L \frac{\partial I}{\partial t}=-j \omega L I \end{aligned}$
	Similarly using Kirchoff's current law to sum currents will give us: $I-G \delta x V-j \omega C \delta x V-(I+\delta I)=0$ i.e. $\frac{\delta I}{\delta x}=-(G+j \omega C) V$ \& in the limit : $\begin{align*} \frac{\partial I}{\partial x} & =-(G+j \omega C) V \\ \text { c.f. } \frac{\partial I}{\partial x} & =-C \frac{\partial V}{\partial t}=-j \omega C V \tag{1.2} \end{align*}$

So now our expressions for voltage and current gain an extra term

$$
\begin{aligned}
& V=\mathbf{R} e\left\{\left(\overline{V_{F}} e^{-(\alpha+j \beta) x}+\overline{V_{B}} e^{(\alpha+j \beta) x}\right) e^{j \omega t}\right\} \\
& I=\mathbf{R} e\left\{\left(\overline{I_{F}} e^{-(\alpha+j \beta) x}+\overline{I_{B}} e^{(\alpha+j \beta) x}\right) e^{j \omega t}\right\}
\end{aligned}
$$

We therefore define a new term the propagation constant *

$$
\gamma=\alpha+j \beta
$$

Where the phase constant

$$
\beta= \pm \omega \sqrt{L . C} \text { as before }
$$

and the real term corresponds to the attenuation along the line and is known as the attenuation constant

At high frequencies where $\omega L \gg R \& \omega C \gg G$ then the expressions approximate back to those for the lossless lines.

1.5. Sample Calculation- wave length

Ethernet Cable has $L=0.22 \mu \mathrm{Hm}^{-1}$ and $\mathrm{C}=86 \mathrm{pFm}^{-1}$.
What is the wavelength at 10 MHz ?

If we set $\beta x=2 \pi$ then x is equal to one wavelength.
So wavelength $\lambda=2 \pi / \beta$
From (1.3): $\quad \beta=\omega \sqrt{L C}$
Hence the wavelength is $\lambda=\frac{2 \pi}{\omega \sqrt{L C}}$
$=\frac{2 \pi}{2 \pi * 10 * 10^{6} \sqrt{0.22 * 10^{-6} * 86 * 10^{-12}}}$
= 23 metres
Compare this with the wavelength in free space:
$v=f \lambda \Rightarrow \lambda=\frac{v}{f}=\frac{300.10^{6}}{10.10^{6}}=30$ metres

Since $e^{j\left(\omega t-\beta_{x}\right)}$ and $e^{j(\omega+\beta x)} \quad$ represent waves travelling in opposite directions they can be treated separately. This leads to two independent expressions in V and I.	2. Characteristic Impedance Olver - pp 269-272 2.1. Derivation Recalling the solutions for I \& V (equations 1.4\&1.5): $\begin{aligned} & V=\mathbf{R} e\left\{\left(\overline{V_{F}} e^{-j \beta x}+\overline{V_{B}} e^{j \beta x}\right) e^{j \omega t}\right\} \\ & I=\mathbf{R} e\left\{\left(\overline{I_{F}} e^{-j \beta x}+\overline{I_{B}} e^{j \beta x}\right) e^{j \omega t}\right\} \end{aligned}$ Hence $\begin{gathered} \frac{\partial I}{\partial x}=\left\{-j \beta \overline{I_{F}} e^{-j \beta x}+j \beta \overline{I_{B}} e^{j \beta x}\right\} e^{j \omega t} \\ -C \frac{\partial V}{\partial t}=\left\{-C j \omega \overline{V_{F}} e^{-j \beta x}-C j \omega \overline{V_{B}} e^{j \beta x}\right\} e^{j \omega t} \end{gathered}$ Since according to the second Telegrapher's Equation: $\frac{\partial I}{\partial x}=-C \frac{\partial V}{\partial t}(1.2)$ We can equate the above. We can also separate the forward and backward travelling waves: Equating and Separating terms: $\begin{aligned} & -\overline{I_{F}} j \beta=-C j \omega \overline{V_{F}} \Rightarrow \frac{\overline{V_{F}}}{\overline{I_{F}}}=\frac{\beta}{C \omega} \\ & \overline{I_{B}} j \beta=-C j \omega \overline{V_{B}} \Rightarrow \frac{\overline{V_{B}}}{\overline{I_{B}}}=-\frac{\beta}{C \omega} \end{aligned}$ Note: If we consider $\overline{V_{F}}$ and $\overline{V_{B}}$ to have the same sign then, due to the differentiation, $\overline{I_{F}}$ and $\overline{I_{B}}$ have opposite signs.

IMPORTANT: A
common
misconception is to
assume that the
characteristic
impedance Z_{0} is an
impedance per unit
length it is not:
Z_{0} IS THE TOTAL
IMPEDANCE, of a
line of any length if
there are no
reflections.

The Characteristic impedance, z_{0} is defined as the ratio between the voltage and the current of a unidirectional wave on a transmission line at any point:

$$
Z_{0}=\frac{\overline{V_{F}}}{\overline{I_{F}}}
$$

z_{0} is always positive.
From our expression in $\overline{I_{F}} \& \overline{V_{F}}$ overleaf and our definition of characteristic impedance it follows that:

$$
Z_{0}=\frac{\beta}{\omega C}
$$

and since:

$$
\begin{align*}
& \beta= \pm \omega \sqrt{L C} \\
& Z_{0}=\sqrt{L / C} \tag{2.1}
\end{align*}
$$

2.2. Summarizing

1) For a unidirectional wave:-
$V=Z_{0} I$ at all points.
2) For any wave :-
$\overline{V_{F}}=Z_{0} \overline{I_{F}}$ and $\overline{V_{B}}=-Z_{0} \overline{I_{B}}$.
Hence $\overline{V_{F}}$ and $\overline{I_{F}}$ are in phase
$\overline{V_{B}}$ and $\overline{I_{B}}$ are in antiphase.
3) For a lossless line Z_{0} is real with units of ohms.

2.3. Characteristic Impedance - Example 1

Q - We wish to examine a circuit using an oscilloscope. The oscilloscope probe is on an infinitely long cable and has a characteristic impedance of 50 Ohm.
What load does the probe add to the circuit?
A -

1. Since the cable is infinitely long there are no reflections
2. For a wave with no reflections $\frac{V}{I}=Z_{0}$ at all points, hence the probe behaves like a load of 50 Ohms.

2.4. Characteristic Impedance - Example 2

Q - A wave of $\overline{V_{F}}=5$ volts with a wavelength (λ) of 2 metres has a reflected wave of $\overline{V_{B}}=1$ volts. If $\mathrm{Z}_{0}=75$ Ohms what are the voltage and current 3 metres from the end of the cable.

$$
\beta=\frac{2 \pi}{\lambda}=\pi
$$

From Equation 1.4

$$
\cdots \quad \bar{V}=\overline{V_{F}} e^{-\beta x j}+\overline{V_{B}} e^{\beta x j}
$$

X = - 3 Therefore
Also

$$
\begin{aligned}
& \frac{\bar{V}}{}=5 e^{3 \pi j}+e^{-3 \pi j} \text { volts } \\
& \bar{I}=\frac{\overline{V_{F}}}{Z_{0}} e^{-\beta x j}-\frac{\overline{V_{B}}}{Z_{0}} e^{\beta x j} \\
&=\frac{5}{75} e^{3 \pi j}-\frac{1}{75} e^{-3 \pi j} a m p s \\
& \hline
\end{aligned}
$$

	3.2. Power Reflection
\bar{I} is the complex conjugate.	Mean Power dissipated in any load : $\frac{1}{2} \operatorname{Re}\left\{\bar{V} \vec{I}^{*}\right\}$ At the load:
$\begin{aligned} & \bar{I}=A+j B \\ & \text { then } \\ & \overline{I^{*}}=A-j B \\ & \vec{I}^{*} \text { and } \bar{V} \text { are peak } \\ & \text { values, power is } \\ & \text { calculated on RMS } \end{aligned}$	$\begin{aligned} & \bar{V}=\overline{V_{F}}\left(1+\bar{\rho}_{L}\right) \\ & \bar{I}=\frac{\overline{V_{F}}}{Z_{0}}\left(1-\bar{\rho}_{L}\right) \end{aligned}$
This is the power dissipated in the load so it is reduced by any value of ρ_{L} greater than nought. Hence that power must be being reflected back down the line which is logical bearing in mind ρ_{L} is defined as the voltage reflected back.	$\begin{aligned} & \frac{1}{2} \bar{V} \bar{I}^{*}=\frac{1}{2}\left(1+\bar{\rho}_{L}\right)\left(1-\bar{\rho}_{L}^{*}\right) \frac{\left\|\bar{V}_{F}\right\|^{2}}{Z_{0}} \\ & \quad=\frac{\left\|\overline{V_{F}}\right\|^{2}}{2 Z_{0}}\left(1+\bar{\rho}_{L}-\bar{\rho}_{L}^{*}-\left\|\bar{\rho}_{L}\right\|^{2}\right) \end{aligned}$ but $\bar{\rho}_{L}-\bar{\rho}_{L}^{*}$ is imaginary so: $\frac{1}{2} \operatorname{Re}\left\{\bar{V} \bar{I}^{*}\right\}=\frac{\left\|\overline{V_{F}}\right\|^{2}}{2 Z_{0}}\left(1-\left\|\bar{\rho}_{L}\right\|^{2}\right)$ Therefore: The fraction of power reflected from the load is: $\left\|\bar{\rho}_{L}\right\|^{2}$

i.e. that the load is equal to the characteristic impedance.	3.4. Summarizing
	$>$ For full power transfer we require $\overline{\rho_{L}}=0$
	$>$ When $\overline{\rho_{L}}=0$ a load is said to be "matched"
	$>$ The advantages of matching are that:
	1) We get all the power to the load 2) There are no echoes
	The simplest way to match a line to a load is to set:
	$Z_{0}=\bar{Z}_{L}$
	Since -
	Voltage reflection coefficient is $\bar{\rho}_{L}=\frac{Z_{L}-Z_{0}}{\bar{Z}_{L}+Z_{0}}$ \Rightarrow Fraction of power reflected $=\left\|\bar{\rho}_{L}\right\|^{2}$
	Reflections will set up standing waves (in just the same way as you get with optical waves). The Voltage Standing Wave Ratio (VSWR) is given by: $\operatorname{VSWR}=\frac{\left(1+\left\|\rho_{\iota}\right\|\right)}{\left(1-\left\|\rho_{\iota}\right\|\right)}$

3.5. Example - Termination (e.g. of BNC lines)

We know that the characteristic impedance of a cable is given by:
$Z_{0}=\sqrt{L / C}$
and we know that the voltage reflection coefficient is:
$\bar{\rho}_{L}=\frac{\overline{Z_{L}}-Z_{0}}{\overline{Z_{L}}+Z_{0}}$
So in order to avoid unwanted reflections we need a Z_{L} to terminate our coaxial cable which has the same impedance as the characteristic impedance of the cable.

The capacitance per unit length of a coaxial cable is given by

$$
C=\frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln (b / a)}
$$

Where \mathbf{b} is the outside diameter and \mathbf{a} is the inside diameter.

	For a length of coax the total magnetic flux ψ is given by integrating the field strength between the inner and outer conductors. Hence the Inductance per unit length L is : $L=\frac{\mu_{0}}{2 \pi} \ln (b / a)$ Hence $\begin{aligned} & Z_{0}=\sqrt{L / C}=\sqrt{\frac{\mu_{0}}{2 \pi} \ln (b / a) / \frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln (b / a)}} \\ & =\frac{\ln (b / a)}{2 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0} \varepsilon_{r}}} \end{aligned}$ Which gives a typical value for Z_{0} of 48.2Ω. Hence we use a 50Ω resistor to terminate our coax.

3.6. Example - Ringing

Why do square waves cause ringing even at low data rates ?

The ringing is caused by multiple reflections. The original wave is reflected at the load this reflection then gets reflected back at the generator etc etc.

We will illustrate this by looking at the step change in voltage V when the device is switched on.

Analytically

1. At switch on a pulse V_{F} is generated \& travels towards the load.

For an unreflected wave $\frac{V_{F}}{I_{F}}=Z_{0}$
At the generator by Ohm's law $\frac{V-V_{F}}{I_{F}}=Z_{G} \rightarrow \quad V_{F}=\frac{Z_{0}}{Z_{0}+Z_{G}} V$
2. Part of the pulse is then reflected at the load as $V_{2}=\rho_{L} V_{F}$
3. V_{2} is reflected at the generator as V_{3} etc
4. The amplitude at the Load asymptotically approaches V

Time
Time

3-9

3.7. $1 / 4$ Wave Matching

The impedance of a line is only Z_{0} in the absence of reflections. With reflections the impedance of the line at a point B is a function of the:
$>$ Intrinsic impedance Z_{0}
$>$ Impedance of the load Z_{L}
$>$ Distance from the load
$>$ Wavelength
The general expression for impedance at x is

$$
\begin{aligned}
& Z(x)=\frac{\bar{V}}{\bar{I}}=\frac{\overline{V_{F}} e^{-j \beta x}+\overline{V_{B}} e^{j \beta x}}{\overline{V_{F}}} e^{-j \beta x}-\overline{V_{B}} e^{j \beta x}
\end{aligned}=Z_{0} \frac{e^{-j \beta x}+\frac{\overline{Z_{B}} / \overline{V_{F}} e^{j \beta x}}{e^{-j \beta x}-\overline{V_{B}} / \overline{V_{F}} e^{j \beta x}}}{\quad=Z_{0} \frac{e^{-j \beta x}+\rho_{L} e^{j \beta x}}{e^{-j \beta x}-\rho_{L} e^{j \beta x}}=Z_{0} \frac{\left(Z_{L}+Z_{0}\right) e^{-j \beta x}+\left(Z_{L}-Z_{0}\right) e^{j \beta x}}{\left(Z_{L}+Z_{0}\right) e^{-j \beta x}-\left(Z_{L}-Z_{0}\right) e^{j \beta x}}}
$$

Replace exponential with sin and $\cos \&$ substitute in $x=-b$

$$
\begin{aligned}
& =Z_{0} \frac{\left(2 Z_{L} \cos \beta b+j 2 Z_{0} \sin \beta b\right)}{\left(2 Z_{L} \sin \beta b+j 2 Z_{0} \cos \beta b\right)} \\
& Z_{b}=Z_{0} \frac{\left(Z_{L}+j Z_{0} \tan \beta b\right)}{\left(Z_{0}+j Z_{L} \tan \beta b\right)}
\end{aligned}
$$

A quarter of a wavelength back from the load we have $b=\lambda / 4$ We also know that $\beta=2 \pi / \lambda$ hence substituting in we get

$$
Z_{b}=Z_{0} \frac{\left(Z_{L}+j Z_{0} \tan (\pi / 2)\right)}{\left(Z_{0}+j Z_{L} \tan (\pi / 2)\right)}
$$

Since $\tan (\pi / 2)=\infty$
The impedance at this point is:

$$
Z_{b}=\frac{Z_{0}^{2}}{Z_{L}}
$$

This expression is important when we are trying to connect two lines of different impedances and we don't want to have any reflections. It leads to the concept of the Quarter Wave transformer which is described in the next section.

3.7.1. Example - Quarter Wave transformer

Two lines one with an impedance of 50Ω and the second with an impedance of 75Ω are to be linked what should be the impedance of a quarter wavelength section of line in order to eliminate reflections?

Second line appears as $\mathrm{Z}_{\mathrm{L}}=75 \Omega$ to the $1 / 4$ wave link

WE want Z at b to equal 50 Ohms the Z_{0} of line 1 so there is no reflection back along the line. Hence

$$
Z_{b}=\frac{Z_{0}^{2}}{Z_{L}} \Rightarrow 50=\frac{Z_{0}^{2}}{75}
$$

i.e. $Z_{0}=61.2 \Omega$

The graph below shows how z varies along the $1 / 4$ wavelength section. Note this solution is only valid for one frequency.
$\mathrm{Z}_{\text {0line } 1}=50 \Omega$

$\mathrm{Z}_{0}=61.2 \Omega$

As we can see electric fields and magnetic related. One can give rise to the other and vice versa	Electric fields are not only created by charge (such as the charge on the plates of a capacitor) but also by a changing magnetic field. Magnetic fields are created not only by moving charges i.e. current in a coil or aligned spins in an atom (as in a permanent magnet), but also by changing electric fields (this is Maxwells Displacement current which we will discuss later) In addition to the above we have to allow for the charges and currents in materials and for this we
	Electric Flux : D Magnetic Field : H
Note: The electric field and magnetic field equations have been deliberately formulated to appear simila	related by the permittivity ε and permeability μ of the material $\begin{aligned} & \mathrm{D}=\varepsilon \mathrm{E} \\ & \mathrm{H}=\mathrm{B} / \mu \end{aligned}$

\quadFlux Densesentation of Flux Density B is represented by a vector field in which The Strength of the field $=$ the Number of flux lines per unit area The Direction of the field $=$ the Direction of the flux lines.	

5. Electromagnetic Waves

5.1. Derivation of Wave Equation

Consider an infinite plane $z=0$ in which, at all points $\mathbf{E}=\left(E_{x}, 0,0\right) e^{j \omega t}$ and $\mathbf{B}=\left(0, B_{y}, 0\right) e^{j \omega t}$

Hence \mathbf{E} and \mathbf{B} are perpendicular and uniform
In the plane $z=\delta z$, the fields will have varied by the rates of change of B and E with Z as shown above.

	The next step is to eliminate B from the first equation and D from the second. Since $B=\mu H$ and $D=\varepsilon E$: We get the following equations in E and H : $\begin{align*} & \frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t} \tag{5.1}\\ & \frac{\partial H_{y}}{\partial z}=-\varepsilon \frac{\partial E_{x}}{\partial t} \tag{5.2} \end{align*}$ These are exactly similar to the Telegrapher's Equations: $\begin{equation*} \frac{\partial V}{\partial x}=-L \frac{\partial I}{\partial t}(1.7) \frac{\partial I}{\partial x}=-C \frac{\partial V}{\partial t}(1 \tag{1.8} \end{equation*}$ Applying the same technique of differentiating eq. 5.1 and substituting in from 5.2 and vice versa we end up with the equations for electromagnetic waves in free space. $\begin{aligned} & \frac{\partial^{2} E}{\partial z^{2}}=-\mu \cdot \frac{\partial}{\partial t}\left(\frac{\partial H}{\partial z}\right)=\mu \cdot \varepsilon \cdot \frac{\partial^{2} E}{\partial t^{2}} \\ & \frac{\partial^{2} H}{\partial z^{2}}=-\varepsilon \cdot \frac{\partial}{\partial t}\left(\frac{\partial E}{\partial z}\right)=\mu \cdot \varepsilon \cdot \frac{\partial^{2} H}{\partial t^{2}} \end{aligned}$ Which have the same form and therefore similar solutions to the equations for waves in transmission lines. All of the results which we obtained from the Telegrapher's Equations can be reused for the equations for Electromagnetic waves.

6. Reflection and refraction of waves

6.1. Reflection of Incident wave normal to the plane of the reflection
This is a special case which could be derived by analogy with reflection of V and I. More satisfactory and relatively simple is to obtain the same results by matching boundary conditions:

At the boundary between two media the electric and magnetic field are continuous. That is the total field in medium 1 is equal to the total field in medium 2.

Hence: $E_{x I}+E_{x R}=E_{T}$
and $\quad H_{y I}-H_{y R}=H_{y T}$
Eliminating H using η gives
$E_{x I} / \eta_{1}-E_{x R} / \eta_{1}=E_{T} / \eta_{2}$
us

Eliminating E_{T} gives us: $\frac{E_{x R}}{E_{x I}}=\frac{\left(\eta_{2}-\eta_{1}\right)}{\left(\eta_{1}+\eta_{2}\right)}$

${ }^{4} \mathrm{H}_{\mathrm{yl}}=\mathrm{E}_{\mathrm{xI}} / \eta_{1}$
Reflected Wave

Medium 1

Transmitted Wave

Medium 2

6.2. Reflection from a dielectric boundary of wave at oblique incidence

The behaviour of the reflected and transmitted waves will depend on the orientation of E with respect to the boundary. We therefore split the incident waves into two polarised parts.

Perpendicularly polarised - electric field at right angles to incident plane

Parallel polarised - electric field in incident plane

6.2.1. Snell's Law of refraction

Before calculating the reflection and refraction coefficients we need to know the angles at which the reflected and refracted waves will be travelling.

The wave travels in medium 1 from C to B in the same time as it does from A to D in medium 2.
Hence $\frac{C B}{A D}=\frac{v_{1}}{v_{2}}$ but $C B=A B \sin \theta_{i}$ and $A D=A B \sin \theta_{t} \rightarrow \frac{\sin \theta_{i}}{\sin \theta_{t}}=\frac{v_{1}}{v_{2}}$
We know that $v=\frac{1}{\sqrt{\mu \varepsilon_{r} \varepsilon_{0}}}$ and that $\eta=\sqrt{\frac{\mu}{\varepsilon}}$

$$
\rightarrow \frac{\sin \theta_{i}}{\sin \theta_{t}}=\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{1 / 2}=\frac{\eta_{1}}{\eta_{2}} \text { Snell's Law of Refraction (6.2) }
$$

By a similar argument it can be shown that the angle of reflection is equal to the angle of incidence.

$$
\text { I.e. } \theta_{r}=\theta_{i}
$$

6.2.2. Incident and Reflected Power

The next step is to consider the power striking the surface $A B$ and to equate that to the power leaving that surface. The incident power density is (remembering that η is the intrinsic impedance)
$\frac{E_{i}^{2}}{\eta_{1}} \cos \theta_{i}$ - (The $\cos \theta$ term comes from the angle of incidence) Hence:
$\frac{E_{i}^{2}}{\eta_{1}} \cos \theta_{i}=\frac{E_{r}^{2}}{\eta_{1}} \cos \theta_{r}+\frac{E_{t}^{2}}{\eta_{2}} \cos \theta_{t}$
Remembering that $\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{1 / 2}=\frac{\eta_{1}}{\eta_{2}}$ and that $\cos \theta_{r}=\cos \theta_{i}$ we get:

$$
\frac{E_{r}^{2}}{E_{i}^{2}}=1-\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{\frac{1}{2}} \frac{E_{t}^{2} \cos \theta_{t}}{E_{i}^{2} \cos \theta_{i}}(6.3)
$$

6.2.3. Perpendicularly polarised waves

Having got our expression for power we can consider the two sets of waves starting with the perpendicularly polarised waves.
In these waves the electric field is perpendicular to the plane of incidence i.e. parallel to the boundary between the two media.
Summing the electric fields we get

$$
E_{t}=E_{r}+E_{i}
$$

Combining this with equation 6.3 which was:

$$
\frac{E_{R}^{2}}{E_{I}^{2}}=1-\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{\frac{1}{2}} \frac{\cos \theta_{T}}{\cos \theta_{I}} \frac{E_{T}^{2}}{E_{I}^{2}}=1-k \frac{E_{T}^{2}}{E_{I}^{2}}
$$

Where $k=\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{\frac{1}{2}} \frac{\cos \theta_{t}}{\cos \theta_{i}}$
We get the following:
$\frac{E_{R}^{2}}{E_{I}^{2}}=1-k\left(1+\frac{E_{R}}{E_{I}}\right)^{2} \Rightarrow\left(\frac{E_{R}}{E_{I}}\right)^{2}(1+k)+\left(\frac{E_{R}}{E_{I}}\right)(2 k)+(k-1)=0$
Hence: $\left(\frac{E_{R}}{E_{I}}\right)=\frac{\varepsilon_{1}^{1 / 2} \cos \theta_{I}-\varepsilon_{2}^{1 / 2} \cos \theta_{T}}{\varepsilon_{1}^{1 / 2} \cos \theta_{I}+\varepsilon_{2}^{1 / 2} \cos \theta_{T}}$
This expression contains the angle of the transmitted wave, however we can use Snell's law to obtain a more useful expression which contains only the angle of incidence. I.e.

$$
\begin{equation*}
\left(\frac{E_{R}}{E_{I}}\right)=\frac{\cos \theta_{I}-\left(\varepsilon_{2} / \varepsilon_{1}-\sin ^{2} \theta_{I}\right)^{1 / 2}}{\cos \theta_{I}+\left(\varepsilon_{2} / \varepsilon_{1}-\sin ^{2} \theta_{I}\right)^{1 / 2}} \tag{6.4}
\end{equation*}
$$

6.2.4. Parallel Polarised Waves

In this case E is no longer parallel to the reflecting plane. Our boundary condition applies to the component of E parallel to the reflecting plane. I.e.

$$
E_{I} \cos \theta_{I}-E_{R} \cos \theta_{I}=E_{T} \cos \theta_{T}
$$

Following through the algebra our expression for the ratio of reflected to incident waves becomes:

$$
\begin{equation*}
\left(\frac{E_{R}}{E_{I}}\right)=\frac{\left(\varepsilon_{2} / \varepsilon_{1}\right) \cos \theta_{I}-\left(\varepsilon_{2} / \varepsilon_{1}-\sin ^{2} \theta_{I}\right)^{1 / 2}}{\left(\varepsilon_{2} / \varepsilon_{1}\right) \cos \theta_{I}+\left(\varepsilon_{2} / \varepsilon_{1}-\sin ^{2} \theta_{I}\right)^{1 / 2}} \tag{6.5}
\end{equation*}
$$

This is similar to equation (6.4) but in this equation the numerator can become zero i.e. no reflected wave. The angle at which this occurs is known as the Brewster Angle.
Zero reflection at the Brewster Angle explains why Polarised sunglasses cut down reflections.
6.2.5. Comparison between reflections of parallel and perpendicularly polarised waves

a) Permittivity Ratio of 2

b) Permittivity Ratio of 1 C

Graph of $\frac{E_{R}}{E_{I}}$ versus angle of incidence
The graphs show the values of $\left(\frac{E_{R}}{E_{I}}\right)$ for two different permittivity ratios. As the ratio $\varepsilon_{2} / \varepsilon_{1}$ increases three effects can be seen.
> The Brewster angle increases
$>$ The value of $\left(\frac{E_{R}}{E_{I}}\right)$ for the perpendicularly polarized wave tends to -1 i.e. perfect antiphase at all angles
$>$ The value of $\left(\frac{E_{R}}{E_{I}}\right)$ for the parallel polarized wave tends to 1
i.e. perfect phase at all angles

When $\varepsilon_{2} / \varepsilon_{1}=\infty$ then total reflection occurs at all angles of incidence.

6.3. Total Internal Reflection

b) Permittivity Ratio of $1 / 2$

Graph of $\left|\frac{E_{R}}{E_{I}}\right|$ versus angle of incidence
The previous section showed graphs for $\varepsilon_{2} / \varepsilon_{1}>1$. I.e. our wave is moving from a lower density medium to a higher one. If instead $\varepsilon_{2} / \varepsilon_{1}<1$ then the phenomenon known as total internal reflection can occur.

This is shown in the graph above at all angles of incidence where: $\operatorname{Sin}^{2} \theta \geq \varepsilon_{2} / \varepsilon_{1}$
Then $\left|\frac{E_{R}}{E_{I}}\right|=1$ i.e. the magnitudes of the incident and the reflected waves are equal.

6.4. Comparison of Transmission Line \& Free Space Waves

 Symbols:| V: | Voltage | Volts | E | Electric Field |
| :--- | :--- | :--- | :--- | :--- |
| I: | Current | Amps | H | Magnetic Field |
| I: | Inductance | Henry m^{-1} | μ | Amps m^{-1} |
| C | Capacitance | Farad m^{-1} | ε | Permittivity |

Equations:

$V=\mathbf{R} e\left\{{\overline{V_{F}}} e^{j(\omega t-\beta x)}+\overline{V_{B}} e^{j(\omega t+\beta x)}\right\}$	$E_{x}=\mathbf{R} e\left\{{\overline{E_{x F}}}^{j} e^{j(\omega t-\beta z)}+\overline{E_{x B}} e^{j(\omega t+\beta z)}\right\}$
$I=\mathbf{R} e\left\{\bar{I}_{F} e^{j(\omega t-\beta x)}+\overline{I_{B}} e^{j(\omega t+\beta x)}\right\}$	$H_{y}=\mathbf{R} e\left\{{\overline{H_{y F}}}^{j} e^{j(\omega t-\beta z)}+\overline{H_{y B}} e^{j(\omega t+\beta z)}\right\}$
$\overline{V_{F}}=\overline{V_{B}}={ }^{L /}$	$\overline{E_{x F}}=\overline{E_{x B}}=\eta=\sqrt{\mu /}$
$\overline{\bar{I}_{F}}=-\overline{\bar{I}_{B}}=z_{0}=\sqrt{L} / C$	$\overline{\overline{H_{y F}}}=-\frac{}{\overline{H_{y B}}}=\eta=\sqrt{c} / \varepsilon$
$\text { Wave velocity }=\frac{1}{\sqrt{L C}}$	Wave Velocity $=\frac{1}{\sqrt{\mu \varepsilon}}$
$\beta=\omega \sqrt{L C}$	$\beta=\omega \sqrt{\mu \varepsilon}$
$\bar{\rho}_{L}=\frac{\bar{V}_{B}}{\bar{V}_{F}}=\frac{\bar{Z}_{L}-Z_{0}}{\bar{Z}_{L}+Z_{0}}$	$\bar{\rho}_{L}=\frac{\bar{E}_{x B}}{\bar{E}_{x F}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$
Power Reflection $=\left\|\rho_{L}\right\|^{2}$	Power Reflection $=\left\|\rho_{L}\right\|^{2}$
$\text { Wave Power }=\operatorname{Re}\left\{\frac{1}{2} \bar{V} \bar{I}^{*}\right\}$	$\text { Wave Power }=\operatorname{Re}\left\{\frac{1}{2} \bar{E} \times \bar{H}^{*}\right\}$

ω : Frequency, radians s^{-1}, β : Spatial frequency, radians m^{-1} Note The Wave Power $=\frac{1}{2} \operatorname{Re}\left(\underline{\bar{E}} \times \underline{\bar{H}}^{*}\right) W^{-2}$ is the complex Poynting Vector and will be derived in the next lecture

6.5. Example - Characteristic Impedance

A printed circuit board is one millimetre thick and has an earthing plane on the bottom and has $\varepsilon_{r}=2.5$ \& $\mu_{\mathrm{r}}=1$

Estimate the characteristic impedance of a track 2 mm wide.
$C \approx \varepsilon \frac{A}{d} \mathrm{so}:$

$$
\begin{aligned}
Z_{0} & =\sqrt{L / C} \\
C \approx \varepsilon_{r} \varepsilon_{0} \frac{\omega}{d} & =2.5 \times 8.85 \times 10^{-12} \times \frac{2}{1} \\
& =44 \mathrm{pFm}^{-1}
\end{aligned}
$$

Wave Velocity $=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\varepsilon \mu}}$

Hence :

$$
\begin{aligned}
L=\frac{\varepsilon \mu}{C} & =\frac{2.5 \times 8.85 \times 10^{-12} \times 4 \pi \times 10^{-7}}{44 \times 10^{-12}} \\
& =0.63 \mu \mathrm{Hm}^{-1} \\
Z_{0} \quad & =\sqrt{L / C}=\sqrt{\frac{0.63 \times 10^{-6}}{44 \times 10^{-12}}} \\
& =120 \Omega
\end{aligned}
$$

6.6. Example - Electromagnetic Waves

Diamond has $\varepsilon_{r}=5.84 \& \mu_{r}=1$. What power fraction of light is reflected off an air/diamond surface?

Recalling that for Transmission lines:

$$
\bar{\rho}_{L}=\frac{\bar{V}_{B}}{\bar{V}_{F}}=\frac{\bar{Z}_{L}-Z_{0}}{\bar{Z}_{L}+Z_{0}}
$$

Similarly for E-M Waves:

$$
\bar{\rho}_{L}=\frac{\bar{E}_{x B}}{\bar{E}_{x F}}=\frac{\eta_{\text {Diamond }}-\eta_{\text {air }}}{\eta_{\text {Diamond }}+\eta_{\text {air }}}
$$

Now $\eta=\sqrt{\mu / \varepsilon}$ So $\frac{\eta_{\text {Diamond }}}{\eta_{\text {Air }}}=\frac{\sqrt{\mu_{r} \mu_{0} / \varepsilon_{r} \varepsilon_{0}}}{\sqrt{\mu_{0} / \varepsilon_{0}}}=\sqrt{1 / 5.84}$

$$
\begin{aligned}
\left|\bar{\rho}_{L}\right|^{2} & =\left(\frac{1-0.41}{1+0.41}\right)^{2} \\
& =17.5 \%
\end{aligned}
$$

Inside a portable	
radio you will find a	
ferrite rod wound with	
copper wire.	This is
the long	wave
antenna.	It
several loops	had a
ferrite core. The core	
concentrates	the
electromagnetic	
waves into	the
antenna and	the
whole arrangement is	
essentially half of a	
transformer.	

Another way of concentrating the electromagnetic waves is using a parabolic mirror. Placing a source (S) at the focus of a parabaloid can result in a very directive beam

7.4. Reflector Antennae

	7.5. Array antennae
Antennae can also be joined into an array. The array must (of course) be correctly designed so that the signals combine in phase ... i.e. that they add up rather than cancel out.	Exploit superposition effects to get a highly directional wave as long as the spacings (a, b) and the phase relationships ($\mathrm{e}^{\mathrm{j} \alpha}, \mathrm{e}^{\mathrm{j} \beta}$) are correct.

| $\substack{\text { Let an electromagnetic wave hit the end of a parallel } \\ \text { Let } \\ \text { plate transmission line: }}$ |
| :--- | :--- | :--- |

Solving

$$
H_{v}, w=I
$$

Also the electric field and the voltage are related by:

$$
E_{x} \cdot d=V
$$

So the transmission line wave power is:

$$
\frac{1}{2} \bar{V} \bar{I}^{*}=\frac{1}{2} \bar{E}_{x} \bar{H}_{y}^{*} w d
$$

The intensity of an electromagnetic wave

$$
=\frac{1}{2} \operatorname{Re}\left(\underline{\bar{E}} \times \underline{\bar{H}}^{*}\right) W m^{-2}
$$

This expression is known as the complex Poynting Vector and the direction of power flow is perpendicular to \underline{E} and \underline{H}

7.6.1. Example - Duck a la microwave

A duck with a cross-sectional area of $0.1 \mathrm{~m}^{2}$ is heated in a microwave oven. If the electromagnetic wave is:

$$
E_{x}=\operatorname{Re}\left\{750 e^{j(\omega t-\beta z)}\right\} V m^{-1}, H_{y}=\operatorname{Re}\left\{2 e^{j(\omega t-\beta z)}\right\} A m^{-1}
$$

What power is delivered to the duck?

$$
\begin{aligned}
\text { Power } & =\frac{1}{2}\left(\underline{\bar{E}} \times \underline{\bar{H}}^{*}\right) \cdot \text { Area } \\
& =(750 \times 2) \times 0.1 \\
& =\underline{75 \mathrm{~W}}
\end{aligned}
$$

The area of radio wave intercepted by a parabolic dish antenna is pretty obvious, but in principle a half wave dipole could have no area at all and yet still receive power from a radio wave. Hence we effective area.	8.3. Effective Area The effective area, $A_{\text {eff }}$, of an antenna is that area of wavefront whose power equals that received from the wavefront by the antenna. $A_{\text {eff }}=\quad \frac{\text { Power collected by antenna }}{\text { Wave intensity (i.e. power/area) into antenna }}$

8.4. Example - Power Transmission

If two half-wave dipoles are 1 km apart and one is driven with $0.5 \mathrm{amps}(\mathrm{RMS})$ at 300 MHz , what power is received by the other?

$$
\left[\mathrm{G}=1.64, \mathrm{R}_{\mathrm{a}}=73 \Omega, \mathrm{~A}_{\mathrm{eff}}=0.13 \mathrm{~m}^{2}\right]
$$

Ans -
Intensity r metres from an isotropic antenna

$$
\left.=\text { Transmitted power/(4 } 4 r^{2}\right)
$$

Intensity r metres from this antenna

$$
=G \frac{i^{2} R_{a}}{4 \pi r^{2}}
$$

Power received by receiving antenna

$$
\begin{aligned}
& =\text { Intensity } \times \mathrm{A}_{\text {eff }} \\
& =G \frac{i^{2} R_{a}}{4 \pi r^{2}} A_{\text {eff }} \\
& =1.64 \times \frac{0.5^{2} \times 73}{4 \pi(1000)^{2}} \times 0.13 \\
& =0.3 \mu \mathrm{~W}
\end{aligned}
$$

