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S1. RAMAN SCATTERING

Raman scattering1 is the inelastic scattering of photons
by phonons, Fig. S1. A photon impinging on a sample
creates a time-dependent perturbation of the Hamilto-
nian. Due to the photon fast changing electric field, only
electrons respond to the perturbation. The electronic
wave-functions of the perturbed system can be written as
a linear combination, with time-dependent coefficients, of
all the wave-functions of the unperturbed system. The
perturbation introduced by a photon of energy �ωL in-
creases the total energy to EGS + �ωL, where EGS is the
ground state energy. In general, EGS+�ωL does not cor-
respond to a stationary state, therefore the system is said
to be in a virtual level. In classical language, a virtual
level corresponds to a forced oscillation of the electrons
with a frequency ωL. Once the photon realizes that the
system has no stationary state of energy EGS + �ωL, it
leaves this unstable situation. We can formally consider
the photon as being emitted by the perturbed system,
which jumps back to one of its stationary states.

Rayleigh scattering takes place when the system re-
turns to its initial state, and the frequency of the emit-
ted photon remains the same as the incident one. This
is also called elastic scattering, and all that can hap-
pen to the photon is a change in its propagation direc-
tion. Still, Rayleigh or elastic scattering can give use-
ful information2,3. Graphene is indeed one of the most
successful examples3, since elastic scattering is now com-
monly used to image the flakes and derive the number
of layers3,4. The presence of an appropriate spacer, such
as the typical 300nm SiO2 over Si5, can enhance signifi-
cantly the incident field amplitude within graphene, thus
its visibility3,4. Had not been for this effect, that enabled
to see even a single layer graphene (SLG) simply using
an optical microscope5, the whole graphene research field
may never have started.

Raman scattering happens when, with a much lower
probability than Rayleigh scattering, the photon can lose
part of its energy in the interaction process, thus exiting
the sample with a lower energy �ωSc. This corresponds to
the Stokes (S) process. Since the sample has to return to
a stationary state, the energy loss must correspond to a
phonon energy, �ωL−�ωSc = �Ω. If the incoming photon
finds the sample in an excited vibrational state, and af-
ter the interaction the system returns to its ground level,
the photon can leave the crystal with an increased energy
�ωSc = �ωL + �Ω. This corresponds to the Anti-Stokes
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Figure S1. Raman Scattering. (a) Stokes. An incoming
photon ωL excites an electron-hole pair e-h. The pair decays
into a phonon Ω and another electron-hole pair e-h′. The
latter recombines, emitting a photon ωSc. (b) Anti-Stokes.
The phonon is absorbed by the e-h pair. (c) Rayleigh and
Raman scattering in resonant and non resonant conditions.

(AS) process. Given that S is the most probable6, the
vast majority of Raman spectra in literature are S mea-
surements plotting the intensity of the scattered light as
a function of the difference between incident and scat-
tered photon energy, the so called "Raman shift". Even
though the Raman shift units should be those of energy,
it is historically plotted in cm−1. These can be converted
in meV using the relation 1meV = 8.0655447 cm−1. The
S/AS ratio depends on the sample temperature6, and
is a very popular method to monitor it. However, in
graphene and nanotubes, the nature of the resonant pro-
cess has to be carefully considered when comparing S/AS
intensities, since the resonance windows for incident and
scattered photons are different7,8. Not doing so gives
wrong temperature estimations.

Non-resonant Raman scattering is when EGS + �ωL

does not correspond to a stationary state, as is indeed
the case for most materials. If the excitation is selected
to match a specific energy level6, then the process is res-
onant, and the intensities are strongly enhanced, as a
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result of the greater perturbation efficiency. In a quan-
tum mechanical description, this corresponds to a van-
ishing denominator in the perturbation theory expression
for the transition amplitude. Resonant Raman scatter-
ing has been intensely studied since the 1960-1970s for
semiconductors (see Ref. 9 for a review).

For light in the infrared (IR) to ultraviolet (UV) spec-
tral range, the main scattering mechanism involves elec-
tronic excitations as intermediate states, rather than di-
rect photon-phonon coupling, because the laser energy
is large compared to the phonon energy10. This is even
more so for carbon allotropes, since they are non-polar.
Thus, the study of the Raman spectra can shed light
on the behavior of electrons11,94, and complement trans-
port measurements. The Raman intensities calculations
in solids date back to the 1960s, with free electron-
hole (e-h) pairs12 and excitons13 as intermediate states.
Graphene differs from usual semiconductors in several
aspects, with important consequences. First, the lin-
ear gapless electronic dispersion implies resonances for
any ωL. Second (related to the first), there are no exci-
tons (i.e. real bound states of an electron and a hole).
Third, in the IR-visible range, the electronic spectrum
has approximately symmetric conduction and valence
bands, while for semiconductors the difference between
e and h effective masses me,mh is usually of the or-
der of me,mh themselves, and often mh ≫ me

6. Still,
Raman scattering for semiconductors with equal masses
was previously studied, both theoretically and experi-
mentally. In indium halides (such as InBr,InI) me = mh

and their Raman spectra were found to exhibit peaks
up to the 20th order; even-order peaks being more in-
tense than odd-order ones14. This was assigned to full
resonance15, which is of direct relevance for even-order
peaks in graphene.

If kL and ωL = ckL are the wave vector and frequency
of the incoming photon, kSc and ωSc = ckSc those of
the scattered photon (c being the speed of light), and q
and Ων

q those of a phonon belonging to a branch ν, then
energy and momentum conservation give:

ωL = ωSc ± Ων
q, (S1)

kL = kSc ± q. (S2)

In the S process a phonon is created (“+”), in AS one is
annihilated (“−”). Typical Raman experiments are con-
ducted in the 1064 − 229 nm range, corresponding to
1.2−5.4 eV16–18. Since the lattice parameter, a, is of the
order of a few Å (∼ 1.42Å in graphene19), kL, kSc ≪ π/a,
the magnitude of a zone boundary wavevector. Then,
from Eqs. (S1,S2), q ≪ π/a, i.e. in first-order scatter-
ing only phonons near Γ (q ≈ 0) are measured. This is
referred to as the fundamental Raman selection rule.

The emission of two phonons with opposite wavevec-
tors can always satisfy the fundamental selection rule:
q + (−q) = 0. Since each individual q a priori can be
arbitrary, all phonons may contribute to a multi-phonon
process. Thus, in principle, the multiphonon Raman
spectrum will reproduce the main features of the phonon
density of states (PDOS), and can be used to derive im-
portant information on the phonon branches, as done,
e.g., in hexagonal boron nitride, h-BN20. Graphene is
yet again special: only very few intense features are seen,
not corresponding to the PDOS maxima21,22, due to the
peculiar nature of the resonant process and the electron-
phonon and electron-electron interactions11,21,22. h-BN,
albeit with an hexagonal lattice as graphene, is a wide
gap semiconductor and, unless Raman spectroscopy is
performed in the deep UV20,23, is not resonant.

In general, Raman scattering can be described by per-
turbation theory6. For an n-phonon process we have an
(n+ 2) order matrix element:

M =
∑

s0,...,sn

⟨f |Ĥem|sn⟩⟨sn|Ĥph|sn−1⟩ . . . ⟨s1|Ĥph|s0⟩⟨s0|Ĥem|i⟩
(~ωL − En + iΓn/2) . . . (~ωL − E1 + iΓ1/2)(~ωL − E0 + iΓ0/2)

(S3)

with |i⟩ the initial state (incident photon with frequency
ωL, polarized along a unit vector ein), |f⟩ the final
state (scattered photon with frequency ωSc and polariza-
tion eout, and n phonons left in the crystal), while sk,
k = 0, . . . , n, label the intermediate states where no
photons are present, but an e − h pair is created and
k phonons emitted. Ek and Γk/~ are the energies and
decay rates of these intermediate states. Ĥem and Ĥph

are the Hamiltonians describing the interaction of elec-
trons with the electromagnetic field and with phonons.
In practice, for n > 1, the enumeration of all possible in-
termediate states is cumbersome, so that a diagrammatic

scattering formalism is useful for a systematic analysis of
all relevant terms. According to the number of vanishing
denominators in Eq. (S3), the process can be classified
as doubly-resonant (DR) or triply-resonant (TR). Higher
orders are also possible in multiphonon processes.

Each term in the sum of Eq. (S3) can be viewed as
the complex amplitude of the corresponding elementary
process with given intermediate states. These ampli-
tudes may add up in phase or out of phase, which would
correspond to constructive or destructive quantum in-
terference. For non-interacting electrons in a defect-free
crystal, the summation over the intermediate states in
Eq. (S3) is reduced to an integration over the electronic
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momentum. In the presence of defects, the momentum
is not a good quantum number for electronic wave func-
tions. Still, if the density of defects is not very high,
their effect on the wave functions can be treated pertur-
batively. This corresponds to introducing more interme-
diate states, as well as matrix elements of electron-defect
scattering, ⟨si+1|Ĥdef |si⟩, in Eq. (S3), and again inte-
grating over the electronic momentum. This procedure
treats electron scattering on defects analogously to scat-
tering on phonons, so that a defect can be viewed as a
phonon with zero frequency.

Given M, one should sum its square over the phonon
wavevectors, either with fixed total energy, to obtain the
frequency-resolved intensity I(ω), or over all energies, to
get the frequency-integrated peak intensity A:

I(ωSc) ∝
∫

|M|2δ(Ων1
q1

+ . . .+Ωνn
qn

− ωSc) d
2q1 . . . d

2qn,

(S4)

A =

∫
ωSc∈peak

I(ωSc) dωSc ∝
∫

|M|2d2q1 . . . d
2qn, (S5)

where q1, . . . ,qn are the wave vectors of the emitted
phonons, ν1, . . . , νn their branch labels, and Ων1

q1
, . . . ,Ωνn

qn

are their frequencies. The frequency-integrated inten-
sity is more robust with respect to various perturba-
tions of the phonon states. Indeed, for dispersionless
undamped phonons, Ων , the shape of the n-phonon peak
is ∝ δ(ωSc − nΩν) with zero width, infinite height, but
well-defined area. If the phonons are allowed to decay
(e.g, into other phonons due to anharmonicity24 or into
e-h pairs due to electron-phonon coupling, EPC25), the
δ-peak is broadened into a Lorentzian, but the area is
preserved, as the total number of phonon states cannot
be changed by such perturbations. If phonons have a
weak dispersion, then states with different momenta con-
tribute at slightly different frequencies. This may result
in an overall shift and a non-trivial peak shape, but fre-
quency integration across the peak means counting all
phonon states, as in the dispersionless case. Thus, the
frequency-integrated intensity is preserved as long as M
is not changed significantly by the perturbation. The lat-
ter holds when the perturbation is smaller than the en-
ergy scale determining M. This is usually dominated by
electronic broadening, and often larger. Converting en-
ergy into time by the uncertainty principle, if the process
is faster than phonon decay, the total number of photons
emitted within the given peak (i. e., integrated over fre-
quency across the peak), is not affected by phonon decay,
although their spectral distribution can be.

Raman spectroscopy can also probe scattering of pho-
tons by electronic excitations. In pristine graphene
electronic excitations have a continuous structureless
spectrum26, which does not lead to any sharp fea-
tures. However, in a strong magnetic field, B, when the
electronic spectrum consists of discrete Landau levels,
the electronic inter-Landau-level excitations give rise to
sharp B-dependent peaks in the Raman spectrum27–30.

S2. INTERFERENCE-ENHANCED RAMAN
SCATTERING

In general, the Raman intensity depends on the square
of the incident field amplitude6. Thus it can also be
enhanced by a proper choice of substrate and spacer,
resulting in the so-called Interference Enhanced Ra-
man Scattering (IERS). This is a common occurrence
in graphene31,32, and the reasons are analogous to those
enabling its visibility on a substrate31,32. Due to inter-
ference, the enhancement varies as a function of both
excitation and emission wavelengths, being in principle
different for different Raman peaks. The transfer matrix
method can be used to evaluate the effect of substrate
interference and sample absorption33. First, the incident
amplitude E(x) in the sample is evaluated, as a func-
tion of sample thickness x. The Raman absorption at
depth x is proportional to |E(x)|2. Next, the emissivity
ER(x) from depth x at the corresponding Stokes-shifted
frequency is calculated33. The Raman intensity is then
proportional to

∫ d

x=0
|E(x)|2|ER(x)|2dx. This shows that

changes with respect to an “intrinsic” I(2D)/I(G) are
small for a SLG on 300 nm SiO2 measured at 514 nm.
Thus, it is safe to compare this ratio amongst different
samples and assign its variation to doping or other ex-
ternal perturbations. However, different substrates or
wavelengths, may result in IERS changes of I(2D)/I(G)
even for the same sample. On the other hand, an optimal
interference-enhancing substrate could be designed, with
uniform enhancement across different Raman bands (so
that their ratios do not change), at the same time ensur-
ing high optical visibility.

S3. SURFACE-ENHANCED RAMAN
SCATTERING

Surface Enhanced Raman Scattering (SERS) exploits
surface plasmons, induced by the incident field in metallic
nanostructures, to increase the intensity34. In principle,
even a single metallic nanostructure, e.g., a nanotip, can
induce SERS, giving rise to the so-called tip-enhanced
Raman scattering (TERS)35. The key feature of TERS
is its capability of optical sensing with high spatial reso-
lution beyond the light diffraction limits35.

Graphene is an ideal model system to study SERS.
Ref.33 did SERS by depositing patterned particles of dif-
ferent sizes and spacings on SLG. Taking into account
the surface plasmon resonance near-fields, the Raman
enhancement scales with particle cross section, fourth
power of Mie enhancement, and inversely with the tenth
power of the separation between particle centre and
graphene33, pointing to thin nanodisks to achieve the
highest SERS for two dimensional (2d) materials33.
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S4. RAMAN SCATTERING IN GRAPHITE
AND GRAPHENE: HISTORY AND

NOMENCLATURE

Figure 1(e) in the main text shows the Raman spec-
trum of pristine and defected graphene, while Figure 4(f)
in the main text compares the Raman spectra of graphite,
nanotubes and amorphous carbons.

It is very instructive to summarize the main steps in
the historical development of the understanding of the
graphite Raman spectrum. This was first reported in
1970 in the seminal work of Tuinstra and Koenig (TK)36.
They assigned the mode at∼ 1580cm−1 to the high fre-
quency E2g Raman allowed optical phonon. They also
measured in defected and nanocrystalline graphite a sec-
ond peak at∼1350cm−1. They assigned it to an A1g

breathing mode at K, activated by the relaxation of the
Raman fundamental selection rule36. This was done fol-
lowing both the “molecular” and “solid state” routes.

The assignment is straightforward considering carbons
as big molecules37. Similar bands are seen in all poly-
aromatic hydrocarbons38. The higher frequency band is
due to bond stretching of sp2 pairs in both rings and
chains, while the lower frequency one is due breathing
modes of sp2 atoms in rings17,36,38, see Fig. 1(c) of the
main text. Thus, in absence of rings, the latter would
be absent, while the former is present in any carbon ma-
terials, ranging from carbon chains, to hard amorphous
carbons18, Fig. 4(f) of the main text. Except for UV
excitation, the Raman spectra of carbons are dominated
by the sp2 sites, because visible light resonates with the
π states, the cross section for graphite and graphene at
514nm being∼55 times higher than diamond39. Only
for diamond, or samples with a significant fraction of
diamond phase, the diamond sp3 peak at 1332cm−1 is
seen40. In amorphous carbons, the C−C sp3 vibrations
can be seen for UV excitation at∼1060cm−1 (usually
called T peak, from Tetrahedral)17.

The “solid-state” interpretation has been debated for
the past 40 years. TK tried to combine the “molecular”
and “solid-state” approaches as follows. First they con-
sidered graphite nanocrystals as big aromtic molecules,
and noted that the only new Raman active modes would
have A1g symmetry, Fig. 1(c) of the main text. Then they
looked at the graphene lattice and noted that the only
Brillouin Zone (BZ) points with high enough symmetry
to give an A1g mode were K and K′. They were left with
a problem: the fundamental Raman selection rule forbids
q ̸= 0 phonons. Since they observed the∼1350cm−1 band
to increase with decreasing crystal size, they assumed
that phonon confinement in ever smaller nanocrystals
would progressively lift the selection rule. From the un-
certainty principle ∆q∆x ∼ ~, thus ∆q ∝ 1/∆x, and
the smaller the crystal size ∆x, the larger ∆q. However,
this picture had a flaw. To activate BZ boundary A1g

phonons requires ∆x ∼ lattice spacing, in disagreement
with the observation of the∼1350cm−1 band in crystals
as large as∼100nm36. Also, confinement could not ex-

plain why the A1g mode was more intense than others
closer to Γ (all these modes could in principle be acti-
vated, as happens in other nanomaterials41).

TK did not give any names to these Raman peaks.
The first nomenclature was proposed by Vidano and
Fishbach in 197742. Since they observed strong lines
at∼1580 and∼2700cm−1 in pristine graphite, while other
bands at∼1350 and∼1620cm−1 only appeared in defected
graphite, they called the former G, G′ (from Graphite)
and the latter D, D′ (from Disorder). Nemanich and
Solin detected a sharp band at∼3250cm−1 in pristine
graphite43, as well as a weaker one at∼2450cm−144.
They also noted a further peak at∼2950cm−1 in defected
samples44, later named D′′ by Vidano et al.45. In 1979
Nemanich and Solin, by polarization dependent measure-
ments, assigned all peaks between 2300 and 3250cm−1

in pristine graphite as overtones. In particular, they
indicated that the∼2450cm−1 peak was also an over-
tone. They also noted that, with defects, combinations
of phonons with different wavevectors become allowed,
since the requirement to have opposite wavevector was
progressively lifted. They thus assigned the∼2950 cm−1

band as D + D′, rather than D + G, due to the phonon
density of states (PDOS) maximum at∼1620cm−1 for the
LO branch, see Fig. 1d of the main text. In 1981 Vidano
et al. studied the excitation energy dependence, and
confirmed G′ to be the D overtone, and the∼3250cm−1

peak the D′ overtone, since these shifted at twice the
rate of their fundamentals45. They stressed those bands
behaved differently from G, that did not move with exci-
tation energy. They also noted the energy dependence of
the∼2950cm−1 peak was consistent with D+D′ or D+G.

Thus, by 1981 it was clear that, while the Raman-
allowed first-order G peak did not shift with excitation
energy, the “defect-related” bands D, D′, their overtones
and combinations did. This ruled out their assignment to
PDOS maxima, activated by confinement, since a PDOS
maximum cannot change as a function of excitation en-
ergy, being an intrinsic material property. The symmetry
and phonon branches that originated D and D′ were also
known. The next step would have been to figure out the
reason for this shift.

However, subsequent works claimed D derived from a
PDOS maximum around M or K46, even though phonons
at M do not have the required symmetry, PDOS maxima
are inconsistent with the D and G′ dispersion, and the
dimension of the crystals in Ref. 36 was too big to acti-
vate zone boundary phonons by confinement only. These
issues and discrepancies remained unresolved, and even
ignored, for the following 16 years. A similar fate hap-
pened for other main peaks. E.g., although it was clear
the∼3250cm−1 band is not the G second order, a large
number of papers (to date) still call it 2G.

In 1998 Pocsik et al.16 repeated the experiments of Vi-
dano et al.45 over a much larger excitation energy range,
as shown in Fig. 1(g) of the main text, and, not surpris-
ingly, found the same results. To try and explain the
excitation energy dependence they proposed a “new” res-



5

onant process, whereby a strong enhancement of the Ra-
man cross-section would happen for a phonon of wavevec-
tor q, when this equals the wavevector k of the electronic
transition excited by the incident photon (the so-called
k=q “quasi-selection rule”17). However, the physical rea-
son for this “quasi-selection rule” was unclear (it does not
exist in Raman scattering) and did not yet explain why,
amongst all phonons satisfying it, only those on one par-
ticular branch would be seen. Given the experimental
Disp(D) ∼ 50cm−1/eV,16 only a phonon branch upshift-
ing from K would satisfy the “quasi-selection” rule, since
the linear electron dispersions would select larger k with
increasing excitation energy, thus larger q. However, the
TO branch, corresponding to the A1g phonon at K, had
the opposite behavior in the most popular calculations at
the time46. Pocsik et al. thus identified the LO branch,
with E symmetry at K, as responsible for the D peak,
in contrast with TK. In 1999 Ref. 47 repeated the exper-
iments of Ref. 16, and reached the same conclusions47.
Thus, 30 years after Ref. 36, we were back to square one.
A selection rule had to be “invented” to explain the D
peak, and it was assigned to a different branch and sym-
metry, in contrast with the “molecular” view37. There
was also no convincing explanation why a zone bound-
ary phonon would be active.

In 2000, Thomsen and Reich suggested double reso-
nance (DR) as the activation mechanism48: i) the laser
excites an e-h pair with wavevector k defined by res-
onance with the π, π∗ bands; ii) this is followed by
electron-phonon scattering with exchanged momentum
q near K; iii) defect back-scattering of the electron to
the initial k; iv) e-h recombination. This process allows
for an exchange of a large phonon momentum, while sat-
isfying energy conservation at any step, thus the funda-
mental Raman selection rule. A defect is also needed,
consistent with the observations of TK. Notably DR was
first proposed by Baranov et al. in 198749, who called
it “double coupled resonance”, but somehow went unno-
ticed, until Ref. 48 was out. We discuss in the main text
the important ramifications of this mechanism, and the
current understanding of the processes responsible for the
various Raman peaks, as well as the issues still open.

Besides the activation mechanism, the phonons around
K are crucial for the correct D assignment, since
Disp(D) depends on the precise shape of these branches.
Graphene has three branches around K which could
in principle contribute, see Fig. 1(d) of the main
text. Following the suggestion of Pocsik et al.16 most
authors16,47,48,50,51 assigned D to the LO branch stem-
ming from the doubly degenerate∼1200cm−1 E mode at
K, until 2004, when Ref.22 finally demonstrated the D
phonons belonged to the TO branch starting from the
A1g mode at K. Indeed, this branch has the largest EPC
amongst K phonons22,25 and is linearly dispersive close
to K, see Fig. 1(d) of the main text. A Kohn anomaly at
K22 is the physical origin of this dispersion, in quantita-
tive agreement with the measured Disp(D), as shown in
Fig. 1(g) of the main text.

In general, atomic vibrations are partially screened by
electronic states. In a metal this screening can change
rapidly for vibrations associated to certain BZ points,
entirely determined by the shape of the Fermi surface.
The consequent anomalous behavior of the phonon dis-
persion is called Kohn anomaly (KA)52. KA may oc-
cur only for wavevectors q such that there are two elec-
tronic states k1 and k2 = k1 + q both on the Fermi
surface52. In graphene, the gap between occupied and
empty states is zero at K,K′, see Fig. 1(a) of the main
text. Since K′ = 2K (up to a reciprocal lattice vec-
tor), these are connected by the vector K (see Fig. 1(a)
of the main text). Thus, KA can occur for q = Γ or
q = K22. Ref. 22 demonstrated that graphene has two
significant KA’s for the Γ-E2g and K-A1g modes, see
Fig. 1(a,d) of the main text. It is thus impossible to de-
rive the precise shape of the phonon branches at Γ and
K by approaches based on a finite number of force con-
stants, as often done37,50,51,53–55. These results have also
implications for nanotubes. Due to their reduced dimen-
sionality, metallic tubes display much stronger KA than
graphene, and folded graphene does not reproduce their
phonon dispersions25,56. The presence of KA explains
the difference in the Raman spectra of semiconducting
and metallic tubes25,56.

The EPCs and phonons calculations of Ref. 22 were
confirmed close to Γ by inelastic X-ray scattering57,58,
and by the measurement of FWHM(G) in graphite,
graphene and nanotubes21,25,56,59, once an-harmonic ef-
fects are taken into account21,24,59. A further EPC reno-
malization and phonon softening happens at K due to
electron correlations11,50,60. Note that the A1g mode ex-
actly at K has zero EPC for the Raman process, thus
only TO phonons away from K, even if close to it, con-
tribute to the D peak22,61. Note as well that h-BN, even
if with the same hexagonal lattice as SLG, does not have
KAs, being a wide band-gap semiconductor20.

The band at∼2450cm−1 in Fig. 1(e) of the main text
was first reported by Ref.44 in graphite, and suggested
to be an overtone44. Ref.44 stated that, since the prod-
uct of any representation with itself always contains the
identity, overtones are expected to have a contribution
with polarization characteristics stronger in configura-
tions which measure the diagonal components of the Ra-
man tensor. Ref.44 then measured the cross polarized
spectrum of graphite and observed that all the high en-
ergy modes, i.e. those at∼2450cm−1, the 2D and 2D′,
behaved in the same way, being much stronger than the
G peak compared to parallel polarization. Refs.62–64
showed that this peak red-shifts with excitation energy,
unlike the 2D and 2D′ blue-shift16,45. Many alternative
assignments have been put forward for this band over
the years. Ref.17 suggested a contribution from the LA
branch around the BZ edge. Refs.62–65 interpreted it
as a combination of D and a phonon belonging to the
LA branch, seen at∼1100cm−1 for visible excitation in
defected samples, and called D′′ peak. Ref.66 assigned
it as the non-dispersive overtone of the LO branch ex-
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Figure S2. Polarization.(a) Geometry for polarized measurements. Normalized (b) I(G) and (c) I(2D)/I(G) as a function
of angle between polarizer and analyzer.

actly at K, and Ref.67 as a combination of LA and LO
phonons. On one hand combinations of phonons with
different energies do not correspond to a fully resonant
process11,60, and would be expected to be more domi-
nant in the presence of defects, but this band, like 2D
and 2D′, is present in defect-free samples, see Fig. 1(e) of
the main text, while overtones exactly at K are non dis-
persive, in contrast with experiments62–64. On the other
hand, as discussed in the main text, D and D” have the
same wave-vector, and their energy difference is of the or-
der of the electron scattering rate. Thus, both 2D′′ and
D+D′′ could contribute to this band, with D+D′′ closer
to the experiments68–70. We then assign it to D+D′′.

To summarize, the current understanding is that the
D peak is due to TO phonons around K17,36, is active by
DR48,49 and is strongly dispersive with excitation energy
due to the KA at K22. Since the so-called G′ band is
in fact the D overtone, and has nothing to do with G,
neither in terms of symmetry, nor in terms of phonon
branch, nor in terms of Raman process, we21 renamed
it 2D. Consequently the∼3250cm−1 band is 2D′, and
the∼2950cm−1 band is D + D′. Note that, due to reso-
nance, in graphene (and nanotubes), it is easy to mea-
sure multiphonon peaks up to the 6th order62–64,71. Our
nomenclature allows one to simply assign all these bands:
4D, 6D, 4D′, etc. With the previous names, the overtones
and combinations would be confusing. It was also pro-
posed to call D∗ the G′ band, and G∗ the 2D′, using “∗”
to indicate second order72. However, besides the prob-
lem of naming the multiphonon processes, G∗ is confusing
since it would imply, for consistency, it being the G peak
overtone, while it is in fact 2D′. G∗ is also often used to
indicate the 2450cm−1 band67, however, again, this has
nothing to do with G, and this name conflicts with the
use of G∗ for 2D′. Perhaps G′ would be a more appropri-
ate name for D′, since this arises from a resonant process
on the same branch giving rise to the G peak. However,
it is also true that D′ requires a defect and that its res-
onant Raman process has much in common with D, and
nothing to do with G73. The only drawback in calling
2D the∼2700cm−1 band is that 2D is often used to mean
“two-dimensional”. We believe this issue to be minor,

since it is hard to confuse 2D, used for “two-dimensional”,
with the∼2700cm−1 peak. For full clarity one can use 2d
to indicate “two-dimensional”. Furthermore, the nature
of the 2D peak is so much related to the two dimension-
ality of graphene, to be not so unwarranted both share
an acronym. Fig. 1(e) of the man text summarizes our
nomenclature, for defect-free, or defected graphene.

S5. POLARIZATION DEPENDENCE

We now consider polarized excitation and detection,
i.e. when the polarization vectors of incident and/or scat-
tered light, ein, eout, are fixed, Fig. S2.

The I(G) polarization dependence can be derived from
symmetry74,75. Its matrix element, described by the lat-
tice displacement u (see Fig.S3(d) for the geometry), is:

MG ∝ (einx eouty + einy eoutx )ux+(einx eoutx − einy eouty )uy, (S6)

where the x direction is chosen to be perpendicular to
the C−C bond. As long as the phonon frequency does
not depend on the direction of u (i.e., the two modes
are degenerate), I(G) ∝ |MG|2, does not depend on the
ein, eout directions, as shown experimentally in Fig.S2(b).

The I(2D) and I(2D′) polarization
dependence69,74,76,77 can be derived from the real-
space Raman picture. The interband electron-photon
matrix element for photon absorption/emission is
∝ [ein/out × k], where k is the electron momentum
counted from the Dirac point. Since both e and h mo-
menta are parallel to the phonon momentum q (counted
from K or Γ for 2D, or 2D′), the matrix element for
the Raman process with emission of two phonons with
momenta q and −q is Mq ∝ [Ein × q]. The intensity is
given by the integration of |Mq|2 over the q directions:

I(2D, 2D′) ∝ |ein|2|eout|2 + 2(ein · eout)2 (S7)

Thus, the intensity would depend on the relative ori-
entation of Ein and Eout, being largest when paral-
lel and smallest (by a factor≈ 3) when perpendicular,
and not on their orientation with respect to the crystal.
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Fig.S2c plots the polarization dependence of I(2D)/I(G)
for SLG, in agreement with Eq.(S7). Note that Eq.(S7) is
not sensitive to the weights with which different q direc-
tions contribute. Since for each direction there are other
two, oriented at ±2π/3, contributing in the same way,
as required by symmetry, this is already sufficient to give
Eq.(S7). The objective numerical aperture should also be
taken into account when comparing with experiments.

For the D, D′, the real-space picture is analogous to 2D,
2D’. Thus, one can expect the same 1/3 depolarization
ratio. However, this should be taken with caution, as
different types of defects can scatter electrons differently,
which can significantly modify the picture. E.g., edges
are defects, but give a different behavior, as discussed in
the main text. For D + D′ the backscattering condition
is absent, so polarization memory should be weaker.

Thus far we considered both polarizer and analyzer
present. The signal for unpolarized excitation is the sum
of two signals for two orthogonal polarizations. The same
for detection. Thus, when only one is present, there will
be no dependence on polarizer/analyzer orientation.

S6. ELECTRIC FIELD AND DOPING

An important consequence of TR is the sensitivity of
A(2D) to the electronic inelastic scattering rate 2γ/~:
A(2D) ∝ 1/γ2, according to Ref. 74 (see also Ref.69).
γ has contributions from electron-phonon and electron-
electron scattering, the latter increasing with carrier con-
centration (or Fermi energy, EF ): γ = γe−ph + γe−e.
For weak doping, |EF | ≪ ~ωL/2, γe−e = f |EF |, with
the coefficient f ∼ 0.5 − 1 determined by the dielectric
environment11,78. Thus, A(2D) decreases as EF moves
away from the Dirac point79,80. From the measured
dependence, the two contributions to γ could be sepa-
rated, giving an estimate for γe−ph ∼ 20 − 30 meV at
energies∼1eV11. Here it is important that the 2D peak is
mostly contributed by electronic states near the K−M
direction, as discussed in the main text. Along this di-
rection, the interband contribution to γe−e is suppressed
by trigonal warping81,82.

Several effects originate from the fact that phonon fre-
quencies and decay rates have a contribution due to in-
teraction with π electrons. Indeed, this determines the
phonon slopes near Γ and K, via KAs22. This also gives
a dependence of phonon frequencies and decay rates on
doping59,83,84 and on applied magnetic field85,86. Doping
results in EF -dependent blue shift and narrowing of the
G peak59,79,80,87 according to59,83,84:

~∆Pos(G)EF
=

λΓ

2π

[
|EF |+

~Pos(G)0
4

ln

∣∣∣∣2EF − ~Pos(G)0
2EF + ~Pos(G)0

∣∣∣∣] , (S8)

FWHM(G)EF
= FWHM(G)0 {fF [−~Pos(G)0/2− EF ]− fF [~Pos(G)0/2− EF ]}

(S9)

where fF (E) is the Fermi-Dirac distribution at energy E,
Pos(G)0 and FWHM(G)0 = λΓPos(G)0/4 are the G peak
position and width for zero doping, λΓ is the dimension-
less EPC for the LO phonons at Γ. The logarithmic sin-
gularity in SLG can be washed out by disorder. Never-
theless it was observed in both SLG59 and, more clearly,
in BLG80,88. Note that FWHM(G)0 and Pos(G)0 can
give an accurate measure of λΓ ∼ 0.0311,22. Measure-
ment of Pos(G) combined with FWHM(G) can then be
used to estimate doping of an arbitrary sample, e.g. due
to charged impurities89.

The above results apply to relatively weak doping, |EF |
small compared to ~ωL/2. In the past few years, much
higher doping levels have been achieved90–92. One of the
effects of high doping is on the G peak intensity, as can
be understood from Fig. 2(a) of the main text. Doping
changes occupations of electronic state and, since transi-
tions from an empty state or to a filled state are impossi-
ble, it can effectively exclude some regions of k from con-
tribution to the Raman matrix element. Due to suppres-

sion of destructive interference, this leads to an enhance-
ment of the G peak when |EF | matches ~ωL/2, as pre-
dicted theoretically73 and observed experimentally90,91.

The most dramatic effect of high doping is on the 2D
peak, which is suppressed when the conduction band
becomes filled at the energy probed by the laser90–92.
Fig.S3(a) plots the Raman spectra measured at 488,
514, 561, 593 and 633nm for a highly doped graphene
sample92. A(2D)/A(G) and I(2D)/I(G) are plotted as a
function of excitation energy in Fig. S3(b). The trend of
these intensity ratios can be understood from Fig. S3(c).
The frequencies of the absorbed and emitted photons
ωL, ωSc differ by Pos(2D): ωSc = ωL − Pos(2D). There
are three cases: (i) when ωL, ωSc > 2|EF |/~, all pro-
cesses are allowed and the 2D band is observed, (ii) when
ωSc < 2|EF |/~ < ωL, the photon absorption is allowed
but the phonon emission is excluded by Pauli blocking;
(iii) when ωL, ωSc < 2|EF |/~, both photon absorption
and phonon emission are blocked. Therefore, only when
2|EF |/~ < ωL − Pos(2D), the 2D band is observable.
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Figure S3. Doping and strain(a) Raman spectra of highly doped SLG measured at 488, 514 532, 561, 593 and 633nm,
normalized to have the same I(G)92. (b). A(2D)/A(G) and I(2D)/I(G) as a function of excitation energy92. (c) Schematic
diagram of SLG band structure and 2D Raman processes in doped graphene. (d) Geometry for strain measurements. (e) G
peak splitting by strain. (f) Sample orientation determined by polarized measurements under uniaxial strain.

Thus, the absence of the 2D band in the Raman spec-
tra in Fig. S3(a) at 1.96eV (633nm) indicates that EF

should be larger than 0.81eV. From the sharp increase in
A(2D)/A(G) and I(2D)/I(G) when ~ωL increases from
2.21eV (561nm) to 2.09eV (593nm), one can deduce that
~ωSc corresponding to ~ωL = 2.09 eV is close to 2EF . A
similar effect is expected on other DR and TR Raman
peaks, such as D, D′, 2D′, D+D′′, etc.

At sufficiently high doping, EF > EL/2−~ΩTO
q , an ad-

ditional decay channel opens for the finite-q TO phonon:
production of intraband electron-hole pairs93, which re-
sults in an additional contribution to the width of the 2D

band, as observed in Ref.91.

S7. MAGNETIC FIELD

Several effects of the perpendicular magnetic field on
Raman spectra of graphene have been observed in recent
years. When a perpendicular magnetic field is applied,
the electronic trajectories are no longer straight, but cir-
cular. This modifies the backscattering condition, so the
emitted phonons have smaller momenta than those given
by Eq.(2) of the main text. This results in a red shift
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and additional 2D peak broadening94.
The effect of coupling between π electrons and Γ

phonons assumes a peculiar form when a sufficiently
strong (10-30T) perpendicular magnetic field B is
applied85,86. The correction to the phonon frequency
depends on the nature of the electronic states, and
in a magnetic field the latter are quantized into dis-
crete Landau levels with energies En(B): En(B) =

(signn)
√

2|n|v2F eB~, n = . . . ,−1, 0, 1, 2, . . .. The Γ
phonons couple to electronic transitions n → n′ be-
tween Landau levels n, n′, which satisfy the selection rule
|n| − |n′| = ±1, thus having frequencies: ~Ωm(B) =
Em(B) + Em+1(B) for undoped graphene. At certain
B = Bm the resonance condition Ωm(B) = ΩΓ is satisfied
and, due to electron-phonon interaction, the phonon be-
comes strongly coupled to the electronic transition85,86.
This coupling manifests in a series of avoided crossings
in Pos(G) as a function of B near B = Bm

29,30,95,96,99,
whose strength depends on the filling factor, as observed
in Ref.99. Besides providing another EPC estimate,
magneto-Raman can also probe the electronic Landau
levels, from which vF can be extracted. An analogous
effect was predicted for BLG97, and observed for four-
layer graphene98. Since the magneto-phonon resonance
is strongly sensitive to the electronic band structure, its
Raman spectrum is quite different for different number
of layers, and thus can be used for its determination.

Raman spectroscopy can also probe scattering of pho-
tons by electronic excitations. In pristine graphene
electronic excitations have a continuous structureless
spectrum100, which does not lead to any sharp features.
However, in a strong magnetic field, when the electronic
spectrum consists of discrete Landau levels, the elec-
tronic inter-Landau-level excitations give rise to sharp
B-dependent peaks in the Raman spectrum (instead of
a phonon, an e-h pair is emitted)27,28,101. The selection
rule for the Raman-active electronic transitions n → n′

is |n′| = |n| when excitation and detection have the
same circular polarization, and |n′| = |n| ± 2 for differ-
ent ones. The Raman peaks are observed at frequencies
~Ωm = 2Em and ~Ωm = Em+Em+2, respectively29,30,102

S8. UNIAXIAL AND BIAXIAL STRAIN

Strain arises when a crystal is compressed or stretched
out of equilibrium. The stiffness tensor provides the con-
stitutive relation between applied stress and strain. Ten-
sile strain usually gives phonon softening, and the op-
posite for compressive strain. The rate of these changes
is summarized in the Grüneisen parameters, which also
determine the thermomechanical properties103. Refs.104
and 105 subjected graphene to uniaxial strain. The dou-
bly degenerate E2g optical mode was shown to split in
two components, one along the strain and the other per-
pendicular, Fig. S3(e). This leads to G peak splitting into
two bands104,105, named G+ and G− by analogy with the
effect of curvature on the nanotube G peak56. Both red-

shift with strain, and their splitting increases104.
The Grüneisen parameter for the E2g phonon, γE2g ,

is defined as103 γE2g = −(1/ΩE2g )(∂∆Ω
E2g

h /∂εh) where
εh = εll + εtt is the hydrostatic component of the
applied uniaxial strain, l is the longitudinal direc-
tion, parallel to the strain, and t is the direction
transverse to it; ΩE2g is Pos(G) at zero strain, and
∆Ω

E2g

h is the shift resulting from the hydrostatic com-
ponent. The hydrostatic deformation preserves the
symmetry of the crystal, so it does not lead to split-
ting. The shear deformation potential βE2g is defined
analogously104,106:βE2g

= (1/ΩE2g )(∂∆ΩE2g/∂εs), with
εs = εll − εtt the strain shear component, and ∆Ω

E2g
s is

the splitting due to shear. For uniaxial strain the G±

peaks shifts are104,106,107:

∆Pos(G±) = ∆Ω
E2g

h ± ∆Ω
E2g
s

2
=

= − γE2gΩ
E2g (εll + εtt)± βE2gΩ

E2g
εll − εtt

2
.

(S10)

Ref.104 obtained ∂Pos(G+)/∂ε ∼ −10.8 cm−1/%,
∂Pos(G−)/∂ε ∼ −31.7 cm−1/%, ∂Pos(2D)/∂ε ∼
−64 cm−1/%, ∂Pos(2D′)/∂ε ∼ −35 cm−1/%, γE2g ∼
1.99, βE2g

∼ 0.99.
The phonon displacements corresponding to the G±

peaks are orthogonal104,106,107: E+
2g is perpendicular to

the strain (thus experiencing smaller softening), and E−
2g

parallel, Fig. S3(e). With both polarizer and analyzer,
the corresponding polarization vectors ein, eout have def-
inite orientations: exin,out = cos(θin,out + φs), eyin,out =

sin(θin,out + φs), where θin,out is the (known) angle be-
tween ein,out and the strain axis, and φs is the (unknown)
angle between the strain axis and the crystallographic
axis. The matrix elements corresponding to emission of
longitudinal and transverse phonons are proportional to
− sin(θin + θout + 3φs) and cos(θin + θout + 3φs). The
intensities are given by their squares:

I(G−) ∝ sin2(θin + θout + 3φs),

I(G+) ∝ cos2(θin + θout + 3φs).
(S11)

These allow to determine the sample orientation with
respect to strain, Fig. S3(f).

It is important to consider that, while G probes the
same centre-zone phonon under strain, this is not nec-
essarily the case for 2D, 2D′104. Any change in the
band structure during strain will vary the actual phonons
probed, as well as modifying the phonon frequencies.
Thus, the relationship between phonon Gruneisen pa-
rameters and 2D, 2D′ variation is in principle more com-
plex than for G. Indeed, while biaxial strain does not
move the relative positions of the Dirac cones, uniax-
ial strain changes them108. This can have a significant
influence in DR and TR processes. While 2D′ is intra-
valley, 2D requires scattering from one cone to the other.
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Thus, its wave vector is determined by the relative dis-
tance of the Dirac cones and by the laser energy. For
a fixed excitation energy, one measures the combination
of the 2D shift due to strain, and a possible additional
shift due to the fact that the relative movement of the
Dirac cones changes phonon wavevector. For an asym-
metric movement this can lead to peak broadening104,
and splitting109,110. The 2D broadening and splitting
can give significant information on the nature of the TR
process and the phonons involved, as well as on the band
structure under strain, and the orientation of the strain
axis with respect to the C−C bond104,105,109,110. For 2D′

the relative cone movement has no consequence. How-
ever, for 2D, 2D′ other effects could be induced by Fermi
and phonon group velocity renormalisation with strain.

Note that for biaxial strain at least the effects due
to relative movement of Dirac cones are absent. Then,
Raman experiments under biaxial strain are suited to
measure the D Gruneisen parameter. Ref.111 performed
these, and found no G or 2D peak splitting, as well as
shifts and Gruneisen parameters in agreement with those
deduced from the uniaxial measurements in Ref.104.

S9. TEMPERATURE

Due to anharmonic effects and phonon-phonon inter-
actions, peak positions and FWHM depend on temper-
ature T 112. The investigation of the Raman peaks a
function of T can provide valuable information on the
anharmonic terms in potential energy and EPC24,59.
In graphene FWHM(G) depends on T in a peculiar
way, slightly decreasing for low T , then increasing for
T > 700 K. This can be written as24,59: FWHM(G)T =
FWHM(G)EPC

T + FWHM(G)anT where FWHM(G)anT is
the anharmonic contribution due to interaction with
other phonons, and FWHM(G)EPC the interaction with
e-h pairs, given in Eq.(S9), while FWHM(G)an was de-
rived numerically24. Eq.(S9) shows that the E2g phonons
damping due to decay in e-h pairs decreases with T
due to partial Pauli blocking59. Approximate expression
for FWHM(G)an can be derived assuming that phonons
decay in 2 (3-phonon scattering) or 3 phonons (4-
phonon scattering) with the same energy113. In this case
FWHM(G)anT = A

[
1 + 2

ex−1

]
+B

[
1 + 3

ey−1 + 3
(ey−1)2

]
where x=~Pos(G)0/2kBT and y = ~Pos(G)0/(3kBT ),
and A,B are constants.

The temperature dependence of Pos(G) has a quasi-
harmonic term, from thermal expansion, and an an-
harmonic one accounting for phonon-phonon scattering.
Ref.113 proposed a simple model for the anharmonic
phonon-phonon coupling including 3-phonon (3-ph) and
4-phonon (4-ph) processes. Then Pos(G)T = Pos(G)0 +

∆Pos(G)T , where ∆Pos(G)T = C
[
1 + 2

ex−1

]
+

D
[
1 + 3

ey−1 + 3
(ey−1)2

]
, where C,D are constants, and

x, y are the same as above.
S10. ISOTOPIC COMPOSITION

13C can be used to label graphene as well as nanotubes
in order to measure fundamental properties or, e.g., to
reveal growth processes114. The peak position of an iso-
tope enriched sample is ωC13 = ωC12 ·

√
m12/m13 where

ωC12 and ωC13 are the frequencies for full 12C and 13C
samples, m12 and m13 the atomic masses of 12C and 13C.
The isotopic shift is thus:

∂ω

∂C13%
=

1

100

(
ω0
C12

·
√

m12

m13
− ω0

C12

)
≈ −0.0392

100
ω0
C12

(S12)
Isotopic disorder also widens FWHM(G), with a maxi-
mum around 50% 13C.

S11. RAMAN AND GRAPHENE PROPERTIES

A. Raman and electrical transport

Raman spectroscopy is ideal to probe defects, electron-
phonon and e-e interactions. Thus it can link sam-
ple quality to mobility115,116, or EPC with current
saturation8,117.

B. Raman and heat transport

The Pos(G) temperature coefficient enabled the de-
termination of thermal conductivity in single and multi-
layer graphene118,119.

C. Detection of heteroatoms

Functionalization and doping are an ever growing
field. Any covalent bond gives a D peak. This is
an indirect signature of C–H, C–O, C–F, C–N, C–Si,
etc., bonding17,120,121, when visible Raman is performed,
since the C–C sp2 bonds always prevail17. UV Ra-
man spectroscopy can directly probe the heteroatomic
vibrations17,122, and as such could be useful, especially
for wide band gap compounds derived from graphene,
and to probe SiC grown samples. Extreme care is needed
with deep UV Raman since this can easily damage the
sample and break the very bonds one wishes to study.
UV Raman also allows to probe C–C sp3 vibrations, oth-
erwise overshadowed for visible excitation17.
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