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ABSTRACT: Graphene’s high mobility and Fermi velocity, combined with its constant
light absorption in the visible to far-infrared range, make it an ideal material to fabricate
high-speed and ultrabroadband photodetectors. However, the precise mechanism of
photodetection is still debated. Here, we report wavelength and polarization-dependent
measurements of metal−graphene−metal photodetectors. This allows us to quantify and
control the relative contributions of both photothermo- and photoelectric effects, both
adding to the overall photoresponse. This paves the way for a more efficient
photodetector design for ultrafast operating speeds.
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The unique optical and electronic properties of graphene
make it ideal for photonics and optoelectronics.1 A variety

of prototype devices have already been demonstrated, such as
transparent electrodes in displays2 and photovoltaic modules,3

optical modulators,4 plasmonic devices,4−9 microcavities,10,11

and ultrafast lasers.12 Among these, a significant effort is being
devoted to photodetectors (PDs).6,10,11,13−25

Various photodetection schemes and architectures have been
proposed to date. The simplest configuration is the metal−
graphene−metal (MGM) PD, in which graphene is contacted
with metal electrodes as the source and drain.13−18 These PDs
can be combined with metal nanostructures enabling local
surface plasmons and increased absorption, realizing an
enhancement in responsivity (i.e., the ratio of the light-
generated electrical current to the incident light power).6,26

Microcavity based PDs were also used, with increased light
absorption at the cavity resonance frequency, again achieving an
increase in responsivity.10,11 Another scheme is the integration
of graphene with a waveguide to increase the effective
interaction length with light.25,27 Hybrid approaches employ
semiconducting nanodots as light-absorbing media.22 In this
case, light excites electron−hole (e−h) pairs in the nanodots;
the electrons are trapped in the nanodot, while the holes are
transferred to graphene, thus effectively gating it.22 Under
applied drain−source bias, this results in a shift in the Dirac
point, thus a modulation of the drain−source current.22 Due to
the long trapping time of the electrons within the dot, the

transferred holes can cycle many times through the photo-
transistor before relaxation and e−h recombination. This gives
a photoconductive gain; i.e., one absorbed photon effectively
results in an electrical current of several electrons. Responsiv-
ities >107 A/W were reported,22 but with a millisecond time
scale, not suitable for, e.g., high-speed optical communications.
Devices were also fabricated for detection of THz light.28,29 In
this low energy range, Pauli blocking forbids the direct
excitation of e−h pairs due to finite doping. Instead, an
antenna coupled to source and gate of the device excites plasma
waves within the channel. These are rectified, leading to a
detectable dc output voltage.28,29 PDs based on intrinsic
graphene plasmons were also demonstrated.23 Graphene,
structured into periodic nanoribbons (GNRs), forms a
plasmonic metamaterial enabling standing plasmon excitation
by infrared light. These lead to an increase of the electron and
phonon temperatures, which causes a detectable change of the
electrical conductivity of graphene.23

MGM-PDs play an important role because they are easy to
fabricate, not relying on nanoscale lithography. They operate
over a broad wavelength range as the light−matter interaction
is mostly determined by graphene itself. Further, ultrahigh
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operating speeds can be achieved,16 as no bandwidth limiting
materials are employed.22 MGM-PDs can be considered as the
fundamental building block for the other architectures
mentioned above. They consist of a graphene channel
contacted by two electrodes, either of the same13−15,17,18,21 or
two different metals.16 The difference in work function between
the metal pads and graphene leads to charge transfer,30 with a
consequent shift of the graphene Fermi level in the region
below the metal pads.30 The Fermi level gradually moves back
to that of the uncontacted graphene when crossing from the
metal covered region to the metal-free channel.14 This results in
a potential gradient extending ∼100−200 nm from the end of
the metal pad to the metal-free graphene channel.14 This
inhomogeneous doping profile creates a junction along the
channel. This can in principle be a p−n-, n−n-, or p−p-junction
between the graphene underneath and within the channel, as
the channel Fermi level can be controlled by the back gate.
Figure 1a shows a schematic of the doping profile induced by
the metal contact. The formation of this junction is crucially
important in the photodetection process, as it results in an
internal electric field, capable of separating the light induced e-h
pairs.
Another approach to create such junctions, is to exploit a

dual-gate transistor structure (Figure 1b).19,20,31 The simulta-
neous electrostatic doping of the graphene channel by means of
a global bottom- and a local top gate allows formation of n−n−
n, p−p−p, n−p−n, or p−n−p junctions, respectively. From an
application point of view, the dual gate structure requires more
fabrication steps, as well as more supply voltages for the gating,
but allows control of the doping levels on both sides of the
junction. A MGM-PD requires fewer processing steps but has a
fixed doping level underneath the contacts, thus allowing fewer
operational degrees of freedom. However, it is more suited for
applications, due to the simpler fabrication: the single back gate
can be used to control the potential gradient in the vicinity of
the contacts.
Currently, two effects are thought to contribute to the

photoresponse in graphene-based PDs, both requiring spatially
in-homogeneous doping profi les: photothermoelec-
tric15,19,20,23,32 and photoelectric.13,14,16,18,33 The photothermo-
electric effect results from local heating of, e.g., the p−n
junction, due to the incident laser power. Nonequilibrium hot
carriers are excited with an electron temperature (T) higher
than that of the lattice.32 Different doping levels on both sides

of the junction give different Seebeck coefficients.32 These are a
measure of the induced thermoelectric voltage due to a T
gradient and depend on the Fermi-level according to Mott’s
formula:20,21,32,34

π
σ

σ
μ

= −S
k T
q

d
d3

12
B
2

(1)

with kB the Boltzmann constant, σ the conductivity, q electron
charge, and μ the chemical potential. As a consequence, a net
electron flow results,20,21,32,34 producing a photothermoelectric
voltage VPTE:

20,21,32,34

= − ΔV S S T( )PTE 1 2 (2)

with ΔT the T increase of the hot electrons within the junction,
and S1 and S2 the Seebeck coefficients of the two regions with
different doping at the junction.
Due to the nonmonotonous dependence of the difference of

the Seebeck coefficients in the two differently doped regions of
the junction, the resulting VPTE exhibits multiple sign reversals
in dependence of the gate voltage.20,32 This results in a 6-fold
pattern, due to the nonmonotonic S in a plot of the
photovoltage in dependence of the two doping levels on either
side of the junction, as theoretically proposed in ref 32 and
experimentally observed in ref 20.
Besides photothermoelectric effects, light induced heating of

one contact can also lead to a T gradient, resulting in a
photothermoelectric contribution to the photovoltage, as that
described in refs 35 and 36, where a T gradient was created
employing a microfabricated heater.35,36

The presence of the junction in the photothermoelectric
effect is as important as in the photoelectric effect. The
potential gradient within the junction separates the light
induced e−h pairs and leads to a current flow as in a
conventional photodiode.33,37 However, to the best of our
knowledge, direct evidence and quantification of the photo-
electric effect contribution to the photovoltage generation is
still missing.
Here we investigate the wavelength and polarization

dependent responsivity of MGM-PDs. The measured light
polarization dependent responsivity, combined with the spatial
origin of the photoresponse obtained from photovoltage maps,
allows us to determine the photoresponse mechanisms and
quantitatively attribute it to photothermo- and photoelectric
effects.

Figure 1. Overview of (a) energy-band profile in MGM-PDs and (b) transistor-like graphene-based PD employing a top gate.
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Our devices are fabricated as follows. Graphene is produced
by mechanical exfoliation of graphite (NGS Naturgraphit
GmbH) on top of Si + SiO2 (300 nm)38,39 and its single layer
nature confirmed by optical microscopy40 and Raman spec-
troscopy.41,42 E-beam lithography is used to define the contacts,
followed by e-beam evaporation of the contact metal, consisting
of a 4 nm Ti adhesion layer, and 80 nm gold Au pads, using lift-
off to ensure good mechanical adhesion as well as good
electrical contact. Figure 2 shows an optical micrograph of a

representative device. The two metal contacts with a width of 5
μm face each other. We use a “U” shaped geometry of the
contacts, instead of the more commonly used line-shaped one,
since this allow us to monitor the effect of the edges on the
device performance. A highly doped (ρ = 0.001−0.005 Ω cm)
Si back gate allows us to control the Fermi level in the graphene
channel.
Photovoltage mapping is performed at 457, 488, 514, 633,

785, and 1550 nm (laser power P < 1 mW). The samples are
bonded into a chip carrier and connected in a two-terminal
configuration to a Keithley Nanovoltmeter 2182A with an
additional sourcemeter controlling the gate voltage. The
position-dependent generated photovoltage is monitored
while a linearly polarized laser light with diffraction limited
spot size is scanned over the device. Light from the laser
sources is focused through a 100× ultralong working distance
objective (NA = 0.6) onto the PDs. A Fresnel−Rhomb
polarizer allows us to rotate the light polarization. Polarization
control at 1550 nm is achieved employing a half wavelength
plate. Raman measurements are carried out using a Renishaw
inVia spectrometer with P < 1 mW to avoid any possible
damage. This allows monitoring defects,42−45 as well as local
doping.6,42,46,47

The doping of the p−n junction can be determined by
measuring the back gate voltage dependence of the photo-
response. Figure 3a compares the photovoltage in dependence
of back gate voltage, Vg, with the resistance, at an incident light
wavelength of 633 nm. The photovoltage shows a sign reversal
at −5 V relative to the Dirac point, VD. The photovoltage is
zero at Vg − VD = −5 V, as the doping underneath the metal
contact and in the noncontacted graphene is equal, meaning
that no junction is present, thus no photovoltage can be
produced. The point of vanishing photovoltage lies in the p-
doped branch of the resistance curve. From the carrier density n
= ε0εSiO2

(Vg − VD)/qt, with t the oxide thickness, the Fermi
level EF = ℏvF(πn)

1/2 can be derived to be ∼60 meV.38,39 This
p-doping underneath the metal contact is independent of back
gate voltage, due to Fermi-level pinning.30 For photovoltage
mapping, the back gate voltage is set to Vg − VD = +10 V to

achieve n-doping ∼ 100 meV in the noncontacted graphene,
thus a p−n junction. The doping values are in good agreement
with what can be estimated from the Raman spectrum in Figure
3b, measured at Vg − VD = −5 V. The spectrum shows no D
peak, indicating negligible defects.41−44 The 2D peak is a single
sharp Lorentzian with full width at half-maximum, FWHM(2D)
∼ 28 cm−1, signature of single layer graphene (SLG). The G
peak position, Pos(G), and FWHM(G), are ∼1587 cm−1 and
∼9 cm−1. Pos(2D) ∼ 2686 cm−1, and the 2D to G intensity and
area ratios, I(2D)/I(G) and A(2D)/A(G), are 3.1 and 8.8,
respectively. This indicates p-doping <100 meV,47 confirming
the electrical characterization. Further, while pristine SLG
absorbs 2.3% of the incident light,67 doping can significantly
decrease the absorption by Pauli blocking.48,49 However, the
estimated low doping level derived from the electrical and
Raman measurements does not induce any absorption decrease
in the wavelength range used in this work.
After confirming that both contacts behave identically by

taking a full scan of the device, we will henceforth consider only
one of the metal contacts. Figure 4 shows the influence of the
excitation wavelength on photovoltage for a p−n junction
configuration (p-doping of graphene underneath the contact
and n-doping in the graphene channel). The photovoltage
maps at short and long wavelengths are very different. For 785
nm excitation (Figure 4b) the photovoltage is mostly generated
close to the contact edge where the p−n junction is located and
vanishes where the graphene flake ends underneath the contact,
indicated by the dotted line. At the corners of the metal contact
a hot spot of enhanced responsivity occurs, due to curvature

Figure 2. Optical micrograph of device. Graphene is contacted with
two metal electrodes.

Figure 3. (a) Photovoltage and resistance as a function of back gate
voltage. (b) Raman spectrum measured at 514.5 nm and Vg − VD = −5
V, corresponding to the voltage at which the photovoltage exhibits a
sign reversal in a.
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induced electric-field enhancement (lightning-rod effect).50 On
the other hand, at 457 nm (Figure 4a) the whole contact area
contributes to the photovoltage, with maxima at the contact
edges. Even far away from the p−n junction located at the edge
of the metal contact, a photovoltage is produced. This persists
in the metal contact even when graphene is absent underneath,
as such extending beyond the indicated dotted line.
Figure 5 shows that at 633, 785, and 1550 nm a single peak at

the contact edge is observed. Wavelengths of 457, 488, and 514
nm lead to an additional decay of the photovoltage into the
metal contact, with increasing decay lengths for shorter
wavelengths.

We now consider the dependence of the responsivity, g, on
excitation wavelength, Figure 6a. This shows an enhancement

toward shorter wavelengths (2.5 times bigger at 457 nm
compared to 1550 nm). We assign this to an increased
absorption of the incident light at shorter wavelengths on the
Au contact. This leads to a T rise on the metal contact, thus
heating the pn-junction at the contact edge, producing a
thermoelectric contribution to the photovoltage. This is
consistent with the photovoltage contribution of the metal
contact far away from the contact edge, as seen in Figure 4a,
because no light is incident directly on the junction.
Considering Au’s good (∼300 W/mK)51 and graphene’s
excellent (up to∼ 5000 W/mK)52 thermal conductivities, we
assume that heat is transported to the p−n junction from
within the metal contact, leading to a T gradient across the
device and producing a thermoelectric contribution to the
photovoltage.35,36 Indeed, the trend in Figure 6a follows that of
the heat energy Q [J] deposited into the metal by the incident
laser. This can be expressed as Q ∼ Pabs = (1 − R)Pinput,

53 with
Pabs[W] the absorbed power in the metal film, R the Au film
reflectance, and Pinput[W] the incident laser power. Figure 6b
plots the calculated dependence of 1 − R as a function of
wavelength. For metals, the normal incidence R is54

=
− +
+ +

R
n n k
n n k

( )
( )

1 0
2

1
2

1 0
2

1
2

(3)

where n0 is the refractive index of the entrance medium, and n1
and k1 are the real and imaginary parts of the complex index of
refraction of the absorbing medium. Taking Au’s complex index
of refraction from ref 55 and considering that the entrance
medium is air with n0 = 1, the factor 1 − R, proportional to the

Figure 4. Photovoltage maps for (a) 457 nm and (b) 785 nm
excitations.

Figure 5. Spatial profile of photovoltage in the center of the metal
contact.

Figure 6. (a) Responsivity of MGM-PD and (b) 1 − reflectance of Au,
as a function of excitation wavelength.
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absorbed heat energy, is in good agreement with Figure 6a. 1 −
R increases a factor 20 from 1550 to 457 nm and explains the
enhanced responsivity at shorter wavelengths as due to
pronounced thermoelectric effects resulting from the Au
contact heating. Even in the absence of graphene underneath
the contact, a photoresponse is generated as the Au film
spreads the heat energy toward graphene.
To further investigate the influence of thermo- and

photoelectric effects on the overall photovoltage, we perform
polarization-dependent measurements. Photovoltage maps are
acquired at different polarization angles of the incident light, for
a given location at the contact edge. Figure 7 plots the

photovoltage in dependence of polarization at 633, 785, and
1550 nm. The convention used is that an angle of 0° denotes a
polarization perpendicular to the metal contact edge. This
shows two contributions: one polarization dependent, and
another polarization independent.
This behavior could be in principle due to plasmonic

effects.6,7 Polarization-dependent excitation of plasmons at the
metal edge could lead to near-field enhancement, thus a
polarization-dependent responsivity enhancement. Raman
spectroscopy is used to investigate the influence of the metal
electrode on a possible plasmonic dependence on light
polarization. Spectra are first taken approaching the metal
electrode from the bare graphene in a line scan with 300 nm
steps. Figure 8a plots I(G) as a function of position, for
polarization perpendicular to the metal edge (maximum
photovoltage). I(G) decreases as the metal edge is approached
and no enhancement in the vicinity of the edge is observed,
since the metal electrode shields the light. Polarization
dependent Raman measurements are then carried out at the
metal edge, Figure 8b. No trend is observed for the angular
dependence. Another possible explanation could be surface
plasmon polaritons (SPPs) that propagate from within the
metal contact toward the junction at the edge of the contact.56

However, experiments in combination with theoretical
calculations demonstrate that SPPs cannot be excited on a
flat metal contact.56 Thus, plasmonic effects cannot explain the
observed photovoltage angular dependence.
We thus assign the polarization-dependent contribution to

the photoelectric effect, due to polarization dependent
interband optical excitations. Charge carriers in graphene are
the π-electrons moving on a honeycomb lattice composed of
two interpenetrating hexagonal sublattices. The sublattice
degree of freedom is commonly associated with the
pseudospin,57 which relates to the relative amplitude of the

electron wave function located on either sublattice. If all
electrons were placed on the “red” sublattice in Figure 9, the

pseudospin would be pointing upward out of the SLG, whereas
electrons on the “blue” sublattice correspond to pseudospin
pointing downward out of the SLG. Since both “red” and “blue”
lattice sites are occupied by the same carbon atoms, the
electron density is distributed equally between these sublattices.
Thus, the in-plane pseudospin orientation is determined by the
phase difference in the amplitudes on the “red” and “blue”
sites.57 The resulting texture is radial, as shown in Figure 9.
The pseudospin-locked carriers can be described by the

effective Hamiltonian:57 H0 = vFσ̂·p, where p is the two-

Figure 7. Dependence of photovoltage on incident polarization.

Figure 8. (a) Linescan of I(G) approaching the contact edge. (b)
Polarization dependence of I(G) at the edge relative to I(G) away
from the edge.

Figure 9. (Left) Honeycomb lattice of graphene and corresponding
real space pseudospin orientation of the two interpenetrating Bravais
sublattices, denoted in red and blue, respectively, and (right)
translation to momentum space.
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component momentum, σ̂ is the pseudospin operator
constructed with the Pauli matrices, and vF ≈ 106ms−1 is the
Fermi velocity. The pseudospin texture represents the expect-
ation value σ⃗ of σ̂ with respect to the eigenstates of H0.

57

To excite an electron from the valence to the conduction
band it is necessary to flip the pseudospin, as it is seen from
Figure 9. The interaction Hamiltonian between the charge
carriers in graphene and an electromagnetic wave is
characterized by the electric E = (−1/c)(∂A/∂t) and magnetic
B = ∇ × A fields, with A the vector potential. This can be
derived form H0 by substituting p → p − (q/c)A: Hint = (qvF/
c)σ̂·A. Assuming a linearly polarized electromagnetic wave with
A = A0 cos(ωt − kz), the corresponding electric field is E = E0

sin(ωt − kz), with E0 = (ωA0/c), ω = 2πc/λ the radiation
frequency, and k the normal component of the wave vector.
Considering the commutator [Hint, σ̂], these two operators
commute with each other if and only if A (or E) is along σ̂. The
pseudospin is then conserved and interband transitions are
forbidden, as for Figure 10a,b. In contrast, [Hint, σ̂] is maximum
for E ⊥ σ̂, resulting in an interband transition rate maximum
(Figure 10a,b). Note that σ⃗ ∥ p because of the pseudospin-
momentum locking (Figure 10a,b). As consequence, the
photovoltage, Vph, measured on the irradiated junction depends

on the relative orientation between the polarization plane of the
incident light and the junction.
The relaxation of photoexcited carriers to equilibrium in

graphene consists of three processes with three characteristic
time scales:12,58−63 In the first step, photoexcited carriers lose
energy through e−e and electron−phonon (e−ph) scattering
on a ∼ 10 fs time scale.58,63 Subsequently, this distribution
thermalizes through e−ph scattering toward a hot Fermi−Dirac
distribution,12,58−65 with the time scale in the range of
hundreds of fs (τ1).

12,58−63 Finally, the hot Fermi−Dirac
distribution relaxes to equilibrium by e−h recombination,
which can lead to plasmon emission, phonon emission, and
Auger scattering on a ps time scale (τ2).

12,58−63

The optical fluence Φ applied to our devices is low compared
to that used in most pump−probe measurements, such as those
in refs 58−60 and 66. It is instructive to translate fluence into
photoelectron concentration nph = (πe2/ℏc)(Φ/ℏω), with (πe2/
ℏc) = 0.023 the SLG optical absorption,67 or, equivalently, nph

= (πe2/ℏc)(wiτ2/ℏω), where wi = (c|E0|
2)/(8π) is the incident

radiation power per square. The majority of pump−probe
measurements were done for nph ∼ 1013 cm−2.58−60,66 In our
case of continuous wave radiation with laser powers ∼ few
hundred μW and μm laser spot diameters, we have nph ∼ 1010

cm−2, for a typical total recombination time τ2 ∼ ps. The
anisotropic distribution function for the photoexcited carriers
relaxes to a hot Fermi−Dirac distribution at a T which could be
much higher than room temperature, Troom.

58,61,62,66 In our
case, however, the light induced photocarrier concentration is
much lower than the always present intrinsic background
electron concentration, even at zero chemical potential. The
intrinsic e concentration n at Troom can be calculated as n =
4∫ (d2k/4π2)f+(0)(k, Troom) = (πTroom

2 /6ℏ2vF
2), with f+

(0)(k, Troom)
the electron-Fermi−Dirac distribution, and the multiplier 4
accounting for spin and valley degeneracy. This gives n ∼ 1011

cm−2, higher than nph ∼ 1010 cm−2, at the fluence used in our
experiments. The same is true for the corresponding hole
concentrations p and pph. The major contribution to the total
carrier concentration thus originates from the intrinsic carriers,
described by the Fermi−Dirac distribution at Troom. In what
follows, we therefore assume the characteristic electron
temperature to be Troom.
Note that the role of carrier−carrier interactions in the

relaxation of the photocarrier distribution is reduced sub-
stantially since the lower carrier concentration results in less
frequent carrier−carrier collisions. As consequence, the ultrafast
relaxation time scale ∼ 10 fs58 at high fluence is not considered
here. We assume the relaxation of the anisotropic photocarrier
distribution on a time scale of τ1. This was measured to be
∼150−170 fs.58

The interaction between the electromagnetic wave and
charge carriers can be quantified using Fermi’s golden rule,
considering Hint as a perturbation. The steady state distribution
function is obtained by balancing the golden-rule e−h
generation and relaxation rates. Since we are interested in the
anisotropic part of the distribution function, the relevant
relaxation time is τ1 = 150 fs discussed above, rather than τ2 > 1
ps associated with e-cooling and e−h recombination. The
generation rate is ∝ sin2(θ − θpol), where θ is the direction of e
motion with px = p cos θ, py = p sin θ, and θpol is the
polarization angle; see Methods.
The standard tool for photovoltage calculations is the drift-

diffusion equation,68 which considers e and h concentrations,
rather than their distribution functions. The angular depend-

Figure 10. (a,b) Linearly polarized light incident on a potential step
U(x) in graphene and pseudospin-dependent selection rule for
interband optical excitations for (a) θpol = 0°; (b) θpol = 90°. The
polarization is characterized by the electric field E. The photocarrier
generation rate is anisotropic and ∝ sin 2(E,p̂), with p the electron
momentum. The driving term of the Boltzmann equation acting on a
function of p/p is maximal when the force −∇U(x) is perpendicular to
the direction of motion, maximizing the photoresponse at θpol = 0°;
see main text.
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ence of the distribution function is lost when the Boltzmann
equation is integrated in momentum space to obtain the drift-
diffusion relation.68 To retain the angular dependence we have
to take one step back and start from the Boltzmann equation:

τ
·∇ + ·∇ = −

Δ
± ± ±

±f f g
f

F vp r
ph

1 (4)

where F is the electrostatic force, with Fx = F cos ϕ, Fy = F sin
ϕ, v is the electron velocity, g±

ph is the photogeneration rate, and
Δf± = f± − f±

(0) is the deviation of the distribution function from
the hot Fermi−Dirac distribution f±

(0), “±” being the
conduction/valence band index. The solution of this equation
can be found in Methods. We then calculate the current density
jx = 4∑±∫ (dk2/4π2)vx f± and set jx(V) = 0 (open circuit) to
extract V, which resembles Vph, in the absence of bias.
We stress that the photovoltage maximum occurs for

perpendicular orientation of the light polarization plane with
respect to the potential barrier, when the majority of
photoexcited electrons are moving parallel to the junction.
This is due to the driving operator in the kinetic equation (eq
4) which acts on the θ-dependent steady state distribution
function in a nontrivial way. The θ-dependent part of the
driving operator can be written as

θ

ϕ θ
θ

·∇ = − + ∂
∂

= − ∂
∂

θ F p F p
p

F
p

F( ) ( )
1

sin( )

x y y xp 2

(5)

where the relations (∂θ/∂px) = −py/p2 and (∂θ/∂py) = px/p
2

have been utilized. Thus, the driving operator acting on the
function of θ is maximum when the force and direction of
particle motion are perpendicular, i.e., ϕ − θ = π/2. Then, the
major contribution to Δf± comes from electrons moving
parallel to the barrier, photogenerated by the polarized light
with θpol = 0°, as shown in Figure 10a,b. The maximum
photovoltage occurs therefore at θpol = 0°, not at θpol = 90°, as
one might expect. A similar 90° offset was found in the
photocurrent calculations of ref 33.
We distinguish two cases of n−n and p−n graphene

junctions. The former is simpler, and the resulting cos2θpol-
dependent photovoltage term reads:

θ θ
τ λ

π π

μ

μ

− =

×
− +

− −

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )
( )

qV
v

c
W
d

U x

U x

( ) cos
2 /4

ln
d

d

osc
ph

pol
2

pol
1

2
F
2

2
a

2

0 2

0 2 (6)

Here, λ is the light wavelength, μ0 is the chemical potential in
graphene in the absence of top metallic contacts, U(x) is the
built-in potential profile due to the metallic contacts, and the
laser spot diameter is d = 1.5 mm. To simplify the expression,
we assume [μ0 − U(x)] ≫ T for any x, with x the laser spot
position. The absorbed radiation energy is characterized by the
absorbed power Wa = (πe2/ℏc)Wi, which depends on the
incident radiation power Wi, and SLG optical absorption (πe2/
ℏc) = 0.023. If the laser beam is focused on the middle of the
n−n junction at x = 0 and its size is larger than the junction
region, then ΔU = U(d/2) − U(−d/2) is the built-in potential
step forming the junction. The photovoltage depends weakly
on ΔU and the logarithmic multiplier is smaller than 1 for ΔU

of a few tens to hundreds of meV, satisfying the [μ0 − U(x)]≫
T criterion. This behavior is different for the p−n junctions
shown in Figure 1, where [μ0 − U(x)] ≪ T in the middle of
the junction.
In what follows we assume μ0 = 0 and the electrochemical

potential characterized by U(x) alone. Equation 6 is then
rewritten as

∫

θ θ
τ λ

π π

ξ
ξ
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×
−

+

qV
v
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d

( ) cos
2 /4

d
ln(2 cosh )U x d T

U x d T
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2

pol
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2
F
2

2
a

2

( 2 )/2

( 2 )/2

(7)

T appears in eq 7 since the condition U(x) ≫ T utilized before
cannot apply in the middle of the p−n junction, where U = 0
(Figure 1). Moreover, we neglect the spatial dependence T(x)
here because it is overwhelmed by the much stronger
dependence U(x). At x = 0 (i.e., laser spot in the middle of
the junction) and (U(±d/2)/2T) = 1 (i.e., a potential step of
100 meV), the integral is ∼ 1. At a radiation power of 300 μW
and λ = 633 nm, the amplitude of cos2θpol oscillations is a few
microVolts. The photovoltage amplitude ΔVosc

ph at x = 0 is then
given by

∫θ
τ λ
π π

ξ
ξ

Δ =
| |

×
−

+

( )
( )

V
v

q c
W
d

( )
2 /4

d
ln(2 cosh )

a

U d T

U d T

osc
ph

pol
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2
F
2

2 2
2 /2

2 /2

(8)

This is our main theoretical outcome and is computed for our
device as a function of λ in Figure 11.

Note that the photovoltage is higher for longer wavelengths.
This is because light with a longer wavelength, but the same
radiation power, can excite more electrons into the conduction
band, resulting in a stronger photoresponse. Vph also contains a
polarization-independent term of the same order as Vosc

ph . It is
however not possible to separate this term from the
thermoelectric contributions, which are isotropic and inde-
pendent of the incoming light polarization, due to the isotropy
of graphene and the Au film; see last section of Methods. The

Figure 11. Experimental and theoretical polarization-dependent
photovoltage amplitude ΔVosc

ph for our graphene p−n junction as a
function of incident light wavelength. Equation 8 is used with the
following parameters: τ1 = 150, 100, and 50 fs, vF = 106 ms−1, d = 1.5
mm, U(−d/2) = −100 meV, U(+d/2) = 50 meV, T = 25 meV.
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oscillating, incident light polarization dependent part of Figure
7 is thus a direct proof of a photoelectric contribution to the
overall generated photovoltage. The magnitude of these
oscillations with respect to the overall photoresponse allows
us to estimate the relative photoelectric contribution Ppe to the
overall photoresponse. Figure 7 shows that Ppe is at least 21, 25,
and 53% for 633, 785, and 1550 nm. The experimentally and
theoretically determined amplitude of the photoelectric polar-
ization dependent part ΔVosc

ph is shown in Figure 11, which
demonstrates an increase of photoelectric contributions toward
longer wavelengths.
In conclusion, we demonstrated the influence of the

orientation of the lateral p−n junction in graphene-based
photodetectors with respect to the polarization of incident
linearly polarized light. The angular dependence is in good
agreement with theory and a proof that both photothermo-
electric and photoelectric effects contribute to the photo-
response in MGM-photodetectors, with photoelectric effects
becoming more pronounced at longer wavelengths. Further, we
demonstrated that the light generated anisotropic distribution
of carriers in momentum space can be observed in electrical
measurements despite their relaxation on ultrafast time scales
(τ1). This might open the possibility for graphene-based
photodetectors that can detect incident light and its polar-
ization on ultrafast time scales, overcoming the thus-far speed
limiting time constant τ2.
Methods. Kinetic Equation for Optically Excited Carriers

in Graphene with a Built-in Potential U(x). The Boltzmann
kinetic eq 4 introduced above for Δf± = f± − f±

(0) can be written
as

τ
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±
±

± ±q
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x
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f f

x x

ph
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1 (9)

where px = ℏkx, v± = ±vFkx/k, q = −|q| is the electron charge,
and U(x) is the built-in potential. The bias voltage is assumed
to be small enough to justify the linear response in terms of
(∂V/∂x). In the absence of bias and photogeneration, the
system is in the equilibrium state described by the Fermi−Dirac
distribution function f±

(0):

μ
=

+ ±ℏ + −±f
v k U x k T

1
1 exp[( ( ) )/ ]B

(0)

F 0 (10)

“±” stands for the conduction and valence band. The
photogeneration rate g±

ph can be derived from Fermi’s golden
rule using the unperturbed eigenstates of H0, ψ±k(x, y) = (1/
√2)eikxx+ikyy(1, ±eiθ)T, where tan θ = ky/kx. For a given spin/
valley channel we get:
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(11)

where θpol is the polarization angle, and E0 is the electric field
amplitude of the electromagnetic wave, which can be related to
the incident radiation power per unit square as wi = (c/4π)⟨[E
× B]z⟩t = (cE0

2/8π) [W/cm2]. The fluence can be estimated as
Φ = wiΔt. The integral radiation power is Wi = wi(πd

2/4),
where d is the laser spot diameter.
We look for the solution of eq 9 in the form f± = f±

(0) + f±
ph +

f±
(1), where f±

ph = τ1g±
ph, and f±

(1) is determined from the following
equation obtained substituting f± in eq 9:
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One can prove directly that −(∂U/∂x)(∂f±(0)/∂px) + v±(∂f±
(0)/

∂x) = 0. Moreover, −q(∂V/∂x)(∂f±ph/∂px) ≪ − q(∂V/∂x)(∂f±
(0)/

∂px) since n
ph ≪ n, as discussed in the main text. Taking into

account the θ dependence of f±
ph, f±

(1) can be written as
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Note the graphene specific contribution proportional to
(∂ sin2(θ − θpol))/∂kx = sin(2θpol − 2θ)(sin θ)/(k). To
calculate the current density we multiply eq 13 by v± and
integrate it over k and θ. We take f+

(0)(k = ω/2vF) = 0 and f−
(0)(k

= ω/2vF) = 1, a reasonable assumption for any T, electro-
chemical doping and wavelength we consider in this paper. In
order to find the photovoltage for the open circuit we employ
in our measurements, the total current density and external bias
are set to zero. In this case, V in eq 13 is the photovoltage Vph.

Photoresponse of Graphene n−n Junction. Here we
assume that [μ0 − U(x)] ≫ T, so that eq 13 can be integrated:
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To obtain Vph we integrate eq 14 over x within the laser spot:
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The E0-dependent multiplier in eq 15 can be expressed in terms
of the absorbed radiation power Wa = (πe2/ℏc)Wi. Extracting
the θpol dependent part out of eq 15, we arrive at the final result
of eq 6.

Photoresponse of the Graphene p−n Junction. Here the
electrochemical potential can be smaller than T in the junction
region and we cannot assume [μ0 − U(x)] ≫ T. To simplify,
we set μ0 = 0, so that the electrochemical potential is
determined by U(x) alone. Note that eq 14 is now T
dependent:
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and the photovoltage becomes
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∫
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One can exclude T from the integrand. The final formula for
Vph reads:

∫
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Extracting the θpol dependent part from eq 18, we get eq 7.
Thermoelectric Contribution in the Total Photoresponse.

An irradiated sample experiences heating, therefore the
electrons are subject to a T gradient (∂T/∂x), which appears
in eq 9, when v±(∂f±/∂x) is written explicitly. Following the
same procedure as above, we arrive at eq 12, where −(∂U/
∂x)(∂f±

(0)/∂px) + v±(∂f±
(0)/∂x) is not zero and gives the leading

contribution in terms of (∂T/∂x). This cannot depend on light
polarization in any circumstance.
For eq 14, the thermoelectric term can be estimated as (π2/

3)T(x)(∂T/∂x), which results in the photothermoelectric term
given by eq 2. Thus, the thermoelectric contribution, being
proportional to T, gets larger for hot electrons and becomes
dominant in this case. Most importantly, the thermoelectric
response mainly depends on the radiation power converted to
heat and is not sensitive to any particular light polarization. In
contrast, the photoelectric response (eq 15) does depend on the
polarization angle θpol, which makes it possible to separate these
two effects in the total response measured. Note, however, that
the photovoltage (eq 15) also contains a θpol independent
contribution, which is not possible to distinguish from the
thermoelectric response. Nevertheless, the amplitude of
cos 2θpol oscillations gives indication of how large the
photoelectric response is.
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