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Temperature dependent phonon renormalization in metallic nanotubes
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We measure the temperature dependence of the Raman spectra of metallic and semiconducting
nanotubes. We show that the different trend in metallic tubes is due to phonon re-normalization
induced by the variation in electronic temperature, which is modeled including non-adiabatic con-
tributions to account for the dynamic, time dependent nature of the phonons.

Raman spectroscopy is a powerful non destructive
technique for the characterization of carbon materials,
and is a fundamental tool in the recent advances in the
understanding of single wall carbon nanotubes (SWNTs).
Raman experiments probe the optical phonons, allowing
to assess the vibrational properties of the analyzed mate-
rials. A strong interplay exists between temperature (T )
and phonon frequencies. Indeed, because of anharmonic
effects in the atomic oscillations, an increase in T usually
results in a downshift of the phonon energy and a lifetime
reduction [1]. For Raman active modes, this corresponds
to a downshift and a broadening of the Raman peaks [1].

The temperature dependence of the Raman spectra is
extremely effective for the evaluation of the local heat-
ing in a variety of electronic devices [2, 3], and provides
valuable information for the characterization of nano-
materials [4]. Since SWNTs are at the center of nan-
otechnology research, a thorough investigation and un-
derstanding of the temperature effects on their Raman
spectra is needed, especially in view of their foreseen ap-
plication in high current nanodevices. Several groups re-
ported changes of the Raman spectra of single-, double-
and multi-wall tubes as a function of T. Some focussed
on the G band [5, 6, 7, 8, 9, 10, 11, 12, 13]. Others
considered the position [5, 6, 7, 8, 11, 12, 14] and the
intensity [14] of the Radial Breathing Modes (RBM). A
few reported the temperature evolution of the 2D [5, 13]
and 2D’ modes [5].

However, the different components of the G band,
which crucially distinguish metallic from semiconduct-
ing nanotubes, were not independently studied, in order
to ascertain if those would have a different temperature
evolution in semiconducting and metallic SWNTs, thus
fingerprinting each material.

Here we present an extensive set of temperature-
dependent measurements of the G+ and G− peaks in
metallic and semiconducting SWNTs. We show that
there is a significant difference in the measured trends.
We detect a re-normalization of the G− peak, ruled by
the variation in the electronic temperature, in metal-
lic SWNTs. Furthermore, we prove that this can only
be explained by considering the dynamic nature of
the phonons and the resulting breakdown of the Born-
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FIG. 1: (a) Dark-field microscopy image of the electrodes
used in the dielectrophoretic deposition, (b) SEM image of the
metallic tubes attached to the electrodes after dielectrophore-
sis and Raman spectra of (c) metallic and (d) semiconducting
tubes acquired at T=80K, 273K, 473K and 623K.

Oppenheimer approximation. The re-normalized phonon
frequencies in the standard static approaches being in to-
tal disagreement with the experiments.

Samples containing almost exclusively metallic
SWNTs are prepared by depositing individually
dispersed SWNT onto micro-electrodes using radio
frequency dielectrophoresis as described in Ref. [15, 16].
The SWNT suspension is obtained by sonicating 100mL
D2O mixed with 0.05 weight % HiPCo-tube raw mate-
rial provided by “Houston” and 1 weight % of sodium
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dodecylbenzene sulfonate (SDBS) (Sigma-Aldrich). The
suspension is centrifuged at 154000 g for 2 h and the
upper 90% of the supernatant decanted. This is then
diluted with D2O to obtain a surfactant concentration of
0.1 weight % close to the critical micelle concentration
(0.097 weight %). Microelectrodes with 10 µm gap are
then produced from gold by standard electron beam
lithography and bond-wired to a function generator.
Dielectrophoretic deposition is conducted by exposing
the electrodes driven at a frequency of 3 MHz and a
peak-to-peak voltage Vpp of 20 V to a drop of suspension
(∼ 10µL). After 10 min the samples are subsequently
rinsed with H2O, ethanol and dried in nitrogen. They
are then characterized by optical dark-field microscopy
(Fig. 2a), electron microscopy (Fig. 2b) and Raman
spectroscopy (Fig. 2c), which show that aligned bundles
of metallic SWNTs bridge the electrodes.

Temperature dependent Raman measurements are car-
ried out with a Renishaw 1000 spectrometer, using a He-
Ne laser at 633 nm, matching the resonance window for
HiPCo metallic tubes [17]. To further enhance the signal,
the laser is polarized parallel to the aligned tubes. The
temperature of the sample is set by a Linkam stage, in
the range 77-850K. The stage is cooled by liquid N2. Ra-
man spectra are recorded from 80 to 630 K with steps of
25 K. From the RBM frequency [17, 18, 19] we estimate
the mean diameter of metallic tubes to be ∼ 1.0 nm.

We also acquire spectra from samples with a natu-
ral mixture of metallic and semiconducting HiPCo-tubes.
There we use 514 nm excitation, which brings semicon-
ducting SWNTs with a diameter of ∼ 1.1 nm in reso-
nance, as confirmed by the analysis of the RBMs. The
semiconducting nature of the measured tubes is also con-
firmed by the shape and position of the G−-peak [20].

The G+ and G− peaks of metallic and semiconducting
tubes measured at 80 K, 273 K, 473 K, and 625K are
shown in Fig. 1. To quantitatively determine the peak
positions, we fit the two components of the G band us-
ing 2 Lorentzians. An increasing temperature results in
a downshift of both G+ and G−. This is in agreement
with all previous observations [5, 6, 7, 8, 9, 10, 11, 12, 13]
and can be explained by an-harmonicity. However, we
crucially detect that in semiconducting tubes the split-
ting between G+ and G− is ∼ 25 cm−1, independent of
temperature, while in metallic it increases with T . This
different behavior seems unlikely to originate from an-
harmonicity.

The G+ and G− peaks originate from the tangen-
tial (TO) and the longitudinal (LO) modes derived
from the splitting of the E2g phonon of graphene. In
metallic tubes, the LO mode is affected by a Kohn
anomaly (KA) [21], which causes the softening of this
phonon [20, 22]. Since KA are not present in semi-
conducting SWNTs, the G+, G− assignment in metallic
SWNTs is the opposite of semiconducting tubes [20, 22].

For a given temperature and SWNT diameter, the soft-

ening of the LO mode in metallic with respect to semicon-
ducting SWNTs originates from an anomalous screening
of the atomic displacements, due to the electrons close
to the Fermi energy. The occupation of these electronic
states depends on temperature through the Fermi-Dirac
distribution. Thus, in principle, changes in temperature
may result in a modification of the electronic screening
(see, for example, Ref. [23]), which can re-normalize the
LO phonon frequency and the position of its correspond-
ing Raman peak. This contribution, if present, would
depend only on the electronic temperature Te, and has
to be added to the an-harmonic effects.

The influence of Te on the screening of the atomic vi-
brations can be investigated theoretically. In general, lat-
tice dynamics is calculated within the Born-Oppenheimer
adiabatic framework [24, 25]. This assumes the motions
of ions and electrons to be completely decoupled, with
the electrons following adiabatically the ions (in other
words, the electrons always “see” the ions as if they are in
fixed positions). This is justified when the occupied and
empty states are separated by an energy gap [26]. In ma-
terials without an electronic gap, the Born-Oppenheimer
approximation (BOA) is not easily justifiable, however
experience proves that in most cases this accurately re-
produces the phonon dispersion of metals [27].

Phonon calculations within the BOA and based on
zone-folding are in good agreement with room T Raman
measurements of SWNTs [22]. However, we have shown
that the BOA breaks down in the description of KA in
doped graphene [28, 29]. Therefore, it is necessary to
probe whether an adiabatic approach can reproduce the
T evolution of the SWNTs Raman peaks.

Phonons can be regarded as a perturbation of a crys-
tal [30]. In general, given their dynamic nature, they
should be described by time-dependent perturbation the-
ory (TDPT) [30]. However, within the adiabatic BOA,
they are seen as static perturbations and treated by a
time-independent perturbation theory (TIPT) [30].

Starting from the general expression given in Ref. [31]
and following the approach described in Ref. [28], it can
be shown that, within TDPT, the reciprocal-space ex-
pression for the non analytic part of the dynamical ma-
trix of SWNTs, Θq is given by:

Θ̃q =
4τAΓ/K

2π

∑
m,n=L,R

∫ k̄

−k̄

|D(K+k′+q)n,(K+k′)m|2

fK+k,m − fK+k′+q,n

ǫK+k′,m − ǫK+k′+q,n + ~ωq + iγ
dk′, (1)

where τ is the length of the translational unit cell of
the tube, k′ is measured from the Fermi point kF ; k̄ has a
small but finite value; R and L label the bands crossing at
the Fermi energy and corresponding respectively to right-
and left-moving electrons; AΓ/K accounts for the number
of processes satisfying 2q = kF (AΓ = 2, AK = 1),~ωq

is the energy of a phonon of wavevector 4 and branch η
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FIG. 2: (a)Comparison of the static and dynamic phonon
dispersions of the LO and TO modes close to q=0. (b) Static
and dynamic phonon dispersion of the LO mode close to q=0
calculated at Te =4K, 300K, and 2000K.

(omitted in the equations for simplicity), γ is a small real
number, D(k+q)i,kj = 〈k + q, i|∆Vq|k, j〉 is the electron-
phonon coupling (EPC) matrix element where |k, i〉 is
the electronic Bloch eigenstate of wavevector k, band i,
energy ǫk,i, and occupation fk,i given by the Fermi-Dirac
distribution [32]; ∆Vq is the derivative of the electronic
potential with respect to the phonon normal coordinate.

Within the BOA, a phonon is seen in its static limit,

i.e. assuming ωq = 0 and γ = 0. Θ̃q thus simplifies in:

Θ̃q =
2AΓ/KT

2π

∑
m,n=L,R

∫ k̄

−k̄

fK+k′,m − fK+k′+q,n

ǫK+k′,m − ǫK+k′+q,n

|D(K+k+q)n,(K+k′)m|2.dk′. (2)

KAs occur for phonons (i) having non-zero EPC between
states close to the Fermi energy, and (ii) for which the de-
nominators in Eq. 1,2 vanish, resulting in the presence of
a singularity in the dynamical matrix [33]. Thus, within
a static approach, the anomalies are predicted to occur
for the values of q that make the denominator in Eq. 2
vanish, i.e. for q = 0 and q = 2kF [22, 33, 34, 35, 36].

Thus, TDPT deeply modifies the description of the
KAs. Because of the ~ωq + iγ terms, and assuming the
electronic bands of the SWNTs at the Fermi energy to
be linear with slope β, the denominator of Eq. 1 vanishes
for q = ±~ωq/β and q = kF ± ~ωq/β, resulting in a shift
of the position of the KAs. We refer to the inclusion of
these terms as the dynamic effects.

By using the folding approach described in Refs. [20,
22], we numerically integrate Eq. 1, 2, and obtain the
theoretical description of the KAs in metallic SWNTs
within the static and the dynamic approaches. These
results are then corrected to account for curvature [20].

Fig. 2 shows the phonon dispersion of the LO and TO
modes close to q = 0 for a metallic SWNT with d =
1.0 nm. Calculations are done within the static and the
dynamic approaches, at room T. The first predicts a KA
for the LO mode only. This is centered at q = 0, and the
phonon dispersion close to it has a logarithmic shape. On
the other hand, dynamic calculations show that both the
LO and TO phonon branches are affected by KA, and
that the anomalies are centered at q = ~ωq/β.

Eq. 1,2 depend on the occupation of the electronic
states through the Fermi-Dirac distribution. Thus, it is
possible to compute the dependence of the phonon fre-
quencies on the electronic temperature.

To stress that these effects depend uniquely on the oc-
cupation of the electronic bands of the tubes, here we
distinguish between the electronic and the ionic temper-
ature, which we indicate with Te and Ti respectively. Ti

corresponds to the energy associated to the atoms vi-
brating around their equilibrium positions, and deter-
mines the onset of the an-harmonic effects, while Te fixes
the electronic states population according to the Fermi-
Dirac distribution and determines the shape of the KA.
At thermal equilibrium Ti = Te = T .

Fig. 2 shows the KA of the LO branch for a metallic
SWNT of d = 1.0 nm calculated at Te=4K, 300K and
2000K within the static and the dynamic frameworks.
In both cases, increasing Te results in a softening of the
anomaly, this being stronger if the dynamic effects are
taken into account. The TO branches do not show any
dependence on Te in both the static and the dynamic ap-
proach. Thus, the static and the dynamic models predict
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FIG. 3: Temperature dependence of the G+ and G− split-
ting compared with the theoretical prediction of the LO-TO
splitting obtained using static and dynamic approaches.

a totally different temperature dependence of the split-
ting between the LO and the TO phonons at q = 0.

The LO and TO frequencies are also modified by the
presence of an-harmonic effects, which are related to Ti

and are expected to give an overall decrease of the phonon
frequencies for increasing T. These are not described by
Eq. 1,2. However, a simple model for the T dependence
of the frequency shift for the LO and TO modes predicts
them to be the same [37]. Thus, the relative position of
these two modes is determined only by the dependence
on Te, which is entirely described by Eq. 1,2. Further-
more, since KAs affect metallic SWNTs only, no depen-
dence of the LO-TO splitting on Te should be observed
for semiconducting SWNTs.

The experimental LO-TO splitting and those calcu-
lated by using the static and dynamic theory are plotted
in Fig. 3. The static and the dynamic models give con-
trasting predictions. In the static case, the splitting for
metallic SWNTs with d = 1.0 nm is estimated to be 80
cm−1 at 80 K, and to decrease to 50 cm−1 and 30 cm−1

at 300 K and 625 K respectively. On the other hand, the
dynamic model predicts an increase of the splitting from
35 cm−1 to 40 cm−1 when moving from 80 to 520 K, and
a plateau in the 420-650 K region. Both models predict
a reduction of the splitting for T>650 K, with a steeper
slope for the static case. For semiconducting tubes, no
differences exist between the static and dynamic predic-
tions, and the splitting for d = 1.1 nm is 24 cm−1.

The static model trend is clearly incompatible with
the experiments, which, on the opposite, are in very
good agreement with the predictions of the dynamic ap-

proach. Indeed, the experimental splitting for metallic
tubes shows a slight increase with temperature and peaks
at ∼45 cm−1 . On the other hand, no temperature de-
pendence is observed for semiconducting tubes, for which
the splitting is ∼25cm−1.

In conclusion, we presented the temperature depen-
dence of the G+ and G− peaks in the Raman spectra of
SWNTs. We showed that the temperature dependence
of the G+ and G− splitting is significantly different in
metallic and semiconducting SWNTs. The increase of
the G+ and G− splitting in metallic tubes is due to a non-
adiabatic phonon re-normalization induced by the varia-
tion in electronic temperature. This cannot be described
by the standard adiabatic Born-Oppenheimer approach.
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