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Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers
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We report ultra-strong high-order nonlinear multiphoton processes in monolayer MoS2 (1L-MoS2):
the third harmonic is thirty times stronger than the second harmonic, and the fourth harmonic is
comparable to the second harmonic. We find that second and third harmonic processes are strongly
dependent on elliptical polarization, which can be used to selectively tune harmonic generation
with different orders. We explain this by calculating the nonlinear response functions of 1L-MoS2

with a continuum-model Hamiltonian and quantum-mechanical diagrammatic perturbation theory,
highlighting the crucial role of trigonal warping. A similar effect is expected for all other transition-
metal dichalcogenides. Our results pave the way for efficient and tunable harmonic generation based
on layered materials for various applications, including microscopy and imaging.

[73] Nonlinear optical processes, such as harmonic
generation[1], are of great interest for various ap-
plications, e.g. microscopy[2, 3], therapy[2, 3], fre-
quency conversion[1, 4] and data storage[3]. Nonlin-
ear optical phenomena can generate high-energy pho-
tons by converting n = 2, 3, 4, . . . low-energy photons
into one high-energy photon. These are usually re-
ferred to as second-, third- and fourth-harmonic gen-
eration (SHG, THG and FHG)[1–4]. Due to differ-
ent selection rules[1, 5], various harmonic processes
are distinct from optically-pumped laser phenomena
(e.g. optically-pumped amplification[6]), and other typ-
ical single-photon processes (e.g. single-photon excited
photoluminescence[1]), in which the energy of the gener-
ated photons is smaller than the pump photons. There-
fore, multiphoton harmonic processes have been widely
exploited for various applications (e.g. all-optical sig-
nal processing in telecommunications[1, 7], medicine[2,
3], and data storage[3]), as well as to study vari-
ous transitions forbidden under low-energy single-photon
excitation[2, 3]. The physical origin of these processes is
the nonlinear polarization induced by an electromagnetic
field . This gives rise to higher harmonic components, the
n-th harmonic component amplitude being proportional
to |E|n [1]. Quantum mechanically, higher-harmonic gen-
eration consists in the annihilation of n pump photons
and generation of a photon with n times the pump energy.
Because an n-th order nonlinear optical process requires
n photons to be present simultaneously, the probability
for higher-order processes is lower than for lower order[1].
Thus, higher-order processes are typically weaker and re-
quire higher intensities[8, 9].

Graphene and related materials (GRMs) are at the
center of an ever increasing research effort due to their
unique and complementary properties, making them
appealing for a wide range of photonic and optoelec-

tronic applications[10–16]. Amongst these, semiconduct-
ing transition-metal dichalcogenides (TMDs) are of par-
ticular interest due to their direct bandgap when in
monolayer form[17, 18], leading to an increase in lumi-
nescence efficient by a few orders of magnitude compared
with the bulk material[17–22]. 1L-MoS2 has a single layer
of Mo atoms sandwiched between two layers of S atoms
in a trigonal prismatic lattice. Therefore, in contrast to
graphene, it is non-centrosymmetric and belongs to the
space group D1

3h[23]. The lack of spatial inversion sym-
metry makes 1L-MoS2 an interesting material for non-
linear optics, since second-order nonlinear processes are
present only in non-centrosymmetric materials[1]. How-
ever, when stacked, MoS2 layers are arranged mirrored
with respect to one another[23], therefore MoS2 with an
even number of layers (EN) is centrosymmetric and be-
longs to the D3

3d space group[23], producing no second
harmonic (SH) signal. On the other hand, MoS2 with any
odd number of layers (ON) is non-centrosymmetric. SHG
from 1L-MoS2 has already been experimentally demon-
strated by several groups[23–31].

Here, we present experimental and theoretical work
on nonlinear harmonic generation in 1L and few-layer
(FL) MoS2 flakes. We report ultra-strong THG and
FHG from 1L-MoS2. In comparison to SHG, the THG is
more than one order of magnitude larger and FHG has
the same magnitude as SHG. This is surprising, since
one normally expects the intensity of non-linear optical
processes to decreases with n[1, 5]. One therefore ex-
pects the SHG intensity to be much larger than THG
and FHG, although even-order processes only exist in
non-centrosymmetric materials. Our results show that
this expectation is wrong in the case of 1L-MoS2. The
point is that, at sufficiently low photon-frequencies (in
our experiments the photon energy of the pump is 0.8eV),
SHG only probes the low-energy band structure of 1L-
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FIG. 1: a) Optical micrograph with single-layer, bilayer, and
five-layer areas marked by 1L, 2L and 5L, respectively. b)
Raman spectra of the same sample.

MoS2. This is nearly rotationally invariant[14, 32–38],
but with corrections due to trigonal warping. It is be-
cause of these corrections[34–36], fully compatible with
the D1

3h space group[1], but reducing the full rotational
symmetry of the low-energy bands to a three-fold rota-
tional symmetry[1], that a finite amplitude of non-linear
harmonic processes with even n can exist at low pho-
ton energies. Thus, lack of spatial inversion symmetry
is only a necessary but not sufficient condition for the
occurrence of SHG. We demonstrate that the observed
THG/SHG intensity ratio can be explained by quan-
tum mechanical calculations based on finite-temperature
many-body diagrammatic perturbation theory[39] and
low-energy continuum-model Hamiltonians that include
trigonal warping[40]. We show that these nonlinear pro-
cesses are sensitive to the number of layers, their symme-
try, relative orientation, and the elliptical polarization of
the excitation light. Similar effects are expected for all
other TMDs. This paves the way for the assembly of
heterostructures with tailored nonlinear properties.
MoS2 flakes are produced by micromechanical cleav-

age (MC) of bulk MoS2[41, 42] onto Si+285nm SiO2 sub-
strate. 1L-MoS2 and bilayer (2L-MoS2) samples are iden-
tified by a combination of optical contrast[43, 44] and Ra-
man spectroscopy[45, 46]. Raman spectra are acquired
by a Renishaw micro-Raman spectrometer equipped with
a 600 line/mm grating and coupled with an Ar+ ion
laser at 514.5nm. Fig.1 shows the MoS2 flakes studied
in this work and their Raman signatures. A reference
MC graphene sample is also prepared on a similar sub-
strate.
Nonlinear optical measurements are carried out with

the setup of Fig.2[47, 48]. As excitation source, we use
an erbium doped mode-locked fiber laser with a ∼50MHz
repetition rate, maximum average power∼60mW and
pulse duration∼150fs, which yields an estimated pulse
peak power∼ 8kW[49]. The laser beam is scanned with
a galvo mirror and focused on the sample using a mi-
croscope objective. The back-scattered second and third
harmonic signals are split into different branches using a

FIG. 2: Schematic diagram of the multiphoton microscope.
MLL: linearly polarized mode-locked fiber laser. VA: variable
attenuator. QWP: quarter-wave plate. QWP is inserted only
when we study the dependence of SHG and THG on the el-
liptical polarization of the pump light. BP filter: Bandpass
filter. PMT: Photomultiplier tube.

dichroic mirror and then detected using photomultiplier
tubes (PMTs). For two-channel detection, the light is
split into two PMTs using a dichroic mirror with 560nm
cut-off. After the dichroic mirror, the detected wave-
length range can be further refined using bandpass fil-
ters. The light can also be directed to a spectrometer
(OceanOptics QE Pro-FL) to analyze the spectral prop-
erties of the generated light. The average power on sam-
ple is kept between 10 and 28mW with a typical mea-
surement time∼5µs, which prevents sample damage and
enables high signal-to-noise-ratio, even with acquisition
time per pixel in the µs range.
SHG and THG images of the MoS2 sample are shown

in Figs.3a,b). The SHG signal is generated in 1L-MoS2,
while 2L-MoS2 appears dark. As discussed above, the
second-order nonlinear response is present in 1L-MoS2,
which is non-centrosymmetric. However, when stacked
to form 2L-MoS2, MoS2 layers are mirrored one with re-
spect to another[23, 24]. Therefore, EN-MoS2 is cen-
trosymmetric [23, 24], and belongs to the D3

3d space
group[23, 24], producing no SHG signal. On the other
hand, ON-MoS2 is non-centrosymmetric [23, 24].
We note that strong THG is detected compared with

SHG, even for 1L-MoS2, as shown in Fig.3b). THG was
previously reported for a thick (N ≥ 10) MoS2 flake[27],
but here we see it down to 1L-MoS2. However, THG is
not observed from the thickest areas of our flake, with
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FIG. 3: a) SHG and b) THG map of the MoS2 flake in Fig.1a).
c) Optical spectrum of the nonlinear signal from 1L-MoS2

with a peak irradiance∼ 30 GW/cm2.

N 30, as in Ref.[27]. The output spectrum in Fig.3c)
further confirms that we are observing SHG and THG
together. Peaks for THG and SHG at∼520 and∼780nm
can be seen, as well as a peak at∼390nm, corresponding
to a four-photon process. This is detected only in 1L-
MoS2. Its intensity is∼5.5 times lower than SHG, and
two orders of magnitude smaller than THG.
SHG signals on areas with N=3, 5, 7 have nearly

the same intensity as 1L-MoS2, Fig.4a). This contrasts
Ref.[23], where a pump laser at 810nm was used. We
attribute this difference to the fact that photons gener-
ated in the second-order nonlinear process in our setup
with a 1560nm pump wavelength have an energy∼1.6eV
(780nm), below the band gap of 1L-MoS2 [17, 18], there-
fore not adsorbed, unlike the SHG signal in Ref.[23].
Based on the measured SHG and THG intensities, we

can estimate the nonlinear susceptibilities χ(2) and χ(3).
χ(2) can be calculated from the measured average powers
of the fundamental and SH signals as follows[50]:

χ(2)
s =

√
ǫ0cλ4

2P2ωRτ2(n2 + 1)2(n1 + 1)2

32NA2τ2Ppumpφ
, (1)

where τ is the pulse width, Ppump is the average power of
the incident fundamental (pump) beam and P2ω stands
for the generated SH beam power, R is the repetition

FIG. 4: a) SHG and THG intensities as functions of N. b)
Power dependence of SHG and THG in 1L-MoS2. c) Ex-
perimental and theoretical THG/SHG irradiance ratio as a
function of Ppump. Different theoretical curves refer to dif-
ferent values of the ultra-violet cut-off kc (measured in units
of 1/a0 =

√
3/a where a ≈ 3.16 Å is the lattice constant of

1L-MoS2 [17, 18]).

rate, NA=0.5 is the numerical aperture, λ2=780nm is
the SH wavelength, τ = τ2 = 150 fs are the pulse
durations at fundamental and SH wavelengths, φ =

8π
∫ 1

0
| cos−1 ρ − ρ

√
1− ρ2|2ρ dρ = 3.56 from Ref.[50],

and n1 = n2 =∼ 1.45 are the refractive indices of the sub-
strate at the wavelengths of the fundamental and SHG,
respectively. The effective bulk-like second order suscep-
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tibility of MoS2 (χ
(2)
eff ) can be obtained from Eq.1 with

χ
(2)
eff =

χ(2)
s

tMoS2
, where tMoS2 = 0.75nm is the 1L-MoS2

thickness[13, 14]. We obtain the effective second order

susceptibility χ
(2)
eff ∼ 2.2 pm/V for 1L-MoS2. The third-

order susceptibility χ(3) of MoS2 is estimated by com-
paring the measured THG signal from MoS2 to that of
1L-graphene (SLG):

χ(3) ≈ tgr
tMoS2

√
THGMoS2

THGgr
χ(3)
gr . (2)

With tgr ∼0.33nm the SLG thickness, and THGgr and
THGMoS2

the measured signals from SLG and MoS2,

respectively. Using χ
(3)
gr ∼ 3 × 10−7 esu ∼ 4.2 ×

10−15 m2/V2[47], we find χ(3) ∼ 2.8 × 10−7 esu ∼
3.9 × 10−15 m2/V2, comparable to that of SLG in the
same frequency range that we used in our experiment.
This is remarkable, as SLG is known to have a large
χ(3)[51, 52], 2 orders of magnitude larger than that of
bulk glass[53] and∼5 times larger than gold[53]. Fur-
thermore, MoS2 is transparent at this telecommunica-
tion wavelength due to its∼1.9eV gap[17, 18, 20], while
SLG absorbs 2.3% of the light[13, 54]. Therefore, MoS2
and possibly other TMDs are promising for integration
with optical waveguides or fibers for all-optical nonlin-
ear devices, where materials with nonlinear properties
are essential, such as all-optical modulators and signal
processing devices[16].
The SHG and THG power dependence follows

quadratic and cubic trends, respectively, Fig.4b). At the
power levels of our measurements, THG is up to 30 times
stronger than SHG. We attribute such a large THG/SHG
ratio to the approximate rotational invariance of the
MoS2 band structure at low energies, which is broken
by trigonal warping. Fig.4c) plots the THG/SHG ratio
obtained from the experiments and microscopic calcula-
tions based on the k ·p theory[40] and finite-temperature
diagrammatic perturbation theory[39] (details in Meth-
ods). The calculations are factor of two smaller than
the experimental data. Considering the complexity of
the investigated non-linear optical processes and the fact
that our calculations ignore high-energy band structure
effects[38] and many-body renormalizations[55], we be-
lieve this to be a satisfactory agreement, indicating the
importance of trigonal warping in harmonic generation.
FHG generally derives from cascades of lower-order

nonlinear multi-photon processes[8, 56]. With an excita-
tion wavelength of 1560nm, this could be, e.g., a cascade
of two SHG processes, where 780nm photons are first gen-
erated through SHG (ω1560nm + ω1560nm ⇒ ω780nm) and
then undergo another SHG process (ω780nm + ω780nm ⇒
ω390nm). To yield a FHG at 390 nm of the same in-
tensity as SHG at 780nm in this cascaded process, one
would need a conversion efficiency (defined as P2ω/Ppump

[1]) for the second SHG process (i.e., ω780nm+ω780nm ⇒

FIG. 5: Dependence of SHG and THG intensities on the el-
liptical polarization of the pump light in 1L-MoS2. The po-
lar plot angle corresponds to linearly polarized light when
θ = 0◦ + m · 90◦, and gives circularly polarized pump light
when θ = 45◦ +m · 90◦. The SHG power is multiplied by a
factor of 37 to fit in the same scale as THG.

ω390nm) to be close to unity. However, we observe a
conversion efficiency∼ 10−10 for SHG. Therefore, we
conclude that our FHG does not arise from cascaded
SHGs. Another possible cascade process is based on
THG (ω1560nm +ω1560nm +ω1560nm ⇒ ω520nm) and sum-
frequency generation (ω520nm + ω1560nm ⇒ ω390nm). We
find that THG strongly increases up to N=5, as for
Fig.4a). Therefore, we expect this cascaded process to
have a similar trend with N. However, we only observe
FHG in 1L-MoS2. Thus, we can also exclude this cas-
cade process, and conclude that we observe a direct χ(4)

process in 1L-MoS2. To the best of our knowledge, this
is the first observation of FHG in a monolayer GRM.
We now discuss the dependence of our results on the

elliptical polarization of the incident light. We con-
sider an incident laser beam with arbitrary polarization,
i.e. E = |E|ε̂± with ε̂± = x̂ cos(θ) ± iŷ sin(θ). Using the
crystal symmetries of 1L-MoS2, we derive (see Methods)
the following expressions for the second- and third-order
polarizations P (2) and P (3):

P (2) = ǫ0χ
(2)
yyy|E|2[∓i sin(2θ)x̂− ŷ] (3)

and

P (3) = ǫ0χ
(3)
yyyy|E|3ε̂± cos(2θ) . (4)

Note that θ = 0◦ corresponds to a linearly polarized laser
along the x̂ direction which is perpendicular to the mirror
symmetry plane of D1

3h symmetry group, while θ = 45◦

corresponds to a circularly polarized laser. From Eq.3 we
expect the intensity of SHG in response to a circularly
polarized pump laser to be twice that of a linearly polar-
ized laser. Eq.4 implies vanishing THG in response to a
circularly polarized pump laser.
We thus measure the SHG and THG dependence on

elliptical polarization using a linearly polarized laser and



5

FIG. 6: a) Optical micrograph, b) SHG and c) THG images of flake with few-layer areas under 1560nm excitation.

a rotating quarter-wave plate (QWP). Depending on the
angle θ between the QWP axes and the polarization, the
excitation light will be linearly (θ = 0◦ +m · 90◦) or cir-
cularly (θ = 45◦ + m · 90◦) polarized. Fig.5 shows that
the experiments are in excellent agreement with Eqs.3,4.
The THG signal is maximum for a linearly polarized ex-
citation laser, while it vanishes for circularly polarized
excitation. Note that SHG is always visible, but its in-
tensity is maximum for circularly polarized light.
Given that harmonic generation is strongly dependent

on the symmetry and stacking of layers and different
monolayer TMDs (e.g. WSe2,MoSe2), all have similar
nonlinear response[16, 23, 24, 31], one could use het-
erostructures (e.g. MoS2/WSe2) to engineer SHG and
other nonlinear processes for high photon-conversion ef-
ficiency for a wide range of applications requiring the
generation of higher frequencies. This may lead to the
use of layered materials and heterostructures for applica-
tions utilizing optical nonlinearities (e.g. all-optical de-
vices, frequency combs, high-order harmonic generation,
multiphoton microscopy and therapy etc.).

METHODS

Determination of MoS2 thickness from SHG and

THG signals

SHG and THG for few-layer MoS2 (N=1...7) are stud-
ied on the flake in Fig.6a. SHG and THG images are
shown in Figs.6b,c. At 1560 nm, the contrast between 1
and 3L areas is small, as well as the contrast between 3-,
5- and 7L regions (Fig.6b).
The THG signal increases up to N=7, Figs.4a,6c. On

the other hand, the SHG signal (Fig.6b) is only generated
in ON areas, due to symmetry[23]. Therefore, the areas

that have intensity between the 3-, 5- and 7L areas in
Fig.6c but appear dark in SHG, can be identified as 4 and
6L. The dependence of the intensities of THG and SHG
on N is plotted in Fig.4a). Thus, the combination of SHG
and THG can be used to accurately identify N at least
up to 7. The THG signal develops as a function of N.
Using Maxwell’s equations for a non-linear medium with
thickness t and considering the slowly varying amplitude
approximation[1, 57], we obtain:

I3ω
Iin

≈ (3ω)2I2in
16n3

1n3ǫ20c
4

∣∣∣χ(3)(−3ω;ω, ω, ω)
∣∣∣
2

t2sinc2
(
∆kt

2

)
,

(5)
where Iin and I3ω are the intensity of the incident and
THG light, respectively and χ(3)(−3ω;ω, ω, ω) is the
third order optical susceptibility. Note that nj=1,3 =√
ǫ(1)(jω) in which ǫ(1) is the linear dielectric function of

multilayer TMD. ∆kt is the phase mismatch between the
fundamental and third harmonic generated waves. For
∆kt ≈ 0, THG adds up quadratically with light propa-
gation length (i.e. t ∝ N). The signal starts to saturate
for N=6. The possible reasons for sub-quadratic signal
build-up can be either phase mismatch, or absorption[19].
For THG, ∆k = 3kin ± k3ω, where kin and k3ω are
the wavevectors of the incident and THG signals, re-
spectively, where the plus sign indicates THG gener-
ated in the backward direction, while minus identifies
forward generated THG. Even for backward generated
THG, ∆kt ≈ 0 for 6L-MoS2 (∼ 4.3 nm[58]). This rules
out phase mismatch as the origin of the signal saturation
when N ≤ 6. Therefore we assume that the signal satu-
ration is due to absorption of the third harmonic light.
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Continuum-model Hamiltonian and current matrix

elements for 1L-MoS2

For 1L-MoS2 we use the low-energy k · p continuum-
model Hamiltonian described in Ref.[40]. Around the K
and K′ points the model Hamiltonian contains isotropic
Hi and trigonal warping Htw contributions, i.e. H =
Hi +Htw, with:

Hi(k, τ, s) =
λ0τs

2
+

∆+ λτs

2
σz + t0a0k · στ

+
~
2|k|2
4m0

(α + βσz) , (6)

and

Htw(k, τ, s) = t1a
2
0(k · σ∗

τ )σx(k · σ∗
τ )

+ t2a
3
0τ(k

3
x − 3kxk

2
y)(α

′ + β′σz) . (7)

Here, s = ± is a spin index, τ = ± is a valley in-
dex, and στ = (τσx, σy), with σx and σy ordinary
2 × 2 Pauli matrices operating on a suitable conduc-
tion/valence band basis[40]. We note that the terms
in the Hamiltonian that contain the parameters ∆, β,
β′ and λ0 are related to broken spatial inversion sym-
metry in 1L-MoS2. The trigonal warping term con-
tains three parameters, α′,β′, and t1. The contribu-
tion to the band dispersion due to trigonal warping has
the characteristic form z± cos (3φ), where z± = t2(α

′ ±
β′) ± 4t0t1/ [2∆− (λ0 − λ)τs], and z+ (z−) stands for
conduction (valence) band[59]. According to ab-initio
calculations[35, 36], symmetry considerations[36, 60],
and experimental evidence[61], the valence band of 1L-
MoS2 is strongly warped, while the conduction band is
nearly isotropic.
The Hamiltonian H can be diagonalized. Eigenvalues

ǫ
c(v)
k,τ,s and eigenvectors |uc(v)

k,τ,s〉 are:

ǫ
c(v)
k,τ,s = h0(k, τ, s)±

√
[hz(k, τ, s)]

2
+ |h12(k, τ, s)|2 (8)

and

|uc(v)
k,τ,s〉 =

1√[
Dc(v)(k, τ, s)

]2
+ |h12(k, τ, s)|2

[
−h12(k, τ, s)

Dc(v)(k, τ, s)

]
,

(9)
where

h0(k, τ, s) =
λ0

2
τs+

~
2k2

4m0
α+ t2a

3
0τ(k

3
x−3kxk

2
y)α

′ , (10)

hz(k, τ, s) =
∆ + λτs

2
+

~
2k2

4m0
β + t2a

3
0τ(k

3
x − 3kxk

2
y)β

′ ,

(11)

h12(k, τ, s) = t0a0(τkx − iky) + t1a
2
0(τkx + iky)

2 , (12)
and

Dc(v)(k, τ, s) = hz(k, τ, s)

∓
√
[hz(k, τ, s)]

2 + |h12(k, τ, s)|2 .(13)

We need the matrix elements of the current operator
for the evaluation of the nonlinear response functions.
We start by introducing the so-called paramagnetic cur-
rent operator[62] (c = 1, where c is the speed of light,
−e < 0 is the electron charge):

jℓ(k) ≡ − δH(k + eA/~)

δAℓ

∣∣∣∣
A=0

= − e

~

∂H
∂kℓ

, (14)

where ℓ = x, y is a Cartesian index. The diamagnetic
contributions to the current operator can be written as
follows[63]:

κℓ1ℓ2(k) ≡ − δ2H(k + eA/~)

δAℓ1δAℓ2

∣∣∣∣
A=0

= −
( e
~

)2 ∂2H
∂kℓ1∂kℓ2

(15)
and

ξℓ1ℓ2ℓ3(k) ≡ − δ3H(k + eA/~)

δAℓ1δAℓ2δAℓ3

∣∣∣∣
A=0

(16)

= −
( e
~

)3 ∂3H
∂kℓ1∂kℓ2∂kℓ3

(17)

Using the continuum-model Hamiltonian introduced in
Eqs. (6) and (7), we find:

jℓ = − e

~
{ ∂h0

∂kℓ
+

∂hz

∂kℓ
σz +Re[

∂h12

∂kℓ
]σx − Im[

∂h12

∂kℓ
]σy }
(18)

and

κℓℓ = −
( e
~

)2
{
∂2h0

∂k2ℓ
+

∂2hz

∂k2ℓ
σz +Re[

∂2h12

∂k2ℓ
]σx

− Im[
∂2h12

∂k2ℓ
]σy

}
. (19)

Similarly, one can derive an explicit expression for ξℓℓℓ.

The required matrix elements of jℓ and κℓℓ between
the eigenspinors (9) are given by:



7

jcvℓ (k, τ, s) ≡ 〈uc
k,τ,s|jℓ|uv

k,τ,s〉 =
e

~

{
hz(k, τ, s)Re [h12(k, τ, s)∂h

∗
12(k, τ, s)/∂kℓ]

|h12(k, τ, s)|
√
[hz(k, τ, s)]

2
+ |h12(k, τ, s)|2

+ i
Im [h12(k, τ, s)∂h

∗
12(k, τ, s)/∂kℓ]

|h12(k, τ, s)|

− |h12(k, τ, s)|∂hz(k, τ, s)/∂kℓ√
[hz(k, τ, s)]

2
+ |h12(k, τ, s)|2

}
, (20)

j
cc(vv)
ℓ (k, τ, s) ≡ 〈uc(v)

k,τ,s|jℓ|u
c(v)
k,τ,s〉 = − e

~

{
∂h0(k, τ, s)

∂kℓ
±hz(k, τ, s)∂hz(k, τ, s)/∂kℓ +Re [h12(k, τ, s)∂h

∗
12(k, τ, s)/∂kℓ]√

[hz(k, τ, s)]
2
+ |h12(k, τ, s)|2

}
,

(21)

κcv
ℓℓ (k, τ, s) ≡ 〈uc

k,τ,s|κℓℓ|uv
k,τ,s〉 =

( e
~

)2
{
hz(k, τ, s)Re

[
h12(k, τ, s)∂

2h∗
12(k, τ, s)/∂k

2
ℓ

]

|h12(k, τ, s)|
√

[hz(k, τ, s)]
2
+ |h12(k, τ, s)|2

+ i
Im
[
h12(k, τ, s)∂

2h∗
12(k, τ, s)/∂k

2
ℓ

]

|h12(k, τ, s)|
− |h12(k, τ, s)|∂2hz(k, τ, s)/∂k

2
ℓ√

[hz(k, τ, s)]
2
+ |h12(k, τ, s)|2

}
, (22)

and

κ
cc(vv)
ℓℓ (k, τ, s) ≡ 〈uc(v)

k,τ,s|κℓℓ|uc(v)
k,τ,s〉 = −

( e
~

)2
{
∂2h0(k, τ, s)

∂k2ℓ

± hz(k, τ, s)∂
2hz(k, τ, s)/∂k

2
ℓ +Re

[
h12(k, τ, s)∂

2h∗
12(k, τ, s)/∂k

2
ℓ

]
√
[hz(k, τ, s)]

2
+ |h12(k, τ, s)|2

}
.

(23)

We note that intra-band matrix elements (e.g. jccy and
κcc
yy) have a definite parity while inter-band ones (e.g.

jcvy and κcv
yy) do not. This is at the origin of the vanish-

ing of the paramagnetic contribution to even harmonic-
generation response functions. Therefore, as we will see
later, only diamagnetic terms yield a finite contribution
to even harmonic-generation responses.

General symmetry considerations

Our continuum-model Hamiltonian is derived from a
tight-binding Hamiltonian in which the zigzag direction
of the lattice coincides with the x̂ direction. The zigzag
direction is perpendicular to the reflection (mirror) sym-
metry plane of the 1L-MoS2 lattice (see Fig.7).

The n-th order optical susceptibilities χ
(n)
ℓi1i2...in

are de-
fined as:

P
(n)
ℓ (ωΣ) = ǫ0

∑

i1i2...in

χ
(n)
ℓi1i2...in

(−ωΣ;ω1, ω2, . . . , ωn)

× Ei1(ω1)Ei2(ω2) . . . Ein(ωn) , (24)

where Ei and P
(n)
ℓ are the Cartesian components of the

electric field E and the n-th order macroscopic polariza-
tion P (n), respectively, and ǫ0 is the vacuum permittiv-
ity. Note that i1, i2, . . . , in are Cartesian indices and
ωΣ ≡∑i ωi.
Since 1L-MoS2 belongs to the D1

3h symmetry group,
the only non-vanishing elements of the second-order sus-
ceptibility are[1]:

χ(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx , (25)

while for the case of the third-order response we have[1]:

χ(3)
yyyy = χ(3)

xxxx = χ(3)
yyxx + χ(3)

yxxy + χ(3)
yxyx , (26)

and

χ(3)
xxyy = χ(3)

yyxx ,

χ(3)
xyyx = χ(3)

yxxy ,

χ(3)
xyxy = χ(3)

yxyx . (27)

In the case of a linearly-polarized pump laser, we ex-
pect a SHG maximum when the laser is polarized along
the ŷ direction, i.e. perpendicular to the zigzag direc-
tion. On the contrary, if the incident light is polarized
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FIG. 7: Top view of the 1L-MoS2 lattice.

along the x̂ direction, i.e. the zigzag direction, we expect
a vanishing SHG signal due to the reflection symmetry
(i.e. σv : x → −x) along this axis. Our continuum-model
Hamiltonian is consistent with these general expectations

based on symmetry. We find χ
(2)
xxx = 0, even in the pres-

ence of trigonal warping, because the contribution in the
two valleys identically cancel each other.

Using Eqs.24,25,26,27 we obtain Eqs.3,4 of the main
text, which describe the dependence between induced
charge polarization, P , and the polarization of the in-
cident laser. In the case of a circularly-polarized pump
laser, we have E = |E|ε̂± with ε̂± = (x̂ ± iŷ)/

√
2. Using

Eqs.3,4 of the main text we arrive at the following results
for the circularly-polarized pump laser:

P (2) = ∓i
√
2ǫ0χ

(2)
yyy|E|2ε̂∓ (28)

and

P (3) = 0 . (29)

Eq.28 implies an opposite polarization of the SHG signal
with respect to the laser, while Eq.29 implies no THG
signal in response to a circularly-polarized pump laser.

For quantitative results, only the three tensor elements

χ
(2)
yyy, χ

(3)
yyyy and χ

(4)
yyyy are required for second-, third- and

fourth-order nonlinear response functions.

Nonlinear response functions

The response of an electron system to light can be cal-
culated by adopting different gauges for describing the
electric field of incident light. The gauge in which a uni-
form electric field E(t) is described in terms of a uniform
time-dependent vector potential, E(t) = −∂A(t)/∂t, is
convenient in solids as it does not break Bloch transla-
tional invariance. The vector potential couples to mat-
ter degrees of freedom through the minimal coupling,
i.e. k → k+ eA/~. The external vector potential induces
a current J(t), which can be expanded in a power series

of A(t). For each Cartesian component, Jℓ =
∑

n J
(n)
ℓ

where n denotes the n-th order in powers of A(t). In
Fourier transform with respect to time we get:

J
(n)
ℓ (ωΣ) ≡

∑

i1,i2,...,in

Π
(n)
ℓi1i2...in

(−ωΣ;ω1, ω2, . . . , ωn)

× Ai1(ω1)Ai2(ω2) . . . Ain(ωn) , (30)

where A(ωi) = −iE(ωi)/(ωi+ iη/~) and η is an infinites-
imal positive real number, needed to ensure that the ex-
ternal field is absent in the remote past (t → −∞).

Since the macroscopic current is related to the macro-
scopic polarization by J(t) = ∂P/∂t [64], we get
J (n)(ωΣ) = −i(ωΣ + iη/~)P (n)(ωΣ), for each order in
perturbation theory.

We finally find the following relation between nonlinear
response functions and optical susceptibilities:

ǫ0χ
(n)
ℓi1i2...in

(−ωΣ;ω1, . . . , ωn) = i(−i)n ×
Π

(n)
ℓi1i2...in

(−ωΣ;ω1, . . . , ωn)

(ωΣ + iη/~)(ωn + iη/~) . . . (ω1 + iη/~)
. (31)

The n-th order nonlinear response Π
(n)
ℓi1i2...in

contains
both paramagnetic and diamagnetic current contribu-

tions, which will be denoted by Π
(n),P
ℓi1i2...in

and Π
(n),D
ℓi1i2...in

,
respectively. The paramagnetic current correlators,
which are diagrammatically illustrated in Fig. 8, read:

Π
(1),P
ℓi1

(iν) ≡
〈
ĵi1(−iν)ĵℓ(iν)

〉
, (32)

Π
(2),P
ℓi1i2

(−iνΣ; iν1, iν2) ≡
′∑

P

〈
ĵi1(−iν1)ĵi2 (−iν2)ĵℓ(iνΣ)

〉
,

(33)

Π
(3),P
ℓi1i2i3

(−iνΣ; iν1, iν2, iν3)

≡
′∑

P

〈
ĵi1 (−iν1)ĵi2 (−iν2)ĵi3(−iν3)ĵℓ(iνΣ)

〉
, (34)



9

FIG. 8: Three-, four-, and five-leg Feynman diagrams for the second-, third-, and fourth-order nonlinear paramagnetic response
functions. Solid lines denote electron propagators while dashed lines denote photons. The quantities ω1 = · · · = ω4 = ω indicate
the incoming photon frequencies, while ĵα denotes the α-th Cartesian component of the paramagnetic current operator.

and

Π
(4),P
ℓi1i2i3i4

(−iνΣ; iν1, iν2, iν3, iν4)

≡
′∑

P

〈
ĵi1 (−iν1)ĵi2 (−iν2)ĵi3(−iν3)ĵi4(−iν4)ĵℓ(iνΣ)

〉
.

(35)

Here, 〈. . . 〉 denotes the thermal averaging[62, 65], ĵi
indicates the second-quantized form of i-th Cartesian
component of the paramagnetic current operator,

∑′
P

enforces the so-called “intrinsic permutation symmetry”
among all dummy variables (in, νn)[57], and νΣ =

∑
i νi,

where νi = 2πn/β’s are bosonic Matsubara energies cor-
responding to the incident photon energies. n is a relative
integer. β = 1/(kBT ), with T the electron temperature.

The paramagnetic current correlators in Eqs.32-35 can
be calculated by using the many-body diagrammatic per-
turbation theory[39, 66]. Following Ref.[39], we first sum
over the Fermionic Matsubara energies and then carry
out the analytical continuation νi = ν → ~ω + iη where
η → 0+. We find the following relations for the case of
ℓ = in = y:

Π(1),P
yy (ω) =

∑

k,τ,s

∑

{λi}

Uλ1λ2j
λ2λ1
y jλ1λ2

y , (36)

Π(2),P
yyy (−2ω;ω, ω) =

∑

k,τ,s

∑

{λi}

jλ3λ2
y jλ2λ1

y jλ1λ3
y

2(~ω + iη) + ǫλ1

k,τ,s − ǫλ3

k,τ,s

× (Uλ1λ2 − Uλ2λ3) , (37)

Π(3),P
yyyy (−3ω;ω, ω, ω) =

∑

k,τ,s

∑

{λi}

jλ4λ3
y jλ3λ2

y jλ2λ1
y jλ1λ4

y

3(~ω + iη) + ǫλ1

k − ǫλ4

k

{
Uλ1λ2 − Uλ2λ3

2(~ω + iη) + ǫλ1

k,τ,s − ǫλ3

k,τ,s

− Uλ2λ3 − Uλ3λ4

2(~ω + iη) + ǫλ2

k,τ,s − ǫλ4

k,τ,s

}
,

(38)
and

Π(4),P
yyyyy(−4ω;ω, ω, ω, ω) =

∑

k,τ,s

∑

{λi}

jλ5λ4
y jλ4λ3

y jλ3λ2
y jλ2λ1

y jλ1λ5
y

4(~ω + iη) + ǫλ1

k,τ,s − ǫλ5

k,τ,s

{
1

3(~ω + iη) + ǫλ1

k,τ,s − ǫλ4

k,τ,s

[
Uλ1λ2 − Uλ2λ3

2(~ω + iη) + ǫλ1

k,τ,s − ǫλ3

k,τ,s

− Uλ2λ3 − Uλ3λ4

2(~ω + iη) + ǫλ2

k,τ,s − ǫλ4

k,τs

]

− 1

3(~ω + iη) + ǫλ2

k,τ,s − ǫλ5

k,τ,s

[
Uλ2λ3 − Uλ3λ4

2(~ω + iη) + ǫλ2

k,τ,s − ǫλ4

k,τ,s

− Uλ3λ4 − Uλ4λ5

2(~ω + iη) + ǫλ3

k,τ,s − ǫλ5

k,τ,s

]}
. (39)

For simplicity, we introduce the quantity Uλλ′ as follows:

Uλλ′(k, ω, τ, s) ≡ 1

S
nF(ǫ

λ
k,τ,s)− nF(ǫ

λ′

k,τ,s)

~ω + ǫλk,τ,s − ǫλ
′

k,τ,s + iη
, (40)

where S is the sample area, λ, λ′ = c, v, and

nF(E) =

{
exp

(
E − µ

kBT

)
+ 1

}−1

(41)
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FIG. 9: Feynman diagrams for the diamagnetic contributions to the second- and third-order response functions. a) second-order
response. b) third-order response.

is the Fermi-Dirac distribution function at finite tem-
perature T and chemical potential µ. In Eqs.36-39 we
dropped the explicit functional dependence on k, τ, s, e.g.
jmn
y = jmn

y (k, τ, s) and Umn = Umn(k, ω, τ, s). We find
most convenient to first carry out the sum over the band
indices λi and then carry out numerically the integral
over the wave vector k.
The paramagnetic contributions to the even-order re-

sponse functions, Π
(2),P
yyy and Π

(4),P
yyyyy, vanish because ǫ

c(v)
k,τ,s

is an even function of ky. This property of the energy dis-
persion is protected by symmetry, and stems from time-
reversal (T ) and reflection (σv) symmetries.
A microscopic calculation of even-order response func-

tions requires the knowledge of diamagnetic contribu-
tions. These can be included with the aid of correlation
functions involving the κ̂yy operator. In fact, ξ̂yyy could
also contribute to diamagnetic responses. However, in
our low-energy model ξ̂yyy is identically zero. Similar to

the paramagnetic case, κ̂yy and ξ̂yyy indicate the second-
quantized form of the diamagnetic current operators (i.e.
κyy and ξyyy). Diamagnetic contributions to the second-
and third-order response functions are reported in Fig.9,
in terms of Feynman diagrams. For the sake of simplic-
ity, we have not calculated diamagnetic contributions to
the fourth-order response.
According to Fig.9a, the diamagnetic contribution to

the second-order response is given by:

Π(2),D
yyy (−2ω;ω, ω) = −

∑

k,τ,s

∑

{λi}

[
Uλ1λ2j

λ1λ2
y κλ2λ1

yy

+ Ũλ1λ2κ
λ1λ2
yy jλ2λ1

y

]
. (42)

Similarly, the diamagnetic contribution to the third-order
response,Fig.9b,is given by:

Π(3),D
yyyy (−3ω;ω, ω, ω) =

∑

k,τ,s

∑

{λi}

{
Ũλ1λ2κ

λ1λ2
yy κλ2λ1

yy

−
jλ3λ2
y jλ2λ1

y κλ1λ3
yy

2(~ω + iη) + ǫλ1

k,τ,s − ǫλ3

k,τ,s

(Uλ1λ2 − Uλ2λ3)

−
′∑

P

κλ3λ2
yy jλ2λ1

y jλ1λ3
y

3(~ω + iη) + ǫλ1

k,τ,s − ǫλ3

k,τ,s

(
Ũλ1λ2 − Uλ2λ3

)
.

}

(43)

Here, Ũλ1λ2 = Uλ1λ2(k, 2ω, τ, s) with κmn
yy = κmn

yy (k, τ, s)
is the matrix element of κyy.
Since our low-energy model is valid for a limited

range of values of the wave vector k, we must in-
troduce an ultra-violet cut-off, which breaks gauge
invariance[67]. We therefore need to regularize our final
results to avoid unphysical response function. This can
be accomplished[67] by considering the following gauge-

regularized response tensors: Π
(n)
ℓi1i2...in

≡ Π
(n)
ℓi1i2...in

−
Π

(n)
ℓi1i2...in

∣∣
{ωi}→0

.

We note that the summands in Eqs.37,39,42 con-
tain an odd number of matrix elements of the param-
agnetic (jy) and diamagnetic (κyy) current operators.
In the absence of trigonal warping, the overall form-
factor, which is proportional to these matrix elements,
is an odd function of ky: we therefore conclude that,

in the absence of trigonal warping, Π
(2)
yyy(−2ω;ω, ω) =

Π
(4)
yyyyy(−4ω;ω, ω, ω, ω) = 0. An identical conclusion

was reached for other isotropic low-energy continuum
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model Hamiltonians, such as those describing gapped
graphene[68] and biased bilayer graphene[69, 70]. We ex-

pect the second-order nonlinear response function Π
(2)
yyy

to be small compared to the third-order one, since it is
controlled by a small trigonal warping correction (Htw)
in comparison with the fully isotropic leading term (Hi)
in the low-energy model Hamiltonian. Of course, this
conclusion is valid within the single-particle picture and
in the low-energy limit, which we have relied on so far.

Relative magnitude of nonlinear responses: ratios of

irradiances

To quantify the relative magnitude of nonlinear har-
monic signals, we calculate ratios between induced polar-

izations P
(n)
y at different orders n in perturbation theory.

For a linearly-polarized laser (e.g. E = |E|ŷ):

∣∣∣∣∣
P

(n+1)
y

P
(n)
y

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

χ
(n+1)
y . . . y︸ ︷︷ ︸

n+2 times

|E|

χ
(n)
y . . . y︸ ︷︷ ︸

n+1 times

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

Π
(n+1)
y . . . y︸ ︷︷ ︸

n+2 times

/Π
(n+1)
0

(~ω + iη)/(eV)×Π
(n)
y . . . y︸ ︷︷ ︸

n+1 times

/Π
(n)
0

∣∣∣∣∣∣∣∣∣∣

×
(

nΠ
(n+1)
0 ~

(n+ 1)Π
(n)
0 (eV)

)
× |E|

=
n

n+ 1
× t0

eV
× a0

m
× |E|

V/m
×Xn+1,n(ω) , (44)

where

Π
(n)
0 ≡ (et0a0/~)

n+1

8πa20(eV)n
=

(eV)mn−1

8π

(
t0
eV

)n+1

×
(a0
m

)n−1 ( e
~

)n+1

(45)

and the quantities t0 and a0 have been introduced in the
Hamiltonian H. Leaving aside pre-factors, Π0 represents
the physical dimensions of the nonlinear current correla-

tor Π
(n)
ℓi1i2...in

(−ωΣ;ω1, ω2, . . . , ωn). In the SI system, the

unit of Π
(n)
0 is Cmn−1V−ns−(n+1). The dimensionless

quantities Xn+1,n are given by:

Xn+1,n(ω) =

∣∣∣∣∣∣∣∣∣∣

Π
(n+1)
y . . . y︸ ︷︷ ︸

n+2 times

/Π
(n+1)
0

(~ω + iη)/(eV)×Π
(n)
y . . . y︸ ︷︷ ︸

n+1 times

/Π
(n)
0

∣∣∣∣∣∣∣∣∣∣

. (46)

The amplitude of the electric field (|E|) in Eq.44 can be
replaced by the power of the pump laser (Ppump) by using
the following relation:

Ppump

π(D/2)2
=

1

2
nrcǫ0|E|2 , (47)

where D ≈ 1.85 µm is the experimental spot size di-
ameter, nr ≈ 1 is the refractive index of air, c ≈
3 × 108 m/s is the speed of light in vacuum, and ǫ0 ≈
8.85× 10−12 C/(Vm) is the vacuum electrical permittiv-
ity. Using Maxwell’s equations, we can obtain the follow-
ing wave equation in a nonlinear medium[1]:

∇2E(n) +
(ωn

c

)2
ǫ(1)(ωn) · E(n) = − 1

ǫ0

(ωn

c

)2
P (n) .

(48)

where n = 2, 3, . . . indicates the order of nonlinearity,
ǫ(1) is the linear dielectric tensor and P (n) is the n-th
order polarization vector. The intensity I(n) of the n-
th order nonlinear signal is proportional to the square of

the induced electric field amplitude E(n) ∝ ω2
nP

(n)
y where

ωn = nω for the harmonic generation case. Replacing
Eq.47 in Eq.44 we find:

I(n+1)

I(n)
=

(
n+ 1

n

)2
∣∣∣∣∣
P

(n+1)
y

P
(n)
y

∣∣∣∣∣

2

= Rn+1,n(ω)Ppump ,

(49)
where Rn+1,n(ω) in units of 1/W is given by:

Rn+1,n(ω) =
8[m/s][C/(Vm)]

πnrcǫ0

[
t0/(eV)× a0/m

D/m

]2

× [Xn+1,n(ω)]
2
. (50)

If we assume that the spot size of different harmonic-
generated signals on the detector are equal to each other,
we can write the following relation between power and
intensity ratios:

I(n+1)

I(n)
≈ P(n+1)ω

Pnω

, (51)

where Pnω denotes the signal power of the n-th harmonic-
generated signal.
Our main results for nonlinear response functions of

1L-MoS2 are summarized in Figs.10-12. We use the fol-
lowing values for the parameters of the model: ∆ =
1.82 eV, λ0 = 69 meV, λ = −80 meV, t0 = 2.34 eV,
α = −0.01, β = −1.54, t1 = −0.14 eV, t2 = 1 eV,
α′ = 0.44, and β′ = −0.53. These parameters are ob-
tained from a tight-binding fitting[40] of LDA-DFT band
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FIG. 10: Frequency dependence of the second-order response

function Π
(2)
yyy (in units of Π

(2)
0 ). Different curves refer to

different values of the parameter kc.
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FIG. 11: Same as in Fig.10, but for the case of the third-order
response function.

structure calculations[71, 72]. In all our numerical re-
sults, we use T = 300 K and µ = 0. In Figs.10-12, we
check the dependence of our results on the value of the
ultra-violet cut-off, kc ∝ 1/a0. Note that a0 = a/

√
3

with a ≈ 3.16 Å is the lattice constant of 1L-MoS2.
According to Figs.10,11, the nonlinear response func-

tions start to grow when ~ω is larger than (∆ + λ)/2
and (∆+λ)/3 for the SHG and THG cases, respectively.
∆ + λ is the optical band gap of MoS2. Moreover, in
the frequency range of our interest (< 1 eV) the spectra
of the second and third order response functions are not
very sensitive to the value of kc. The theoretical result
shown in Fig.4c) of the main text is obtained by using
Eqs.50,49 for ~ω = 0.8 eV.

0.0 0.5 1.0 1.5 2.0
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X
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2(
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FIG. 12: Results for the X3,2 as function of the pump laser
frequency. Vertical dashed lines is positioned at ~ω = 0.8 eV.
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