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Ultrafast pseudospin dynamics in graphene
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Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with
linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at time
scales shorter than 100 fs. Here, we investigate the evolution of nonequilibrium charges towards an isotropic
distribution by means of fluence-dependent ultrafast spectroscopy and develop an analytical model able to
quantify the isotropization process. In contrast to conventional semiconductors, the isotropization is governed by
optical phonon emission, rather than electron-electron scattering, which nevertheless contributes in shaping the
anisotropic photocarrier occupation within the first few femtoseconds.
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I. INTRODUCTION

The unique optical and electronic properties of graphene are
appealing for advanced applications in photonics and optoelec-
tronics [1,2]. A variety of prototype devices have already been
demonstrated, such as transparent electrodes in displays [3]
and photovoltaic modules [4], optical modulators [5], plas-
monic devices [5–10], microcavities [11,12], and ultrafast
lasers [13]. Amongst these, a significant effort is being devoted
to the development of broadband photodetectors [14]. In this
context, the same properties that make this two-dimensional
material so appealing are also profoundly different from
standard semiconductors. Thus, in order to fully exploit the
technological potential of graphene, a full and comprehensive
description of the physical phenomena occurring when light
excites transitions within the Dirac cones is needed.

The ultrafast carrier dynamics has been extensively inves-
tigated in graphene [15–19] by tracking the evolution of the
nonequilibrium distribution created by impulsive optical exci-
tation. Once a Fermi-Dirac distribution is established [18,20],
it cools down by optical phonon emission at the 100 fs
time scale [16,21] and by scattering on acoustic phonons
[22–24] at the picosecond time scale. However, the complete
description of the phenomena responsible for the momentum-
space photocarrier redistribution within the first 100 fs requires
significant efforts: a complex interplay between electron-
electron (e-e) [18,20] and electron-phonon (e-ph) [21,25]
scattering dominates the thermalization dynamics.

Several theoretical [25–28] and experimental [29,30] stud-
ies demonstrated the possibility to generate an anisotropic
photocarrier distribution in the momentum space by means
of linearly polarized light, and exploiting the pseudospin
selection rules, which follow from the two sublattices present
in graphene [31]. The pseudospin behaves in many aspects
like a true electron spin and can be seen as an internal angular
momentum [see Fig. 1(a)]. Thus, similarly to a gyroscope, a
torque has to be applied in order to change the pseudospin
orientation [see Fig. 1(c)]. This can be achieved by the
interaction with an electromagnetic wave whose electric field
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provides the necessary momentum. The torque equals zero
when the pseudospin is parallel to the electric field polarization
making its flip forbidden. In contrast, this process is most
efficient when the light polarization and pseudospin are normal
to each other, and the torque is maximized. As shown in
Fig. 1(a), a pseudospin flip is necessary to directly excite an
electron from the valence to the conduction band. Hence, an
excitation with linearly polarized light results in an anisotropic
carrier occupation within the Dirac cone.

Here we measure the real-time isotropization of the photo-
carrier distribution in graphene for different concentrations of
the out-of-equilibrium carriers and explain the main mecha-
nism responsible for the anisotropy relaxation. We perform
fluence-dependent measurements of the carrier anisotropy
with few-femtosecond temporal resolution and develop an
analytical description of the transient optical absorption. This
allows us to resolve the pseudospin dynamics over its time
scale. The combination of experiment and theory allows us
to demonstrate that (i) the photocarrier distribution anisotropy
is stronger for lower radiation intensities when the anisotropic
character of the excitation is not yet suppressed by the isotropic
Fermi-Dirac sea; (ii) the isotropization dynamics is driven
by the carriers’ scattering with optical phonons, whereas e-e
scattering is mainly responsible for the initial photocarrier
redistribution along the Dirac cone. The latter observation
is in stark contrast with the case of conventional direct-gap
semiconductors, like GaAs [32], where the anisotropies are
typically lost via carrier-carrier scattering [33,34].

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

We study a chemical vapor deposited (CVD) single layer
graphene (SLG) [3,35] transferred onto a thin fused silica
substrate. A 35 μm Cu foil is first annealed at∼1000 ◦C under
a 20 SCCM (SCCM denotes cubic centimeter per minute
at STP) flow of H2 for 30 min, followed by 5 SCCM of
CH4. The H2 and CH4 flows are kept constant for 30 min,
after which the chamber is left to cool down for ∼3 h. SLG
is then transferred onto 170-μm-thick glass substrates by a
wet etching method [1,35]. A sacrificial layer of polymethyl-
methacrylate (PMMA) is spin coated on one side of the Cu foil.
The Cu/SLG/PMMA stack is then left to float on the surface of
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FIG. 1. (Color online) (a) Anisotropic carrier distribution after
excitation with linearly polarized light due to pseudospin-momentum
coupling. The pseudospin can be seen as an external momentum
and is shown by green arrows. The excitation rate is maximal for
the pseudospins perpendicular to the electric field. (b) A linearly
polarized pump pulse is followed, after time delay �t , by a
probe pulse with polarization rotated by 45◦. After interaction
with graphene, a polarizing beam splitter (BS) separates parallel
(E‖) and perpendicular (E⊥) components of the probe field for
simultaneous detection. (c) The pseudospin-field interaction is similar
to the influence of an external momentum (shown by arrows) on
a gyroscope: The momentum parallel to the gyroscope’s axis does
not change its orientation, whereas the torque is maximal in the
perpendicular configuration.

a solution of ammonium persulfate (APS) in water. APS slowly
etches Cu, leaving the PMMA+SLG membrane floating. The
membrane is picked up using the target glass substrate and,
after drying, the PMMA is removed with acetone. Structural
quality, uniformity, and doping of SLG before and after
transfer are investigated by Raman spectroscopy [36,37]. This
shows that no damage occurs to the sample as a consequence
of the transfer process. The Raman measurements indicate that
the sample is p doped, with a Fermi level ∼200 meV [38,39].
The D to G ratio measured at 514.5 nm is ∼0.24, which,
combined with the estimated doping, corresponds to a small
defect concentration ∼1011 cm−2 (see Ref. [40]).

Our samples strongly differ from that in Refs. [29,41] also
devoted to the polarization-resolved pump-probe spectroscopy
in graphene. Mittedorff et al. [29] employed graphene stacks of
about 50 layers grown by thermal decomposition of SiC. This
made the signal by one order of magnitude stronger than in our
measurements but questions on a possible interlayer coupling
remain. Yan et al. [41] utilized CVD-grown multilayers with
approximately five graphene sheets. Our samples are true
monolayers allowing higher precision in the identification of
relaxation mechanisms.

For transient absorption spectroscopy we employ a
Yb:KGW regenerative amplifier system operating at a 50
kHz repetition rate. The laser drives a home-built noncollinear
optical parametric amplifier which delivers an output spectrum
spanning over 0.35 eV at a central photon energy of 1.62 eV
(λ = 765 nm) (see Ref. [42]). We compress the pulses to a
temporal duration of 15 fs by means of chirped dielectric mir-
rors [42]. The probe pulses are detected with two photodiodes

FIG. 2. (Color online) Relative transmission change �T/T after
optical excitation, probed with parallel (‖) and orthogonal (⊥)
polarization. Representative measurements for (a) high and (b) low
fluences. Insets: signals normalized to unity.

(for parallel and perpendicular polarizations) followed by a
lock-in amplifier.

III. MEASUREMENTS

The experiments are performed as shown in Fig. 1(b). A
degenerate configuration is employed, where the same pulse is
split and used for both excitation and probing. The polarization
of the probe pulse is rotated by 45◦ with respect to the
pump. We separate parallel and orthogonal components of
the probe electric field with a polarizing beam splitter after
interaction with the sample. Our method ensures temporal
synchronization of the different signals, as well as maximum
spatial overlap for both measurements. This is crucial, since
we target the quantitative comparison of the signals for both
polarizations.

The differential transmissions for parallel and perpendic-
ular probe components are in Fig. 2. Excited carriers result
in photobleaching of the direct transitions, with an onset time
as fast as the duration of the pump pulse. When probing the
orthogonal polarization we only observe a signal that, at early
times, is significantly weaker, as compared to the configuration
with parallel polarizations. We assign this difference to the
anisotropy of the electron distribution in the Dirac cone,
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FIG. 3. Fundamental assumptions of our model. (a) Pump and
probe pulses are approximated by rectangular profiles. They share
the same spectrum and duration but different polarizations, described
by the angles θ1 and θ2 with �θ = θ2 − θ1. The time delay between
the two pulses is �t . The model is valid in the case of nonoverlapping
pulses. (b) The photoexcited carriers relax towards the neutrality point
by emitting optical phonons with energy �ω0. The electron cooling
becomes inefficient at the bottleneck energy near �ω0/2. e-e scattering
does not change the total energy of the electronic subsystem. (c)
Two-electron scattering across the Dirac cone shown schematically
in cross section at energy E. (d) Optical phonons scatter the electrons
into any direction. A lower-lying cross section of the Dirac cone at
energy E − �ω0 is shown by a thinner circle.

resulting from the pseudospin selective excitation probability.
Already at short time delays <50 fs the two signals start to
converge. The two probe directions become indistinguishable
after ∼60 fs, indicating that the carriers’ distribution becomes
isotropic in the kx-ky plane, while the thermalization along the
cone continues.

Importantly, the time required for the distributions to
become isotropic does not depend on the excitation fluence.
Pure e-e scattering would show a stronger dependence on the
starting electron density, with increased probability of e-e
collisions [43]. Indeed, e-e scattering across the Dirac cone
occurs with a reduced phase space because each electron
requires a companion with opposite momentum, as shown
in Fig. 3(c). This process is enhanced at higher excitation
densities when more scatterers are available. In contrast,
the probability for phonon emission does not depend on
carrier concentration, when the excitation density is far from
saturation. The optical phonons can scatter the electrons into
any direction reducing their energy by �ω0 and providing
conservation for any momentum [see Fig. 3(d)], because the
optical branches show limited dispersion in the k space [44].

FIG. 4. (Color online) Ratio of relative transmission changes for
parallel and perpendicular probe polarizations for a pump-probe
delay of 15 fs, when the pulses are negligibly overlapping in time
(�t > δt), but the occupation anisotropy is still substantial (�t < τ )
(here τ is the “orientational” relaxation time, see also Fig. 3 for further
notations). Experiments (blue triangles) are in good agreement with
Eq. (1) (red line). The inset is the experimental ratio at time delays
between 5 and 100 fs.

(The Kohn anomalies in highest optical branches considered
in Ref. [44] are much smaller than the optical phonon energy,
which is assumed to be a constant in our model.) This,
combined with the characteristic time scale of a few tens of
femtoseconds, allows us to identify e-ph scattering as the main
isotropization process.

To fully track the dynamics we perform a set of fluence-
dependent measurements in which the excitation density is var-
ied between 14 and 705 μJ/cm2 [see Fig. 4]. We evaluate the
ratio between signals for parallel and perpendicular polariza-
tion at different pump-probe delays �t � 100 fs. On this time
scale, we observe photobleaching, due to strongly nonequi-
librium and hot (thermalized) carriers, with just the former
being anisotropic. The ratio has a strong dependence on the
carrier density for fluences fluences<100 μJ/cm2, i.e., below
1013 cm−2 carriers. Increasing excitation fluence, the isotropic
contribution becomes dominant, and we observe a smaller dif-
ference between the signals arising for opposite polarizations.

The experiments also show that the maximum differential
signal for perpendicular probe photons does not coincide with
that for parallel. This depends on fluence and is assigned
to the combination of scattering processes along the cone
driven by e-e collisions, and momentum isotropization
driven by phonons [25]. The photoexcited carriers are
first redistributed across the Dirac cone due to the optical
phonon emission [Fig. 3(d)], then along the cone in the new
momentum direction, mainly via e-e scattering [Fig. 3(b)].
The experimental fingerprints of these phenomena are seen in
Fig. 2 (insets), where the �T/T0 maxima for different probe
polarizations do not coincide, having a ∼10 fs delay. This
helps once more to unveil the different role of e-e and e-ph
scattering in the overall relaxation dynamics.

Our experiments also show that, at pump fluences
<50μJ/cm2, SLG has increased absorption, i.e., the transient
signal becomes negative after ∼100 fs, as for Fig. 2(b).
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References [45,46] assigned this to phonon-assisted intraband
absorption of the probe photons. Its contribution is stronger
for lower excitation densities, where the weight of intraband
transitions of a few hot electrons can be significant [45,46]. At
higher pump intensities, this is hidden under the dominating in-
terband absorption involving a dense hot electron distribution.

IV. MODEL

Charge carriers in graphene near the K point can be
described by the massless Dirac Hamiltonian [31] H0 =
�v0σ̂ · k, where �k is the two-component momentum operator,
σ̂ is the pseudospin operator derived from the Pauli matrices,
and v0 = 1.05 × 106 ms−1 [47]. The pseudospin orientation
in the eigenstates of H0 depends on the direction of k. It is
shown in Fig. 1 as green arrows. The photon-carrier interaction
is described by the Hamiltonian Hint = ev0

c
σ̂ · A, where A =

A0 cos(ωt − qz) is the vector potential created by the linearly
polarized electromagnetic wave E = E0 sin(ωt − qz) with
ω = 2πc/λ the radiation frequency, and E0 = ωA0

c
. We assume

normal incidence q ⊥ k without momentum transfer from
photons to electrons. Note that the interaction Hamiltonian Hint

inherits the pseudospin dependence from H0 and constitutes
the interband transition selection rule of Fig. 1.

We derive the photocarrier generation rate from the
Liouville–von Neumann equation [48] for the density matrix
written in the eigenstate basis of H0. The kinetic equation is
solved within the duration of the pump pulse t0 � t � 0, and
subsequently in the absence of excitation photons for t > 0
employing the relaxation time approximation and the solution
at t = 0 as an initial condition [see Fig. 3(a) and Appendices A
and B]. In order to quantify the contribution of the isotropic
part of the photocarrier distribution, we assume optical phonon
emission as the main mechanism responsible for decay
of anisotropy within the first tens of femtoseconds [25].
The electrons are relaxing to the bottleneck energy [see
Fig. 3(b)], at which further cooling is strongly suppressed.
Theory [49] and terahertz measurements [50] suggest that
the e-h recombination is a much slower process (picosecond
time scale [49,50]), therefore, the photocarrier concentration
is assumed constant. These approximations allow us to write
the energy balance equation with only one free parameter, the
hot electron temperature, and solve it analytically.

The absorption coefficient A is defined as the ratio of
absorbed to incident intensity. In the excited state we sum
Aτ and AH , which describe the absorption due to strongly
nonequilibrium carriers and hot electrons, respectively, and A0

denotes the equilibrium value. These three quantities are given
in Appendix C. With negligible reflection [51], the optical
transmissions read T = 1 − A and T0 = 1 − A0, resulting in a
differential transmission T −T0

T0
= −A−A0

A0

A0
1−A0

. The differential
absorption is

A − A0

A0
= −(1 + 2 cos2 �θ )

2A0v
2
0
1

�ω2δω2δt
e−�t/τ

+ tanh

(
�ω

4TH

)
− 1, (1)

where A0 = πα with α = e2

�c
the fine structure constant, ω

the radiation frequency, δω the spectral width of the pulse,


1 the pump fluence, �t the probe time delay, δt the pulse
duration, and τ ∼ 30 fs the “orientational” relaxation time
deduced from Fig. 2, where the two curves meet at a time
delay ∼50 fs. The rate of e-e scattering would increase with

1 and diminish τ . The hot carrier temperature, TH , can be
estimated as (see Appendix D)

TH =
(

π2α�
2v2

0ω0
1

6ζ (3)ω

)1/3

, (2)

with ζ the Riemann zeta function [52]. The limit of 
1 →
∞ is excluded in our model as we assume a system with
linear response in 
1. TH cannot be defined until a significant
fraction of the strongly nonequilibrium carriers relaxes to the
hot Fermi-Dirac distribution [20], i.e., Eqs. (1) and (2) are
not valid at �t = 0. Equation (1) does not formally vanish
for �t � τ , because we do not take into account the energy
dissipation at such a long time scale. Within the temporal
constraints of the model, the description of processes occurring
at �t < δt is limited. In particular, the slight delay in the
maximum of the pump-probe signal, as shown in the inset of
Fig. 3, cannot be reproduced by Eq. (1). This does not hinder
the description of the isotropization dynamics, experimentally
seen over 50 fs.

Equation (1) predicts a relative differential transmission
∼10−4–10−3 at pump fluences between 10 and 100 μJ/cm2,
in agreement with the measurements in Fig. 2. We also evaluate
the ratio between differential transmissions for parallel and
perpendicular polarizations, and plot this as a function of pump
fluence in Fig. 4. The ratio decreases at higher fluences because
the relative contribution of the polarization-dependent term
in Eq. (1) is strongly suppressed at higher TH , making the
overall expression less sensitive to �θ . Physically, the higher
excitation density delivers more heat to the isotropic Fermi sea,
whose contribution suppresses the strongly nonequilibrium
anisotropic component.

V. CONCLUSIONS

We employed fluence-dependent and polarization-resolved
optical pump-probe spectroscopy to resolve and explore
the dominating relaxation mechanism for photocarriers in
graphene at ultrashort time scales. We found that optical
phonon emission, rather than e-e scattering, is responsible
for momentum isotropization and pseudospin relaxation in
the nonequilibrium photocarrier occupation, while the initial
photocarrier redistribution along the Dirac cone in a time scale
of tens of femtoseconds is due to e-e scattering. We provided
an analytical framework for the qualitative understanding
of the carrier dynamics. Echtermeyer et al. [30] suggested
that the light generated anisotropic distribution of carriers in
momentum space can be observed in electrical measurements
despite their relaxation on ultrafast time scales, as recently
reported in Ref. [53]. Our model explains why it is possible: the
continuous-wave laser in Ref. [30] results in low photocarrier
densities and strong anisotropy, allowing the pseudospin-
polarized photocarriers to be detected in graphene pn junc-
tions [30]. The development of an analytical framework for
the description of anisotropy dynamics in graphene paves the
way for the qualitative design of novel photodetectors.
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APPENDIX A: PHOTOCARRIER GENERATION RATE

We derive the photocarrier generation rate from the
Liouville–von Neumann equation [48] for the density
matrix ρ. It is convenient to work in the interaction
picture [54], where the density matrix and light-carrier in-
teraction are given by ρI (t) = exp( i

�
H0t)ρS(t) exp(− i

�
H0t),

HI
int(t) = exp( i

�
H0t)HS

int(t) exp(− i
�
H0t) with H0 the unper-

turbed Hamiltonian. The superscripts S and I stand for
the Schrödinger and interaction picture, respectively. The
Liouville–von Neumann equation can then be written as [48]

∂ρI

∂t
= − i

�

[
HI

int(t),ρ
I (t)

]
. (A1)

Its solution can be obtained using an iteration procedure. First,
Eq. (A1) is integrated to give

ρI (t) − ρI (t0) = − i

�

∫ t

t0

dt ′
[
HI

int(t
′),ρI (t ′)

]
. (A2)

Here, t0 has the meaning of initial time, when the interaction
is on. Second, Eq. (A2) is inserted back to the right-hand side
of Eq. (A1) to give

∂ρI

∂t
= − i

�

[
HI

int(t),ρ
I (t0)

]

− 1

�2

∫ t

t0

dt ′
[
HI

int(t),
[
HI

int(t
′),ρI (t ′)

]]
. (A3)

It is possible to look for higher-order terms in HI
int. Here,

we restrict ourselves to the expansion up to the second order
in HI

int, corresponding to the linear response in terms of the
radiation fluence. Now we transform Eq. (A3) back to the
Schrödinger picture. The left-hand side of Eq. (A3) then reads

∂ρI

∂t
→ ∂ρS

∂t
+ i

�
[H0,ρ

S(t)]. (A4)

The right-hand side of Eq. (A3) consists of two terms:[
HI

int(t),ρ
I (t0)

] → [
HS

int(t),e
−(i/�)H0�tρS(t0)e(i/�)H0�t

]
(A5)

and∫ t

t0

dt ′
[
HI

int(t),
[
HI

int(t
′),ρI (t ′)

]]

→
∫ 0

t0−t

dt ′′
[
HS

int(t),e
(i/�)H0t

′′[
HS

int(t + t ′′),ρS(t + t ′′)
]

× e−(i/�)H0t
′′]

, (A6)

where t ′′ = t ′ − t . A linearly polarized electromagnetic wave
propagating in the z direction with wave vector q and
frequency ω can be described by the vector potential A =
A0 cos (ωt − qz) which relates to the corresponding electric
field as E = E0 sin (ωt − qz), where E0 = ωA0/c. In the
case of normal incidence, q does not have any influence on
the in-plane carrier momenta k. The interaction Hamiltonian
HS

int(t) can be deduced from the tight-binding effective
Hamiltonian [31] and written as [27]

HS
int(t) = hint(e

iωt + e−iωt ), (A7)

where

hint = ev0E0

2ω

(
0 e−iθ

eiθ 0

)
, (A8)

with tan θ = A0y/A0x the polarization angle. Substituting
Eq. (A7) into Eqs. (A5) and (A6), and neglecting the fast
oscillating terms of the form e±iωt , we obtain the following
equation for the density matrix:

∂ρS

∂t
+ i

�
[H0,ρ

S(t)] = g(t), (A9)

where

g(t) = − 1

�2

∫ 0

t0−t

dt ′′{(eiωt ′′ + e−iωt ′′ )

×[hint,e
(i/�)H0t

′′
[hint,ρ

S(t + t ′′)]e−(i/�)H0t
′′
]} (A10)

is the photogeneration rate. Equations (A9) and (A10) are the
operator equations. To get the corresponding expression for
the distribution function we rewrite Eqs. (A9) and (A10) in the
helicity basis, i.e., the eigenfunction basis of the unperturbed
Hamiltonian H0 [31]. The resulting distribution function is a
2 × 2 matrix. We retain only its diagonal elements, relevant
for interband optical transitions [48]. Thus, instead of Eq. (A9)
we get

∂f±(t)

∂t
= g±[f±(t)], (A11)

where g±[f±(t)] is given by

g±[f±(t)] = − 1

�2

∫ 0

t0−t

dt ′′{[eit ′′(ω−�) + e−it ′′(ω−�)]

×[f±(t + t ′′) − f∓(t + t ′′)]h12h21}. (A12)

Here, f±(t) is the electron distribution function in either
valence (subscript “−”) or conduction (subscript “+”) band,
�� = 2�v0k is the interband transition energy, and hij are the
matrix elements of hint given by

hij = ev0E0

2ω

(
cos(φ − θ ) −i sin(φ − θ )
i sin(φ − θ ) cos(φ − θ )

)
, (A13)

where tan φ = ky/kx . The product h12h21 can be thus written
as

h12h21 =
(

ev0E0

2ω

)2

sin2(φ − θ ). (A14)

Equation (A14) reflects the polarization dependency in the
photocarrier generation rate given by Eq. (A12).
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APPENDIX B: DESCRIPTION OF THE PUMP PULSE

The pump pulse excites the carriers over the Fermi sea
described by the Fermi-Dirac distribution f

(0)
± . The generation

rate then derives from Eq. (A12):

g
(1)
± = −2h

(1)
12 h

(1)
21

�2

sin [(t − t0)(ω1 − �)]

ω1 − �
(f (0)

± − f
(0)
∓ ),

(B1)
t > t0,

where the pulse is switched on at t0 < 0 (see Fig. 2 in the
main text). The evolution of the nonequilibrium distribution
function within the pump pulse can be written as

∂f
(1)
±

∂t
= g

(1)
± − f

(1)
±
τ

, t0 < t < 0, (B2)

where τ is the relaxation time, and f
(1)
± reads

f
(1)
± = τ (ω1 − �)

1 + τ 2(ω1 − �)2

2h
(1)
12 h

(1)
21

�2(ω1 − �)2
(f (0)

± − f
(0)
∓ )

×{τ (ω1 − �) cos[(ω1 − �)(t − t0)]

− sin[(ω1 − �)(t − t0)]}, t0 < t < 0. (B3)

One can prove by direct substitution that f
(1)
± , given by

Eq. (B3), satisfies Eq. (B2).
Once the pump pulse is switched off at t = 0, Eq. (B2)

becomes

∂f
(1)
±

∂t
= −f

(1)
±
τ

, t > 0. (B4)

Its solution is f
(1)
± (t) = f

(1)
± (0)e−t/τ , where f

(1)
± (0) is given

by (B3) at t = 0. The nonequilibrium distribution function at
t > 0 thus reads

f
(1)
± = τ (ω1 − �)

1 + τ 2(ω1 − �)2

2h
(1)
12 h

(1)
21

�2(ω1 − �)2
(f (0)

± − f
(0)
∓ )

×{τ (ω1 − �) cos[(ω1 − �)δt]

− sin[(ω1 − �)δt]}e−t/τ , t > 0, (B5)

where δt plays the role of the pulse duration. The energy
relaxation time is assumed to be much longer than τ .
Therefore, the total distribution function at t > 0 represents
the sum of the hot Fermi-Dirac distribution f

(H )
± and the

nonequilibrium addition, Eq. (B5).
The prefactor h

(1)
12 h

(1)
21 can be rewritten in terms of pump

fluence 
1 = (cE2
1δt)/(8π ) (with E1 the electromagnetic

wave amplitude), so that Eq. (A14) becomes

h
(1)
12 h

(1)
21 = 2πα�v2

0
1

ω2
1δt

sin2(φ − θ1), (B6)

where α = e2/(�c) is the fine structure constant, and tan θ1 =
E1y/E1x . Since δt is much longer than the typical time scale
ω−1

1 determined by the optical frequency, we consider the limit
of δt → ∞. τ must be set to infinity at the time scale ω−1

1 ,

because τ > δt by definition. Using the formula [54]

lim
δt→∞

4 sin2[(ω1 − �)δt/2]

(ω1 − �)2δt
= 2πδ(ω1 − �) (B7)

we get the approximated expression for Eq. (B5):

f
(1)
± = 4π2αv2

0
1

�ω2
1

sin2(φ − θ1)

×(f (0)
∓ − f

(0)
± )δ(ω1 − �)e−t/τ , t > 0. (B8)

APPENDIX C: DESCRIPTION OF THE PROBE PULSE

We now consider the optical absorption A = AH + Aτ of
the probe pulse governed by the hot electrons (index H ) and
strongly nonequilibrium short-living photocarriers (index τ )
created by the pump pulse. We first calculate A0 in the absence
of the pump pulse. The total number of the optical interband
transitions G0 within the pulse duration δt can be evaluated by
integrating the generation rate Eq. (A12) over the time t :

G0 = 2

�2

∫ t1+δt

t1

dt

∫ 0

t1−t

dt ′′ cos[t ′′(ω2 − �)]

×(f (0)
− − f

(0)
+ )h(2)

12 h
(2)
21 , (C1)

where f
(0)
± is the equilibrium carrier distribution function at

lattice temperature, and

h
(2)
12 h

(2)
21 = 2πα�v2

0
2

ω2
2δt

sin2(φ − θ2), (C2)

with 
2, ω2, θ2 the probe pulse fluence, frequency, and
polarization angle. Taking the integrals in Eq. (C1):

G0 = 2παv2
0
2

�ω2
2

sin2(φ − θ2)

×4 sin2[(ω2 − �)δt/2]

(ω2 − �)δt
(f (0)

− − f
(0)
+ ). (C3)

We again exploit the fact that δt � ω−1
2 and utilize Eq. (B7)

for the transformation of the second line of Eq. (C3) into the
δ distribution. The absorbed fluence for a given valley/spin
channel can be then calculated as


0 =
∫ 2π

0

dφ

4π2

∫ ∞

0

d��

4v2
0

G0(�,φ) = πα

4

2. (C4)

Here, we assume f
(0)
− = 1 and f

(0)
+ = 0 at � = ω2. A0 should

include the spin/valley degeneracy:

A0 = πα. (C5)

This result agrees with previous measurements [51].
We now consider the probe pulse absorption due to the

hot carriers created by the pump pulse. The hot carriers are
described by the hot Fermi-Dirac distribution f

(H )
± , which

should now substitute f
(0)
± in Eqs. (C1) and (C3). Since the

chemical potential is much smaller than the excitation energy
we set the former to zero. The occupation difference can then
be written as

f
(0)
− − f

(0)
+ = tanh

(
��

4TH

)
, (C6)
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and the absorbed fluence in the presence of hot carriers for a
given valley/spin channel as


H = πα

4
tanh

(
�ω2

4TH

)

2, (C7)

where TH is the hot carrier temperature estimated below. The
corresponding optical absorption in the one-color pump-probe
setup ω1 = ω2 = ω is then given by

AH = πα tanh

(
�ω

4TH

)
. (C8)

Finally, we calculate the optical absorption due to the strongly
nonequilibrium time-dependent carrier distribution after the
pump pulse. The interband transition rate can be evaluated
from Eq. (A12):

gτ (t) = 2

�2

∫ 0

t1−t

dt ′′ cos[t ′′(ω2 − �)]

×[f (1)
− (t + t ′′) − f

(1)
+ (t + t ′′)]h(2)

12 h
(2)
21 . (C9)

Here, the out-of-equilibrium distribution f
(1)
± is given by either

Eq. (B5) or (B8), depending on the approximation used. In
what follows we employ the latter because we have already
utilized a somewhat similar approximation to derive A0 and
AH . Note that f (1)

− = −f
(1)
+ because of the SLG e-h symmetry.

The number of optical interband transitions within the probe
pulse then reads

Gτ = − 4τf
(1)
+ (0)

�2(ω2 − �)

h
(2)
12 h

(2)
21

1 + (ω2 − �)2τ 2
((ω2 − �)τe−�t/τ

+e−t1/τ {sin[δt(ω2 − �)] − (ω2 − �)τ

× cos[δt(ω2 − �)]}), (C10)

and the fluence absorbed within this process can be obtained
by integrating Gτ over the whole k space, and by subsequent
averaging over the pulse duration. The latter makes the fast
oscillating terms in the second line of (C10) vanish. We thus
get


τ = − π2α2v2
0
1
2

2�ω1ω2δω2δt
[2 + cos (2�θ )]e−�t/τ , (C11)

where �θ = θ2 − θ1 and δω = ω2 − ω1. In the one-color
pump-probe setup ω1 = ω2 = ω, and δω plays the role of
energy uncertainty (estimated as δt−1). The resulting probe
pulse absorption due to the strongly out-of-equilibrium carriers
created by the pump pulse is

Aτ = −2π2α2v2
0
1

�ω2δω2δt
(1 + 2 cos2 �θ )e−�t/τ . (C12)

APPENDIX D: HOT TEMPERATURE CALCULATION

To estimate the hot electron temperature as a function of
the pump pulse we assume that (i) the e-h recombination
process is much slower than τ and, therefore, the photocarrier
concentration can be considered as a constant on a time scale
of a few tens of femtoseconds; and (ii) the nonequilibrium
photocarrier occupation relaxes towards the hot Fermi-Dirac
distribution mostly due to the optical phonon emission with
the frequency ω0, resulting in a characteristic electron energy

∼�ω0/2 after thermalization (see Fig. 3 in the main text).
The photoelectron concentration nph for a given spin/valley
channel can be written as [49]

nph =
∫

d2k

4π2
f

(1)
+ , (D1)

whereas for photoholes we have [49]

pph =
∫

d2k

4π2
(1 − f

(1)
− ). (D2)

Here, f
(1)
± is given by Eq. (B8). The energy balance equations

for a given spin/valley channel become

nph
�ω0

2
+

∫
d2k

4π2
�v0kf

(0)
+ =

∫
d2k

4π2
�v0kf

(H )
+ , (D3)

pph
�ω0

2
+

∫
d2k

4π2
�v0k(1 − f

(0)
− ) =

∫
d2k

4π2
�v0k(1 − f

(H )
− ).

(D4)

Here f
(0)
± (f (H )

± ) is the Fermi-Dirac distribution at the lattice
(hot electron) temperatures respectively. The integrals in
Eqs. (D1)–(D4) can be solved analytically in the case of
intrinsic SLG, i.e., at zero doping. However, our samples are
not intrinsic with a doping of the order of 100 meV. To proceed,
we assume that the chemical potential μ > 0 is higher than the
lattice (room) temperature TL, but lower than the hot electron
temperature TH . For electrons, we have

∫
d2k

4π2
�v0kf

(H )
+ ≈ 3

4π

ζ (3)TH

�2v2
0

, (D5)

∫
d2k

4π2
�v0kf

(0)
+ ≈ μ3

6π�2v2
0

, (D6)

and the electron energy balance reads

παω0
1

8ω1
+ μ3

6π�2v2
0

= 3

4π

ζ (3)T 3
H

�2v2
0

. (D7)

Here ζ is the Riemann ζ function [52]. The hot electron
temperature is given by

TH =
(

π2α�
2v2

0ω0
1

6ζ (3)ω1
+ 2μ3

9ζ (3)

)1/3

. (D8)

The holes at μ < 0 can be considered in a similar way.
Assuming typical values 
1 = 10–100 μJ/cm2, μ of the order
of 0.1 eV we find that TH ranges from 800 to 1800 K. The
μ-dependent term in Eq. (D8) contributes weakly to TH and
can be neglected. The hot electron and hole temperatures
are equal within this approximation. Physically, intrinsic
electrons, while being at lattice temperature, do not contribute
much to the energy balance, even though their concentration
might be high. Thus, we arrive at Eq. (2) in the main text.
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