SUPPLEMENTARY INFORMATION
Hydrodynamics of a carbon nanotube

For rod-like structures, such as nanotubes, the viscous drag is described
by an anisotropic hydrodynamic mobility tensor I';; [1]. In the internal frame
of a rigid body, this is diagonal and its components can be expressed as [';; =
[y =I'; and I's3 = I'), where I' |, I') refer respectively to the translational
mobility, transverse and parallel to the main axis [2]. For an axisymmetric
object, the rotational mobility is expressed by only one coefficient, I'g. All
coefficients depend on the length-to-diameter ratio p = L/d as [2, 3|
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where 7 is the water dynamical viscosity and ¢; are end-effect corrections
calculated by Ref. [3] as polynomial expression of v = (In2p)~':
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These are valid for v < 0.45, or p > 4.6 [3]. In our case, d = 11 nm,
L =3 pum and p = 273, so we are well within the applicability of the theory.
Note that the leading terms in Eqs4-6 differ from those in Ref.|3] because
we add the end-effect correction to In p instead of subtracting it from In 2p |2].

Torque and Langevin equations

A single-beam optical trap is well approximated by an harmonic potential
Viz;) =13 Y imay.. Kix} with spring constants k. < kg, k, [4]. The motion of a
nanotube bundle can be described through the Euler angles ¢, 0, [5]. For an
axisymmetric object, one can always choose 1) = 0, so that the corresponding
rotation matrix from the laboratory coordinates z; to the internal coordinates



(aligned with the principal inertia axes of the object) =} = R;;(¢,0) z; is [5]:
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The torque exerted by the optical harmonic potential on the tilted SWNT
bundle is the sum of the center of mass and inner torques. The center of
mass coordinates, X;, are uncorrelated stochastic variables. Thus, the time
average of crossed terms of the type X; X, can be neglected, so that they do
not give a contribution in the correlation functions (see below) and in the
Brownian dynamics [6]. Hence, the only relevant contributions to the angular
fluctuations are given by the inner torque components M;(¢, ). These can
be calculated by integrating over the bundle mass density distribution p(z}):
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where k; are the spring constants of the trapping potential,e;j; is the Levi-
Civita symbol [5], and m is the mass of the trapped object. Thus, we can
write the torque components using the moments of inertia of the axisymmet-
ric object I, = [ d®2'p(x}) [2"? + 2] and [ = [ d®2'p(x}) [ + y?] (referred
to rotation perpendicular and parallel to the main axis), as:
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In the limit of small polar angle, § < 1, the component M, responsible
for rotation (precession) about the optical axis can be neglected. Also, for
objects having length L much bigger than the diameter d, L > d, as for our
long SWNT bundles, we can neglect the moment of inertia parallel to the
main axis [|(x d*) < I, (x L?). Thus, using the projections on the lab axes
©, = 0sin¢ and O, = 0 cos ¢, the torque on the trapped bundle is:

1
M, ~ —(k,— kz)i@y = —ko,0, (12)

Yy



I
M, ~ —(k,— k:z)i@m = —ke, O, (13)

M, =~ 0 (14)

As expected, the zz (yz) motion is ruled by the M, (M,) torque component.

The Langevin equations [6] for centre-of-mass displacements X;(t) and
angles ©,(t) in the lab frame can now be calculated. The trapping radiation
force and viscous Stokes drag (i.e., the friction force exerted by the fluid
on the fluctuating particle) are involved in the centre-of-mass displacement
equations, while the radiation and viscous Stokes torque are responsible for
counteracting the angular fluctuations:
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where &;(t) are random noise sources with zero mean and variance (&;(¢)&;(t+
7)) = 2kgTT;0(7) (with §(7) Dirac’s o-function). These equations lead to
first order differential equations for the corresponding autocorrelation func-
tions Cx,x,(7) = (X;(t)X;(t + 7)) and Ce,e,(7) = (0,(t)0;(t + 7)), e.g. for
the X (t) variable the corresponding autocorrelation function has to obey:

aTCX)((T) = —FJ_]{ICXX(T) (16)
that is easily solved yielding the typical exponential decay [7]:
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Thus, the corresponding autocorrelation functions for the five stochastic vari-
ables X, Y, 7, 0,,0, decay with relaxation frequencies:
we =T1ks, wy =T 1ky, w, =Tk,

Qx = F@k@z, Qy = F@k’@y. (18)

From this model we can also calculate a parameter encompassing the hydro-
dynamics of SWNT bundles in the confined potential:
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For our sample, we have L ~ 3 ym and d ~ 11 nm (p = 273), and we
can approximate the moment of inertia of the bundle with that of a rod
I, =mL?/12. Thus, from Eqgs. 1,3,12:
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As an example, we can calculate 2;/w; for the data obtained at maxi-
mum power in Fig.4a,b of the main text, where k, = 23.9 pN/um, k, =
52.2 pN/pm and k., = 0.72 pN/um. This gives €2;/w; =~ 0.76 for both axes.
This can be compared with the ratio of the measured relaxation frequencies
Q=09 x10%" w, =44 x10%71, Q, =1.1 x 10%7", w, = 9.6 x 10371,
so that ;/w, ~ 0.2 and Q,/w, ~ 0.12, i.e. 4 and 6 times smaller than
above. Hence, in our experiments, the measured angular frequencies (1,
are smaller than expected from a simple rod-like model. This reduction in
rotational mobility can be accounted by considering the effect of radiation
pressure. This can play a role by shifting the center of mass along z[8], and
changing the pivot point for angular fluctuations. As a consequence, a de-
crease of rotational mobility is expected, due to its 1/L* dependence (Eq. 3).

Correlation function of the Quadrant PhotoDiode signals

In back focal plane (BFP) interferometry, the interference pattern be-
tween forward scattered and un-scattered light in the microscope condenser
BFP is imaged onto a four quadrant photodiode (QPD). For a spherical Mie
scatterer, Pralle et al. [9] derived a three-dimensional model describing the
QPD signals arising from this interference. When the lateral (X,Y) and axial
(Z) displacements of the particle are small compared to the focal waist (of the
order of 0.4um) and Rayleigh length (of the order of 0.7um) of the trapping
laser beam, the resulting QPD signals are proportional to the bead displace-
ments, the system works in a linear regime and the cross-talk within the
signals is kept below an acceptable value of 10%. Although for an optically
trapped nanotube a complete modeling is still missing, we expect a linear
response with small cross-talk to be controlled by the same focal waist and
Rayleigh range parameters as for a spherical scatterer. In our experiments
(see Fig. 2 of the main text) displacements are within this range and, thus,
we work in a linear response regime.

On the other hand, for a SWNT bundle the BFP interference pattern can
change in two cases: a) the bundle is aligned with the optical axis, and the
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interference changes because of center of mass displacements (X,Y,Z). Thus,
in the linear regime, the QPD signals are proportional to these displacements;
b) the SWNT bundle is tilted by a small angle 6, so that the change in BFP
interference and QPD signals are proportional (to first approximation) to the
projections of the nanotube on the lab frame axes. Thus, in the limit of small
polar angle, § < 1, and under the assumptions discussed above, the QPD
signals can be expressed in the lab frame as a superposition of the center of
mass displacements and angular tilting of the SWN'T bundle:
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where X,Y,Z are the center-of-mass coordinates, L is the bundle length,
LO, = LOsin ¢, LO, = L0 cos ¢ are its projections on the x and y axis. 3; are
calibration factors that convert the QPD signals in displacements. They can
be obtained from the autocorrelation functions amplitude after evaluation of
the spring constants by using the equipartition theorem: (3; = k;C;;(0)/kpgT.
From the data in Fig. 3 of the main text, we measure (5, ~ 0.33V/um,
By ~ 0.4V/um, B, ~ 0.44V/pm. These calibration factors enable the con-
version from V' to nm for the Brownian motion plots shown in Fig. 2.

The center-of-mass X; and angular ©; coordinates are stochastic vari-
ables. The related autocorrelation functions Cy;(7) = (S;(t)S;(t + 7)) are:

Cow = B [(X(OX(t+7)) + L*(0,(1)0u(t +7))] (22)
Cyy = 05 [(YO)Y (t+7)) + L*(0,(1)0,(t + 7))] (23)

where we assume center-of-mass and angular fluctuations to be uncorrelated,
so that we can neglect cross terms of type (X (¢)O,(t+ 7)). The autocorrela-
tions of the transverse signals now contain combined information on center-
of-mass and angular fluctuations and decay with lag time 7 as a double-
exponential with separated positional and angular relaxation frequencies.
Furthermore, the angular variables are correlated by the geometric re-

lation ©, = ©,tan¢ and the cross-correlation of the transverse signals
Cuy(1) = (Se(t)Sy(t + 7)) = Cpa(—7) is:
Coy = BuByL*(0:()0,(t + 7)) (25)



To determine the evolution of C,, we use the Langevin equations (Egs. 15):

0:Chy = BufByL* (0.(t)0-0,(t + 7))
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and the solution can be summarized as:
[ Cy(0) e e 7> 0
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Thus, the cross-correlations decay as single exponentials with relaxation rates
different for positive and negative lag times, corresponding to €2, and €2,.

As discussed above, we obtain the QPD signals assuming displacements
within the linear response of the system and with small cross-talk between
them. Using Eqs.22-24 we are able to fit well our experimental data (see
Fig. 3 in the main text) with two exponential decays, and we can verify that
the SWNT bundle displacements (see Fig. 2 in the main text) in the trap
are well within this linear response regime. We now give an estimate of the
small cross-talk occurring within the lateral S, S, signals. Due to cross-talk
we expect e.g. S, x X +aY + LO,, with a related auto-correlation function
Coo x (X(O)X(t+7)) + Y)Y+ 7))+ L*(0,(t)O.(t + 7)) composed
of three exponential decays. By using the data in Fig. 3 of the main text,
we have fit Cy,(7) and C,,(7) with three exponential decays with relaxation
frequencies w,,wy, €2, Q, fixed to those obtained in a two exponential decay
fit, but keeping the amplitudes free. We get that lateral cross-talk is affects
the auto-correlation function of about 1% and 0.3% for C,, and C,,, respec-
tively. This ensures that the calibration for X and Y used in Fig. 2a have a
cross-talk less than 10% and 5%, respectively.

Online movie
A movie is available showing how a bundle is trapped and aligned. Fig-

ure 1 below is a sequence of frames. When the laser is on, the bundle is
trapped in the focal region of the laser(Fig.1a). The bundle is oriented along
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Figure 1: Sequence of frames. When the laser is on (a), the bundle is
trapped and oriented in the focal region of the beam. When is off (b-m),
the bundle is not trapped and fluctuates in both position and orientation.
Finally, the laser is on again (n) and the bundle is trapped and aligned once
more. The images on the CCD result from the diffraction and interference
of light from the bundle. The darker, sharper parts of the imaged bundle are
in focus, while the whiter,wider ones are away from the focal region.

the optical (z-)axis, i.e. the imaging axis. The resolution is above the diffrac-
tion limit. The transverse size results from integration of the scattered light
on the CCD camera. When the bundle is trapped, its Brownian fluctuations
occur on a spatial range smaller than the image resolution, at a rate faster
than the acquisition frame rate. Instead, when the laser is off (Figs.1b-m),
the bundle is not trapped and changes its dynamical configuration on all time
scales. Thus, each image from Fig.1b to 1m is a snapshot of random displace-
ments resulting from free Brownian motion. Finally, the laser is turned on
again (Fig.1n) and the bundle is trapped and aligned again.
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