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ABSTRACT

We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes.
We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to
isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic
force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.

Optical tweezers1,2 are versatile tools to manipulate matter
from the micrometer to the atomic scale and have many
applications in biology and physics.3 Their soft touch can
hold and manipulate a single atom4 as well as individual
cells and intracellular matter in vivo.5 Optical trapping1,2 of
one-dimensional nanostructures has received much attention
due to its potential for top-down organization of complex
nanoassemblies.6-10 Trapped nanoparticles can also be used
to increase space and force resolution11 in photonic force
microscopy.12 Their small transverse size is the key to
achieve nanometric resolution, while an axial dimension in
the micrometer range ensures stable trapping and could allow
force sensing in the subpiconewton regime.

Brownian motion,13 i.e., the continuous random displace-
ments of small particles in a fluid, is a fundamental ingredient
in force sensing with optical tweezers.12 For an optically
trapped particle, a statistical analysis of the fluctuations about
the equilibrium position enables the measurement of picone-
wton forces.14 In order to reach the ultimate space and force
resolution, it is necessary to get a full understanding of the
Brownian dynamics of extended nonspherical objects in the
optical trap. In particular, the effects of the external
hydrodynamic environment leading to Brownian fluctuations
in both position and orientation15 define the ultimate resolu-
tion limits. However, it is only recently that direct visualiza-

tion of rotational Brownian motion (i.e., continuous random
orientational fluctuations), and its coupling with translational
degrees of freedom, was demonstrated for microellipsoids
(3.3 × 0.6 µm size) confined in two dimensions.15 Here we
push this to the nanoscale by tracking the Brownian motion
of nanotubes.

Samples are prepared using purified HiPCO single-wall
nanotubes (SWNT) (Carbon Nanotechnology Inc.) dispersed
in water with sodium dodecyl benzene sulfonate.16,17 Solu-
tions are ultrasonicated and filtered to ensure removal of
residual catalyst particles, amorphous carbon, and big
bundles.18 A few tens microliters are placed in a 100 mm3

chamber attached to a piezo-stage with 1 nm resolution.
Optical trapping is done by tightly focusing a 830 nm laser
beam through a 100× oil immersion objective (NA ) 1.3)
on an inverted microscope (see Figure 1a). Positional and
angular displacements are detected using back focal plane
(BFP) interferometry.19,20 The interference pattern between
forward scattered and unscattered light in the microscope
condenser BFP is imaged onto a four quadrant photodiode
(QPD), which is oriented with the polarization (x) axis of
the laser beam in order to have sensitivity over polarization.21

An analog circuit board combines the signals as pairwise
sums (Sx, Sy) and four-quadrant sum (Sz). For spherical
objects, the three signals (Sx, Sy, Sz) are proportional to the
center-of-mass displacements, while for nonspherical they
also contain angular information,22 since fluctuations in
azimuthal and polar angles change the interference pattern.

* Corresponding author. E-mail: acf26@eng.cam.ac.uk.
† CNR-Istituto per i Processi Chimico-Fisici.
‡ University College London.
§ Universitá di Messina.
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The particles are imaged through the same objective onto
a charge coupled device (CCD) camera, with diffraction
limited resolution. Panels b and c of Figure 1 show a SWNT
bundle with a length of about 3 µm. In the first image (Figure
1b) the untrapped bundle is free floating and randomly
oriented (see video in Supporting Information), while Figure
1c has the optically trapped structure aligned with the laser
propagation direction (the imaging axis). The CCD camera
acquisition is slow (25 frames/s) and can only detect low-
frequency Brownian fluctuations for untrapped particles.
Thus, we rely upon BFP interferometry and QPD detection,
enabling a much higher sampling rate (50 kHz), in order to
measure the Brownian motion for trapped particles.

In general, the orientation of a linear nanostructure in an
optical trap is related to its length. Long nanostructures, as
in our case, are aligned by the radiation torque along the
propagation axis.23 Here we measure both translational and
angular fluctuations around this equilibrium position.

The geometry of our experiment is shown in Figure 1d.
The laser beam propagates along z with initial polarization
along x. We consider the Euler angles (φ, θ, ψ) of the SWNT
bundle with respect to the laboratory axes xyz. For an axially
symmetric object we can always choose the third angle ψ
to be 0. For small displacements from equilibrium, the single-
beam optical trap is well approximated by a harmonic
potential

V(xi))
1
2 ∑

i)x,y,z

kixi
2

with spring constants kz < kx, ky.24 These depend on both
the geometry of the trapped particle and the parameters of
the propagating focused Gaussian beam, such as power and
polarization.21

Figure 2 visualizes the Brownian motion of a trapped
SWNT bundle, reconstructed from the photodiode signals,

compared with the motion of a trapped 2 µm latex sphere in
Figure 2b, both measured in the same experimental condi-
tions of laser power and temperature (24 °C). The data-points
are extracted from the Si(t) signals acquired for 2 s at 50
kHz sampling rate (105 points per channel). The high aspect
ratio of longitudinal (Sz) and transverse (Sx, Sy) motion for
the nanotubes (Figure 2, panels a, c, d, and e) shows an
increase in mobility with respect to the spherical particle
(Figure 2b). In order to understand this behavior, we now
model the optical trapping of SWNTs.

For rigid rodlike structures, such as a SWNT bundle, the
viscous drag is described by an anisotropic hydrodynamic
mobility tensor,25 the components of which depend on the
length-to-diameter ratio p ) L/d as26 (see also Supporting
Information)

Γ⊥ )
ln p+ δ⊥

4πηL
, Γ|)

ln p+ δ|
2πηL

(1)

ΓΘ)
3(ln p+ δθ)

πηL3
(2)

where Γ⊥ and Γ| are the translational mobilities, transverse
and parallel to the axis, ΓΘ is the rotational mobility about
midpoint, η is the water dynamical viscosity, and δi are end-
corrections, calculated by ref 26 as polynomial of (ln 2p)-1.

The projections onto the laboratory axes are determined
through the relevant Euler angles (φ, θ) and the correspond-
ing rotation matrix.27 Since the trapped bundle is aligned
with z, fluctuations occur in the small polar angle limit,
θ , 1, and the QPD signals are (see Supporting Information)

Sx ∼ �x(X+ LΘx) (3)

Sy ∼ �y(Y+ LΘy)

Sz ∼ �zZ

where �i values are the detector calibration factors, X, Y, and
Z are the center-of-mass coordinates, L is the bundle length,
and Θx ) θ sin φ and Θy ) θ cos φ are the projections on
the x and y axis, respectively (shown in Figure 1d). Sz is
thus not much affected by the angular motion, having a cos
θ dependence only.

We now treat the center-of-mass Xi and angular Θj

coordinates as stochastic variables. Thus, we describe the
Brownian dynamics of our trapped nanotubes by a set of
uncoupled Langevin equations28

∂tXi(t))-ωiXi(t)+ �i(t), i) x, y, z (4)

∂tΘj(t))-ΩjΘj(t)+ �j(t), j) x, y (5)

where ωi ) Γiki and Ωj ) ΓΘkj are relaxation frequencies,
related to the force and torque constants and mobility tensor
components, while �i(t) are random noise sources with zero
mean and variance 〈�i(t)�i(t + τ)〉 ) 2kBTΓiδ(τ).

The torque of the confining potential about the laboratory
axes is only relevant for the orientational dynamics, while
not affecting the center-of-mass motion in a small angle
regime. Also, due to the strong z-alignment and because
angular fluctuations are small, the radiation torque along z
is small. Thus, possible precessional motion about z is slow
on the time scale of all other motions and has small amplitude
(see Supporting Information). We then neglect all coupling

Figure 1. Optical trapping setup and geometry. (a) A laser beam
is expanded to overfill the back aperture of a high numerical aperture
lens. The light is focused in a chamber, with the SWNT solution.
A CCD is used to image the sample. A quadrant photodiode (QPD)
detects the interference from the back focal plane of the condenser
that collects the light from the trapping region. (b) Image of an
untrapped bundle. (c) Image of the same bundle trapped and
oriented by radiation torque along the optical axis. (d) Geometry,
with relevant Euler angles and variables.
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terms in the Langevin equations. As shown later, this is also
validated by our experimental observations.

Tracking signals are studied by correlation analysis of the
Brownian fluctuations.29 For spherical particles, these show
a single exponential decay at the related Langevin equation
relaxation frequency.30 From eqs 3, 4, and 5, the autocor-
relations of the transverse QPD signals Cii(τ) ) 〈Si(t)Si(t +
τ)〉 now contain combined information on center-of-mass and
angular fluctuations, and decay with lag time τ as a double-
exponential with positional and angular relaxation frequen-
cies ωi, Ωi (i ) x, y). Furthermore, as the angular variables
are geometrically correlated (Θx ) Θy tan φ), the cross-
correlations Cxy(τ) ) 〈Sx(t)Sy(t + τ)〉 ) Cyx(-τ) of the
transverse signals decay as single exponentials with relax-
ation rates different for positive and negative lag times,
corresponding to Ωx and Ωy (see Supporting Information).

For our trapped bundles, we measure L from CCD images,
such as those in Figure 1b,c (L ≈ 3 µm). A direct estimate
of the bundles transverse size is obtained from atomic force
microscopy (AFM) measurements on a dried drop of
solution. These give an average transverse size of ∼11 nm.
Note that even an uncertainty of 50% in the transverse size
would yield only a 6% error on the mobility parameters, due
to their logarithmic dependence on p. Thus, using d ) 11
nm, L ) 3 µm and inserting p ) L/d ) 273, η(24 °C) )
0.911 mPa s in eqs 1 and 2, we obtain numerical values for

the mobility parameters: Γ⊥ ∼ 184 µm/(pN s), Γ| ∼ 307
µm/(pN s), ΓΘ ∼ 192 (µm pN s)-1.

These allow us to derive the optical force constants from
the relaxation frequency measurements, as follows. Figure
3 shows a representative correlation function analysis of the
tracking signals Si(t). Panels a, b, and c of Figure 3 are plotted
on a linear lag time scale and indicate that the correlation
functions have a high-amplitude fast dynamics (kHz range)
and small-amplitude slow oscillations (∼5 Hz), similar to
what recently observed for optically trapped beads.30 This
is typical of a rotational motion about the z-axis, i.e., in the
case of our nanotubes, a slow small amplitude precession,
and again justifies our assumption that precessional motion
in the trap is slow compared to other motions, and may be
neglected. The fast features are instead related to the
Brownian motion of the center of mass and angular degrees
of freedom, plotted for greater clarity on a logarithmic scale
in Figure 3, panels d, e, and f. The autocorrelation functions
of the transverse signals, Cxx and Cyy, are shown in Figure
3d (circles), and are well fitted by two exponentials (solid
lines; dotted lines correspond to the best single exponential
fit) with decay rates of ωx ) (4.1 ( 0.2) × 103 s-1, Ωx )
(0.79 ( 0.08) × 103 s-1 and ωy ) (10.2 ( 0.8) × 103 s-1,
Ωy ) (1.26 ( 0.05) × 103 s-1. Figure 3f indicates that Czz

fits to a single exponential decay with rate ωz ) (0.26 (
0.03) × 103 s-1 and, thus, is not affected by angular

Figure 2. Brownian motion in the optical trap. (a) Trapped SWNT bundle and (b) 2 µm latex bead. In both cases the tracking (black dots)
is obtained by extracting 2000 points from the QPD signals Si(t). The projections of the motion in xy (red dots), xz (blue dots), and yz (green
dots) are also shown. For the trapped nanotubes, an increase in mobility compared to the spherical particle along the z axis is evident. (c,
d) Histograms of the transverse signals Sx(t), Sy(t) obtained from the full record of 105 points. In the transverse direction, both translational
and angular fluctuations are convoluted into a signal that includes both center of mass displacement and the projection of the bundle onto
the measurement axis. The difference in the root-mean-square widths of the fluctuations in x and y arises from the different curvatures of
the optical potential in the directions parallel and perpendicular to the initial polarization to which the SWNT bundle is sensitive. For each
graph the QPD voltage-to-position calibration factors �i are obtained using the calculated mobility coefficients and amplitude of the signals’
autocorrelation functions Cii(0) ) �i

2kBT/ki for the position fluctuation contributions only. The root mean squares of the transverse
displacements, extracted from a Gaussian fit, are 〈x2〉1/2 ) 13 nm and 〈y2〉1/2 ) 9 nm. (e) Histogram of the longitudinal signal Sz(t). This is
only due to fluctuations of the center of mass and has a measured root mean square of 〈z2〉1/2 ) 100 nm.
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fluctuations. The cross-correlations of the transverse signals
Cxy and Cyx shown in Figure 3e (for positive lag time only)
are fitted by a single exponential with decay rate Ωy ) (1.31
( 0.03) × 103 s-1 and Ωx ) (0.85 ( 0.02) × 103 s-1,
respectively, that are consistent with the values obtained from
the autocorrelation functions. From these measurements, and
the mobility parameters calculated above, we obtain the
spring constants ki (i ) x, y, z) and torque constants kΘi (i )
x, y) plotted in Figure 4(a,b). This shows that the optical
trapping parameters scale linearly with laser power.

Another fundamental aspect of laser trapping is light
polarization. Its effects on trapped submicrometer particles
yield different spring constants in the xy plane of the trapping
potential.24 This asymmetry can be quantified using the
parameter kP ) 1 - kx/ky.21,23 From Figure 4c, we obtain an
average value kP ≈ 0.53 for our SWNT bundles, which is
consistent with the calculated value for spherical particles
much smaller than the trapping wavelength.21 This demon-
strates that polarization effects are important also for
extended nanostructures and depend only on the nanometric
transverse size, and not the length. Finally, to explain the
large Brownian motion asymmetry of Figure 2a, we plot in
Figure 4d a parameter which quantifies the trap aspect ratio:
(kx + ky)/2kz. Due to the equipartition theorem,28 the variances

of translational displacements (giving the widths of the
histograms in Figure 2, panels c, d, and e) are linked to the
force constants 〈xi

2(t)〉 ) kBT/ki. From our data, this parameter
is ∼45, while for the latex spherical particle of Figure 2b it
is ∼5. This significant difference shows how the optical
confining potential strongly depends on the geometry of the
trapped particle.

The minimum laser power for which we can stably trap
our SWNT bundles is ∼2 mW. This corresponds (see also
Figure 4a) to force constants of kx ≈ 2.1 pN/µm, ky ≈ 2.8
pN/µm in the transverse plane, and kz ≈ 20 fN/µm on the
optical axis. These values, together with Brownian fluctua-
tions, determine the force sensing and spatial resolution in a
photonic force microscopy experiment. We can give a
conservative estimate of our force resolution ∆Fz as an
external force shifting the average axial position in the trap
(i.e., the direction affected when probing a surface) by an
amount equal to the root-mean-square of the fluctuations,
i.e., ∆Fz ∼ kz〈z2〉1/2. In our setup, at the minimum power
required for stable trapping, we measure 〈z2〉min

1/2 ≈ 0.4 µm,
giving a force resolution ∆Fz ≈ 8 fN. This femtonewton
force resolution in the axial direction is achieved together
with a transverse spatial resolution of 〈x2〉min

1/2 ≈ 42 nm, as
measured from the root mean square of the transverse
fluctuations. Similarly, we can estimate the resolution for
our maximum power (limited to ∼17 mW by our diode
laser), where we have kz ≈ 700 fN/µm and 〈z2〉max

1/2 ≈ 0.1
µm. Thus, the force-sensing resolution at maximum power
is ∆Fz ≈ 70 fN, with a transverse spatial resolution of ∼10
nm. Note that increasing the laser power creates a stiffer
trap, worsening the force sensing resolution. On the other
hand, the spatial resolution becomes better at higher power
because the variance of the Brownian fluctuations is inversely
proportional to the trap stiffness 〈xi

2〉 ) kBT/ki. Thus, low
power seems better suited for force-sensing applications,
although, in general, a compromise has to be achieved
depending on the probe-sample interaction and sizes. For
spherical particles, while force sensing in the subpiconewton
regime was reported,14,24 the spatial resolution is strongly
limited by the bead diameter.12 For example, from the
measurements on the 2 µm bead shown in Figure 2b, we
estimate a force sensing resolution of about 300 fN, with a
spatial resolution limited by the 2 µm bead size, and not the
100 nm width of the Brownian center of mass fluctuations.
This holds until the bead size is larger than the Brownian
fluctuations. Trapping spherical nanoparticles smaller than
100 nm is difficult, since the radiation force scales with
volume, so that trapping is overcome by Brownian fluctua-
tions.3 Although metal nanoparticles as small as 20 nm were
trapped exploiting their plasmon resonances,31 their stable
3D trapping is still difficult32 and is accompanied by
heating,33 limiting their use in temperature-sensitive experi-
ments or when robust trapping over long time is needed (e.g.,
during a surface scan). Indeed, the crucial role of nanotubes
in femtonewton force sensing is the combination of their
small transverse size and their uniaxial anisotropy. This leads
to stable trapping even at very low power (1-2 mW), thus
allowing femtonewton force sensing, while keeping the

Figure 3. Correlation analysis. (a) Transverse signal autocorrelation
and (b) signal cross-correlation on a linear scale for lag time. The
separation of time scales for fast center-of-mass and polar angle
fluctuations, and slow azimuthal precession is evident.(c) Longi-
tudinal signal autocorrelation on linear scale. Only a fast center-
of-mass fluctuations signal is seen.(d) Signal autocorrelation and
(e), signal cross-correlation, plotted on a logarithmic scale. Solid
lines show a double-exponential fit for the autocorrelation of the
transverse signals and a single exponential for the cross-correlation
with a decay rate consistent with that found in the autocorrelation.
(f) Autocorrelation of longitudinal signal on logarithmic time scale,
showing a single exponential fit, with much longer decay time than
for transverse signals.
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transverse resolution within tens of nanometers. Contrary to
the micrometer sized beads, the spatial resolution for such
nanostructures is limited by the Brownian fluctuations.
Clearly, our novel technique can be extended to other
uniaxial nanostructures, such as nanowires, which can also
be optically trapped.10,11

In conclusion, we revealed the angular fluctuations for
optically trapped nanotube bundles, and elucidated some of
the complex dynamics and hydrodynamics of these quasi-
one-dimensional objects. We demonstrated how to separate
the center-of-mass and angular contributions to the tracking
signals by a correlation function analysis and thus measured
both the optical force and torque constants. Our ability to
discriminate linear and angular motion is of great importance
for fundamental understanding of the optical trapping mech-
anisms and for applications of optically trapped nanotubes
in photonic force microscopy. Our measurements show that
force sensing as low as 8 fN with a transverse spatial
resolution of about 40 nm is possible, far surpassing any
previous result based on latex spheres.
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