Optical Characterization of Oxide Encapsulated Silicon Nanowires of Various Morphologies

Sharon M. King1,*, Shweta Chaure1,†, Satheesh Krishnamurthy1,*, Werner J. Blau1, Alan Colli2, and Andrea C. Ferrari2
1 School of Physics, Trinity College Dublin, Dublin 2, Ireland
2 Centre for Advanced Photonics and Electronics, University of Cambridge, Cambridge CB3 0FA, UK

The optical properties of four different silicon nanowire structures were investigated. Two of the samples consisted of spheres of nanocrystalline silicon encapsulated by silicon oxide nanowires, with other two consisting of crystalline silicon nanowires coated by silicon oxide shells. The nanostructures produced by oxide assisted growth consisted of spheres of crystalline silicon encapsulated by silicon oxide shells. The absorption and photoluminescence of the different structures of the sample are investigated. The emitting species responsible for photoluminescence across the visible spectrum are discussed.

Keywords: Si Nanowires, Nanostructures, Quantum Confinement, Defects, Excitons, Photoluminescence, Ageing.

1. INTRODUCTION

The miniaturisation of silicon based electronics has fuelled interest in nanoelectronics.1 Silicon nanostructures are promising components for use in nanoscale devices. This is partly due to the controllability of their growth, which enables the tailored production of nanostructures. Promising biological and chemical sensor applications of silicon nanostructures are under investigation,2 as well as silicon nanowire based devices3,4 such as nanowire transistors.3 The proposed origins include, the existence of excess silicon atoms in the silicon nanostructures;5 defect centres in the silicon oxide layer that surrounds the nanowires;6 and in the case of chainlike nanowires that incorporate spheres of crystalline silicon into the structure, defects in the silicon oxide and/or the interface between silicon oxide and the nanoparticles.5 The motivation of this study is to investigate the PL spectra produced by silicon nanowires of various morphologies, and to ascertain the origin of the emitting species. Some basic optical characterization has been carried out on similar nanostructures,7 but this work has not been extensive. This report comprises a comprehensive investigation of the materials, including structural, absorption and PL characterization.

2. EXPERIMENTAL DETAILS

2.1. Materials

Two of the wire structures consisted of spheres of crystalline silicon encapsulated by silicon oxide. The other two samples consisted of crystalline silicon nanowires with silicon oxide outer shells. Samples A and B were produced by an oxide assisted growth process.8 The oxide assisted growth process involves the evaporation of SiO2 powder under argon flow in a high temperature furnace. The wires were collected on a quartz support positioned in the 900–950°C region of the furnace tube. The total argon pressure during the process determined the sample morphology. Sample C was prepared by a gold catalyzed thermal evaporation method, where the silicon vapour was provided by thermal evaporation of pure silicon powder. The process was carried out at 700–800 °C.9 Sample D was produced by chemical vapour deposition (CVD) with SiH4 as precursor and Au as catalyst.9

2.2. Structural Characterization

Figure 1 shows transmission electron microscopy (TEM) images of the different wire morphologies that were...
Investigation of optical characterization of oxide-encapsulated silicon nanowires of various morphologies.

Fig. 1. TEM study of nanostructures. Samples A and B contain spheres of crystalline silicon encapsulated by silicon oxide. Sample A is a chain-like structure and Sample B is a tadpole-like structure. Samples C and D have a similar morphology, but were grown by different methods. They consist of crystalline silicon nanowires encapsulated by silicon oxide.

Optical characterization was carried out on the samples in IPA solution. The wires were first dispersed in spectroscopic grade IPA under agitation by a sonic tip. To ensure that the concentration of the solution would not change during the investigation process due to sedimentation, a stable suspension of each sample was obtained. This was achieved by determining the sedimentation profiles of the wire samples. The samples were then left to stand while the unstable phases separated out, and the relatively stable components of the suspensions were then pipetted off. The “stable” phases were very good dispersions which would eventually undergo sedimentation if left to stand for weeks or months. The optical characterization was carried out on these stable phases. The stability of the dispersions ensured that the concentrations of the solutions were not changing during the investigation process. The “unstable” phases which were separated out consisted of bundles of nanowires.

Table I. Information regarding sample morphology.

<table>
<thead>
<tr>
<th>Name</th>
<th>Morphology</th>
<th>Si wire core/sphere diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>Chain-like</td>
<td>20 nm-sphere</td>
</tr>
<tr>
<td>Sample B</td>
<td>Tadpole-like</td>
<td>70 nm-sphere</td>
</tr>
<tr>
<td>Sample C</td>
<td>Straight</td>
<td>40 nm-wire</td>
</tr>
<tr>
<td>Sample D</td>
<td>Straight</td>
<td>38 nm-wire</td>
</tr>
</tbody>
</table>

2.3. Optical Characterization

Optical characterization was carried out on the samples in IPA solution. The wires were first dispersed in spectroscopic grade IPA under agitation by a sonic tip. To ensure that the concentration of the solution would not change during the investigation process due to sedimentation, a stable suspension of each sample was obtained. This was achieved by determining the sedimentation profiles of the wire samples. The samples were then left to stand while the unstable phases separated out, and the relatively stable components of the suspensions were then pipetted off. The “stable” phases were very good dispersions which would eventually undergo sedimentation if left to stand for weeks or months. The optical characterization was carried out on these stable phases. The stability of the dispersions ensured that the concentrations of the solutions were not changing during the investigation process. The “unstable” phases which were separated out consisted of bundles of nanowires.

3. RESULTS AND DISCUSSION

3.1. Absorption Spectroscopy

Figure 2 shows the absorption spectra of all the samples. Experiments were performed using a Shimatzu absorption spectrometer. All of the samples display shoulders near the direct band-gap energies of bulk crystalline silicon, with the absorption being dominated by direct transitions. Samples A and B show a peak in absorption at 3.4 eV.
The shoulder in absorption for Sample B does extend out to 3.34 eV, and may be evidence of weak quantum confinement effects. Quantum confinement is expected to influence the \(\Gamma_{25} \rightarrow \Gamma_{15} \) (3.4 eV) direct transition.\(^\text{13}\) Red-shift of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) is attributed to quantum confinement. Holmes reported a red-shift for crystals approximately 2 nm in diameter.\(^\text{14}\) Rama Krishna and Friesner also predict red-shift of \(\Gamma_{25} \rightarrow \Gamma_{15} \) with decreasing nanocluster size.\(^\text{15}\) Samples C and D both display red-shifted \(\Gamma_{25} \rightarrow \Gamma_{15} \) absorption peaks. Sample C shows a 0.14 eV red-shift, and Sample D a 0.1 eV red-shift. Quantum confinement cannot be occurring in the large crystalline spheres in Samples A and B, or in the wide nanowires in Samples C and D. Quantum confined features may be resulting from small nanocrystals which are preferentially formed at the SiO\(_2\)/Si interface due to nucleation kinetics. The red-shift is most apparent for the samples which contain crystalline nanowire cores, i.e., Samples C and D, and some weak quantum confined effects may be occurring in Sample B, which contains crystalline silicon nanowires attached to spheres of silicon. Hence the absorption at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition implies that small nanocrystals may be preferentially formed at the SiO\(_2\)/Si interface in straight silicon nanowires.

Samples A and B exhibit a strong increase in absorption above the \(\chi_{X4} \rightarrow \chi_{X1} \) (4.3 eV) direct transition. Sample C exhibits a broad shoulder in the \(\chi_{X4} \rightarrow \chi_{X1} \) region, and weak absorption compared to that in the region of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition. Sample D exhibits a prominent shoulder at 3.8 eV, and strong absorption at 4.3 eV.

In summary, Samples A and B exhibit an absorption shoulder at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) point, and a strong absorption onset at the \(\chi_{X4} \rightarrow \chi_{X1} \) transition energy. Samples C and D clearly exhibit quantum confined features. They undergo a red-shift of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition, which is indicative of quantum confinement from the presence of small crystallites.

3.2. Photoluminescence Spectroscopy

A three dimensional (3D) PL study was performed on the samples, see Figure 3. Samples A [Fig. 3(a)] and B [Fig. 3(b)] produced PL for excitation wavelengths between 200 and 345 nm. Sample A’s most intense emission peak occurred at 384 nm, for an excitation wavelength of 323 nm. Sample B shows a strong emission peak at 400 nm when excited at 323 nm, but it’s most intense peak in emission occurred at 423 nm, for a corresponding excitation wavelength of 231 nm. Evidence of an inhomogeneous size distribution can be seen from the shoulder in absorption for Sample B does extend out to 3.34 eV, and may be evidence of weak quantum confinement effects. Quantum confinement is expected to influence the \(\Gamma_{25} \rightarrow \Gamma_{15} \) (3.4 eV) direct transition.\(^\text{13}\) Red-shift of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) is attributed to quantum confinement. Holmes reported a red-shift for crystals approximately 2 nm in diameter.\(^\text{14}\) Rama Krishna and Friesner also predict red-shift of \(\Gamma_{25} \rightarrow \Gamma_{15} \) with decreasing nanocluster size.\(^\text{15}\) Samples C and D both display red-shifted \(\Gamma_{25} \rightarrow \Gamma_{15} \) absorption peaks. Sample C shows a 0.14 eV red-shift, and Sample D a 0.1 eV red-shift. Quantum confinement cannot be occurring in the large crystalline spheres in Samples A and B, or in the wide nanowires in Samples C and D. Quantum confined features may be resulting from small nanocrystals which are preferentially formed at the SiO\(_2\)/Si interface due to nucleation kinetics. The red-shift is most apparent for the samples which contain crystalline nanowire cores, i.e., Samples C and D, and some weak quantum confined effects may be occurring in Sample B, which contains crystalline silicon nanowires attached to spheres of silicon. Hence the absorption at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition implies that small nanocrystals may be preferentially formed at the SiO\(_2\)/Si interface in straight silicon nanowires.

Samples A and B exhibit a strong increase in absorption above the \(\chi_{X4} \rightarrow \chi_{X1} \) (4.3 eV) direct transition. Sample C exhibits a broad shoulder in the \(\chi_{X4} \rightarrow \chi_{X1} \) region, and weak absorption compared to that in the region of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition. Sample D exhibits a prominent shoulder at 3.8 eV, and strong absorption at 4.3 eV.

In summary, Samples A and B exhibit an absorption shoulder at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) point, and a strong absorption onset at the \(\chi_{X4} \rightarrow \chi_{X1} \) transition energy. Samples C and D clearly exhibit quantum confined features. They undergo a red-shift of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition, which is indicative of quantum confinement from the presence of small crystallites.

3.2. Photoluminescence Spectroscopy

A three dimensional (3D) PL study was performed on the samples, see Figure 3. Samples A [Fig. 3(a)] and B [Fig. 3(b)] produced PL for excitation wavelengths between 200 and 345 nm. Sample A’s most intense emission peak occurred at 384 nm, for an excitation wavelength of 323 nm. Sample B shows a strong emission peak at 400 nm when excited at 323 nm, but it’s most intense peak in emission occurred at 423 nm, for a corresponding excitation wavelength of 231 nm. Evidence of an inhomogeneous size distribution can be seen from the shoulder in absorption for Sample B does extend out to 3.34 eV, and may be evidence of weak quantum confinement effects. Quantum confinement is expected to influence the \(\Gamma_{25} \rightarrow \Gamma_{15} \) (3.4 eV) direct transition.\(^\text{13}\) Red-shift of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) is attributed to quantum confinement. Holmes reported a red-shift for crystals approximately 2 nm in diameter.\(^\text{14}\) Rama Krishna and Friesner also predict red-shift of \(\Gamma_{25} \rightarrow \Gamma_{15} \) with decreasing nanocluster size.\(^\text{15}\) Samples C and D both display red-shifted \(\Gamma_{25} \rightarrow \Gamma_{15} \) absorption peaks. Sample C shows a 0.14 eV red-shift, and Sample D a 0.1 eV red-shift. Quantum confinement cannot be occurring in the large crystalline spheres in Samples A and B, or in the wide nanowires in Samples C and D. Quantum confined features may be resulting from small nanocrystals which are preferentially formed at the SiO\(_2\)/Si interface due to nucleation kinetics. The red-shift is most apparent for the samples which contain crystalline nanowire cores, i.e., Samples C and D, and some weak quantum confined effects may be occurring in Sample B, which contains crystalline silicon nanowires attached to spheres of silicon. Hence the absorption at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition implies that small nanocrystals may be preferentially formed at the SiO\(_2\)/Si interface in straight silicon nanowires.

Samples A and B exhibit a strong increase in absorption above the \(\chi_{X4} \rightarrow \chi_{X1} \) (4.3 eV) direct transition. Sample C exhibits a broad shoulder in the \(\chi_{X4} \rightarrow \chi_{X1} \) region, and weak absorption compared to that in the region of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition. Sample D exhibits a prominent shoulder at 3.8 eV, and strong absorption at 4.3 eV.

In summary, Samples A and B exhibit an absorption shoulder at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) point, and a strong absorption onset at the \(\chi_{X4} \rightarrow \chi_{X1} \) transition energy. Samples C and D clearly exhibit quantum confined features. They undergo a red-shift of the \(\Gamma_{25} \rightarrow \Gamma_{15} \) transition, which is indicative of quantum confinement from the presence of small crystallites.

![Absorption vs. Energy](image)

Fig. 2. Optical absorption. The absorption is dominated by direct transitions at the \(\Gamma_{25} \rightarrow \Gamma_{15} \) and \(\chi_{X4} \rightarrow \chi_{X1} \) points. There are also features characteristic of quantum confinement.
Fig. 3. 3D PL study. Excitation wavelength is displayed on the Y-axis, and emission wavelength on the X-axis. PL intensity varies from blue (weak) to red (intense). The position of the most intense emission for each sample is marked on the graphs. Sample C (Fig. 3(c)) actually emits most intensely in the red region, but the 3D representation is confined to the violet-green region, as most of the interesting features occur in this region. PL of each sample in the region 200–900 nm is displayed in Figure 4.

Fig. 4. PL of each sample when excited at 200 nm.

nanoclusters and the oxide shell. The radiative lifetime for emission at 420 nm for Sample A was investigated. For the PL lifetime investigation, ultra-pure water was used as the solvent. The PL decay was best fit by a three exponential decay. Three nanosecond-scale lifetimes were recorded. This rapid decay is indicative of direct band gap recombination. PL also occurs for Samples C and D in this region, but it is not the most intense emission region for either of these two samples. The spherical nature of the large silicon nanoclusters in Samples A and B may be the reason for 350–450 nm being the dominant PL region for these samples. Increased vibronic coupling between the crystalline silicon and the highly ionic SiO$_2$ (Ref. [19]) would be possible due to the spherical nature of the nanoparticles which allows for increased contact between the crystalline spheres and the terminating surface. It has been shown that chainlike (silicon oxide embedded nanocrystals) nanowires exhibit a much stronger SiO$_2$ resonance in X-ray absorption than standard silicon nanowires. This has been attributed to a larger ratio of silicon oxide atoms to elemental silicon atoms in the chainlike wires.\(^5\)

PL occurred at wavelengths close to the Γ_{25}–Γ_{15} (3.4 eV) direct energy gap of bulk silicon.\(^{11,12}\) All of the samples displayed features, varying in prominence from small shoulders (Sample A) to large peaks (Sample C), at 349 nm (3.55 eV). This corresponds to direct electron hole recombination at the Γ_{25}–Γ_{15} point. A major PL peak centred at 3.4 eV for has been reported for silicon nanoclusters by other groups, and was attributed to direct recombination at Γ_{25}–Γ_{15}.\(^{13}\) The Γ_{25}–Γ_{15} transition in our samples is blue shifted, which is consistent with an increase in excitonic recombination energy due to an oxidation induced size reduction.\(^{20}\)

4. SUMMARY
The PL of silicon nanowire structures grown by a variety of methods was investigated. The samples displayed some
absorption features which were characteristic of quantum confinement. For silicon nanowires with crystalline cores (Samples C and D), the quantum confined features were observable at the $\Gamma_{15}-\Gamma_{11}$ transition. PL occurred across the visible region for all of the samples under investigation. The PL produced by each sample was indicative of the production method and the final sample morphology. PL in the red region (700–800 nm) is attributed to radiative recombination of carriers in silicon nanocrystallites formed at the SiO$_x$/Si interface. Emission in the yellow (500–600 nm) region is attributed to radiative decay of self trapped excitons at the SiO$_x$/Si interface. This is the dominant emission region for Samples C and D. The dominant emission for Samples A and B occurred in the ultra-violet to violet region (350–450 nm). This emission is attributed to direct recombination of carriers at the interface between the crystalline silicon nanoclusters and the oxide shell.

Acknowledgments: This work was supported by Science Foundation Ireland. Many thanks to Dr. Hugh J. Byrne at the Focas Institute, Dublin Institute of Technology and Dr. Alan G. Ryder at the National University of Ireland-Galway, for arranging the PL lifetime study.

References and Notes