Graphene saturable absorber power scaling laser

Z. Jiang, G. E. Bonacchini, D. Popa^{*}, F. Torrisi, A. K. Ott, V. J. Wittwer, D. Purdie, A. C. Ferrari

> Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK *dp387@cam.ac.uk

Abstract: A solution-processed graphene-film coated on a fiber-based connector is used for stable, mode-locked femtosecond-duration pulses with 16 mW average output power.

© 2014 Optical Society of America

OCIS codes: 140.4050; 160.4236; 190.4370.

1. Introduction

Graphene and carbon nanotubes (CNTs) are promising saturable absorbers (SAs) for mode-locking of fiber lasers [1-3]. Broadband operation is achieved with CNTs by combining tubes of different diameters [4], while it is an intrinsic property of graphene, due to the linear dispersion of Dirac electrons [5]. This, along with the ultrafast recovery time [6], and low saturation fluence [1, 7], makes graphene an excellent broadband SA [1, 7-9]. A variety of approaches have been used to make graphene-based SA (GSA) mode-locked lasers [10], with output power ranging, e.g., from~3W [11] for a graphene oxide SA to~270mW for a chemical vapor deposited GSA [12], generated in solid-state lasers [11, 12], to few-mW directly generated from fiber oscillators with GSAs coupled between fiber connectors [10]. The most commonly used GSA for fiber lasers [10] are fabricated from liquid phase exfoliation (LPE) of graphite [13, 14] in water [15] or organic solvents [13, 16]. Graphene produced by LPE can be embedded into polymer composites [2], which can be integrated into various systems [1, 2, 5, 7, 8]. Here we use LPE graphene in a polymer-free film coated onto a fiber based connector. This reduces non-saturable losses, making it suitable for high average-power applications and device miniaturization [8]. Based on this, we demonstrate a mode-locked fiber laser, achieving stable sub-250 fs pulses with a repetition rate of 21 MHz. The output power ranges from~0.8 mW to more than 15 mW.

2. Results

Fig. 1. (a) Raman spectrum of dropcast-graphene and GSA. (b) Linear absorbance and (c) Nonlinear transmittance.

We fabricate a GSA by exfoliating graphite flakes via ultrasonic treatment in a solution of deionised water and sodium cholate (SC) (0.9wt%) [1,15], followed by ultracentrifugation at 10000 rpm for 1 hour. The resulting top 70% dispersion is then filtered in vacuum through a nitrocellulose membrane (Millipore 100 nm pore-size filter). This blocks the flakes, while allowing water to pass through, resulting in a film on the top of the membrane. This is then transferred on the tip of a fiber connector and the membrane is dissolved in an acetone/water mixture. A control sample for optical characterization is also prepared by transferring the film on a quartz plate and annealing (~90°C, to improve adhesion) for 1 hour, followed by dissolution of the filter in acetone/water. To investigate the flakes' quality before and after film fabrication, and to monitor defects, we measure the Raman spectra at 457, 514.5, and 633 nm. Fig.1(a) plots a typical Raman spectrum of a drop-cast graphene dispersion on a Si wafer and the resulting film. Besides the G and 2D peaks, significant D and D' bands as well as their combination mode D+D' at ~2950 cm⁻¹ are also present [17]. We assign the D and D' peaks to the sub-micrometer edges of our flakes [18], rather than to disorder within the flakes. This is corroborated by a multi-wavelength Raman analysis: the resulting G peak dispersion is below 0.05 cm⁻¹/nm [16]. There is no significant change in the spectrum of the film with respect to that of the drop-cast dispersion. Thus, the fabrication process does not affect the structure or quality of the flakes. The 2D peak is still single Lorentzian, thus,

JTu4A.67.pdf

even if the flakes are multi-layers, they are electronically decoupled and, to a first approximation, behave as a collection of single layers [17, 19]. The GSA has a featureless linear absorption from 500 to 2000 nm, Fig.1(b), save the UV van Hove singularity peaks [20], and \sim 5.7% non-linear transmittance change at 1.5 μ m, Fig.1(c).

Fig. 2. (a) Optical spectrum; (b) RF spectrum (c); Autocorrelation trace and (d) Average output power vs. pump power.

We use a ring cavity with 3 m erbium doped fiber (EDF), pumped by a 980 nm diode through a wavelength division multiplexer. Unidirectional operation is enabled by an optical isolator. A polarization controller is used for mode-locking optimization. Output of the laser is provided by the 20% port of a coupler. The total cavity length is~9 m. Mode-locking starts at ~23 mW pump power, with~0.8 mW output power at ~21 MHz repetition rate. A typical spectrum is shown in Fig.2(a), with the corresponding intensity autocorrelation trace in Fig.2(c). The full width at half maximum (FWHM) is 406 fs. Assuming a sech² fit, deconvolution gives 231 fs pulse duration. The radio frequency (RF) spectrum in Fig.2(b) gives a signal-to-noise ratio>80 dB indicating low-amplitude fluctuations, thus stable mode-locking [21]. Mode-locked operation can be maintained up to a pump power~350 mW. The output power scales linearly with pump power as for Fig.2(d), with a maximum~16 mW. The output power is limited by the maximum power of our pump laser, and higher average power would be possible using a higher power laser diode.

3. Conclusions

We demonstrated a mode-locked fiber laser using a graphene film saturable absorber. The easy integration of the GSA into the fiber connector shows potential in the development of next generation compact ultrafast fiber lasers.

4. Acknowledgments

We acknowledge funding from Royal Society, ERC Grants NANOPOTS, Hetero2D, EU Graphene Flagship (no.604391), EPSRC grants EP/K01711X/1, EP/K017144/1, Emmanuel College and Peterhouse, Cambridge.

References

- 1. Z. Sun, et al., "Graphene Mode-Locked Ultrafast Laser," ACS Nano 4, 803 (2010).
- 2. T. Hasan, et al., "Nanotube-polymer composites for ultrafast photonics," Adv. Mater. 21, 3874 (2009).
- 3. V. Scardaci, et al., "Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers," Adv. Mater. 20, 4040 (2008).
- 4. F. Wang et al., "Wideband-tuneable, nanotube mode-locked, fibre laser" Nat. Nano. 3, 738 (2008).
- 5. F. Bonaccorso, et al., "Graphene Photonics and Optoelectronics," Nat. Photonics 4, 611 (2010).
- 6. D. Brida, et al., "Ultrafast collinear scattering and carrier multiplication in graphene," Nat. Commun. 4, 1987, (2013).
- 7. D. Popa, et al., "Sub 200 fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett. 97, 203106 (2010).
- 8. R. Mary, et al., Opt. Express 21, 7943 (2013).
- 9. C. A. Zaugg, et al., Opt. Express 21, 31548 (2013).
- 10. Z. Sun, et al., "Ultrafast lasers mode-locked by nanotubes and graphene," Physica E 44, 1082 (2012).
- 11. C. Feng, et al., "3 W high-power laser passively mode-locked by graphene oxide saturable absorber," Opt. Commun. 298, 168 (2013).
- 12. A. A. Lagatsky, et al., "2 µm Solid-State Laser Mode-locked By Single-Layer Graphene," Appl. Phys. Lett. 102, 013113 (2013).
- 13. Y. Hernandez, et al., "High-yield production of graphene by liquid-phase exfoliation of graphite," Nat. Nanotechnol. 3, 563 (2008).
- 14. F. Bonaccorso, et al., "Production and processing of graphene and 2d crystals," Mater. Today 15, 564 (2012).
- 15. T. Hasan, et al., "Solution-phase exfoliation of graphite for ultrafast photonics," Phys. Status Solidi B 247, 2953 (2010).
- 16. F. Torrisi, et al., "Inkjet-Printed Graphene Electronics," ACS Nano 6, 2992 (2012).
- 17. A. C. Ferrari, et al., "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett. 97, 187401 (2006).
- 18. C. Casiraghi, et al., "Raman spectroscopy of graphene edges," Nano Lett. 9, 1433 (2009).
- 19. A. C. Ferrari, et al., "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nat. Nano. 8, 235 (2013).
- 20. V. G. Kravets, et al., Phys. Rev. B 81, 155413 (2010).
- 21. D. von der Linde, "Characterization of the Noise in Continuously Operating Mode-locked Lasers," Appl. Phys. B 39, 201 (1986).