Supporting Information

Intercalation of Few-Layer Graphite Flakes with FeCl₃: Raman Determination of Fermi Level, Layer by Layer Decoupling and Stability

Weijie Zhao,† Ping Heng Tan,*† Jian Liu,† Andrea C. Ferrari‡

†State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

‡Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom

* Email address: phtan@semi.ac.cn
Supporting Information

1. Multiple G peaks resulting from non-uniform doping in graphite by FeCl$_3$

Fig. S1 plots the Raman spectrum of FeCl$_3$-doped graphite with a low doping level. Multiple G peaks can be seen, resulting from non-uniform doping. The highest peak is at ~ 1625 cm$^{-1}$, close to stage-1 GICs, while the lowest ~1585 cm$^{-1}$ corresponds to almost pristine graphite.

![Figure S1: multiple G peaks in FeCl$_3$-doped graphite with a low doping level.](image)

2. Doping uniformity in 1-4L flakes

Fig. S2 shows the Raman spectra of FeCl$_3$-doped/intercalated 1-4L flakes probed in different positions. The doping of 2-4L flakes is quite homogenous, while for SLG,
the G band has a spatial dependence, which indicates inhomogeneous doping.

![Figure S2: The G band of FeCl₃-doped/intercalated 1-4L flakes at different positions](image)

3. **Estimation of FeCl₃ dielectric constant**

The dielectric constant ε is estimated from the experimental data for FeCl₃ in aqueous solutions [Ref. S1]. Fig. S3 shows the dielectric constant (blue triangles) of FeCl₃ aqueous solutions at different concentrations deduced from the corresponding refractive index [Ref. S1]. ε changes almost linearly as a function of FeCl₃ concentration. We extrapolate the data points at 0% (pure water) and 100% (pure FeCl₃) as 1.78 and 1.86, respectively. For $\varepsilon=1.86$, Fig. 3 of Ref. S2 gives $f(e^2/2\varepsilon_0\varepsilon\omega_f)\sim0.09$. If the refractive index of FeCl₃ fluctuates 20%, then ε fluctuates 40%, and $|E_F|$ fluctuates $\sim13\%$. Therefore, $|E_F|$ is not very sensitive to the ε variation.
Figure S3. Dielectric constant (blue triangles) of FeCl$_3$ aqueous solutions as a function of the FeCl$_3$ concentration deduced from the corresponding refractive index [Ref. S1]. The circles are the extrapolated points for pure water (pink) and pure FeCl$_3$ (red).

References
S1. El-Shistawi, N. A.; Hamada, M. A.; Gomaa, E. A. Chemistry 2009, 18, 5. Opto Mechanical Properties of FeCl$_3$ in Absence and Presence of PVA (Polyvinyl Alcohol) and 50% (V/V) Ethanol-Water Mixtures