Supporting Information

Intercalation of Few-Layer Graphite Flakes with FeCl₃: Raman Determination of Fermi Level, Layer by Layer Decoupling and Stability

Weijie Zhao,[†] Ping Heng Tan,^{*,†} Jian Liu,[†] Andrea C. Ferrari[‡]

[†]State Key Laboratory for Superlattices and Microstructures, Institute of

Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

[‡]Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United

Kingdom

* Email address: phtan@semi.ac.cn

Supporting Information

1. Multiple G peaks resulting from non-uniform doping in graphite by FeCl₃

Fig. S1 plots the Raman spectrum of FeCl₃-doped graphite with a low doping level. Multiple G peaks can be seen, resulting from non-uniform doping. The highest peak is at ~ 1625 cm⁻¹, close to stage-1 GICs, while the lowest ~1585cm⁻¹ corresponds to almost pristine graphite.

Figure S1: multiple G peaks in FeCl₃-doped graphite with a low doping level.

2. Doping uniformity in 1-4L flakes

Fig. S2 shows the Raman spectra of FeCl₃-doped/intercalated 1-4L flakes probed in different positions. The doping of 2-4L flakes is quite homogenous, while for SLG,

Figure S2: The G band of FeCl₃-doped/intercalated 1-4L flakes at different positions

3. Estimation of FeCl₃ dielectric constant

The dielectric constant ε is estimated from the experimental data for FeCl₃ in aqueous solutions [Ref. S1]. Fig. S3 shows the dielectric constant (blue triangles) of FeCl₃ aqueous solutions at different concentrations deduced from the corresponding refractive index [Ref. S1]. ε changes almost linearly as a function of FeCl₃ concentration. We extrapolate the data points at 0% (pure water) and 100% (pure FeCl₃) as 1.78 and 1.86, respectively. For ε =1.86, Fig. 3 of Ref. S2 gives $f(e^2/2\varepsilon_0\varepsilonhv_F)\sim0.09$. If the refractive index of FeCl₃ fluctuates 20%, then ε fluctuates 40%, and |E_F| fluctuates~13 %. Therefore, |E_F| is not very sensitive to the ε variation.

Figure S3. Dielectric constant (blue triangles) of $FeCl_3$ aqueous solutions as a function of the $FeCl_3$ concentration deduced from the corresponding refractive index [Ref. S1]. The circles are the extrapolated points for pure water (pink) and pure $FeCl_3$ (red).

References

S1. El-Shistawi, N. A.; Hamada, M. A.; Gomaa, E. A. Chemistry 2009, 18, 5. Opto Mechanical Properties of FeCl₃ in Absence and Presence of PVA (Polyvinyl Alcohol) and 50% (V/V) Ethanol-Water Mixtures

S2. Basko, D. M.; Piscanec, S.; Ferrari, A. C. Phys. Rev. B 2009, 80, 165413.