
held in Strasbourg, France
28 May–1 June 2007

Guest Editors:

A.C. Ferrari
Engineering Department, University of Cambridge, Cambridge CB3 0FA, UK

V. Skákalová
Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany

P.-W. Chiu
National Tsing Hua University, Hsinchu 30013, Taiwan

A. Bachtold
Institute Catalan Nanotechnology and Centro Nacional Microelectrónica, E-08193 Bellaterra, Barcelona, Spain

D. Golberg
National Institute for Materials Science, Tsukuba, Japan
Snapshots from the 3D Wave Packet Dynamical Simulation of Electron Transport through a Graphene Nanoribbon (Courtesy of Geza I. Mark.)
Preface

Science and technology of nanotubes, nanowires and graphene

The successful application of nanomaterials for nanotechnology faces four main challenges: materials preparation, characterization, device fabrication and integration. The physical properties of nanomaterials strongly depend on their atomic-scale structure, size and chemistry but also on their organization and aggregation. To fully exploit the technological advantages offered by these self-assembled molecular structures it is essential to acquire the ability to select, control and manipulate individual or aggregated nanomaterials. There has been much progress in the synthesis and characterization of nanostructures such as nanotubes, nanocrystals, atomic wires, organic and biological nanostructures, molecular junctions and graphene layers. However, immense challenges remain in understanding their properties and interactions with external probes to realize their tremendous potential for applications. Some of the frontiers in nanoscience include molecular electronics, nanoscale opto-electronic devices, nanomechanics, light harvesting and emitting nanostructures. Nanotubes, nanowires and graphene dominate the pursuit for materials for future nanotechnology applications.

Carbon nanotubes are a unique platform for many fundamental studies of quantum physics in low-dimensional systems, and several unexpected physical phenomena have been discovered. Recent breakthroughs in the high-yield, structure-selective manufacturing and techniques for separating metallic and semiconducting nanotubes promise to make commercial applications of this material real. Large efforts in the area of chemical modification and manipulation have allowed the design and fabrication of well-controlled architectures. Substantial progress has also been made in fabricating electronic devices, sensors, field-emission displays and nano-electro-mechanical systems using nanotubes and nanotube-based mesostructures.

One-dimensional nanowires are also receiving increasing attention because of their potential applications in electronics and photonics. Device performance typically depends on the material structure and crystallinity, but assembly is also a critical issue for applications. Fabrication of several types of one-dimensional nanostructures, such as nanowires, nanorods, nanosaws and nanoribbons, has been successfully demonstrated by several growth methods for elemental semiconductors, such as Si and Ge, as well as for III–V and II–VI compounds. Nanotubes of various non-carbon materials have been found and characterized. Theoretical modelling of these structures continues to reveal fascinating attributes. The electronic functionality of these materials, based on the directional transport of charges or energy, makes them ideal building blocks for interconnecting individual quantum systems in supramolecular architectures, field effect transistors or photonic wires. The large surface to volume ratio results in a pronounced sensitivity to environmental conditions making them suitable as sensors in nanoscale devices.

Graphene is the latest carbon allotrope to be experimentally discovered, and it is now at the centre of a significant experimental and theoretical research effort. In particular, near-ballistic transport at room temperature and high carrier mobilities make it a potential material for nanoelectronics, especially for high-frequency applications. It is now possible to produce graphene samples with areas exceeding thousands of square microns by means of mechanical cleavage of graphite, and much larger by “epitaxial” growth on SiC. An ongoing effort is being devoted to large-scale production and growth on different substrates of choice. Graphene nanoribbons are the counterpart of nanotubes in graphene nanoelectronics.

This volume contains the Proceedings of the European Materials Research Symposium L on “Electron Transport in Low-Dimensional Carbon Structures” and Symposium M on “Science and Technology of Nanotubes and Nanowires” held on May 28 to June 1, 2007—in Strasbourg, France. The symposia covered the progress in design, manufacturing and characterization of nanotubes, nanowires and graphene, and new developments leading to possible commercial applications of these materials. In particular several sessions focussed on:

- Progress in the synthesis of nanotubes/nanowires/graphene.
- Progress in the assembly of nanotubes/nanowires into well-controlled architectures.
- Electron and spin transport.
- Light absorption, emission and scattering.
- Carrier interactions, ultrafast dynamics of carriers, excitons, and phonons, band structure and optical spectra.
• Novel characterization techniques.
• Theoretical modelling of growth, electronic and optical properties.
• Fabrication and characterization of nanotube/nanowires/graphene devices, sensors, actuators.
• Nanocomposites.
• Applications and commercialization.
• Health/toxicity related issues.

We hope that these proceedings will provide the readers with a survey of most recent developments in these exciting fields of nanotechnology.

The symposia were sponsored by:

\begin{flushright}
Guest Editors
\end{flushright}

Andrea C. Ferrari
Engineering Department, University of Cambridge, Cambridge CB3 O FA, UK
E-mail address: acf26@hermes.cam.ac.uk

Viera Skakalova
Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany

Chiu Po-Wen
National Tsing Hua University, Hsinchu 30013, Taiwan

Adrian Bachtold
Institute Catalan Nanotechnology and Centro Nacional Microelectrónica, E-08193 Bellaterra, Spain

Dmitri Golberg
National Institute for Materials Science, Tsukuba, Japan
Contents

Preface vii

Contents ix

List of Authors xv

Nanotubes: Growth

Local growth of aligned carbon nanotubes at surface sites irradiated by pulsed laser
K. Zimmer, R. Böhme and B. Rauschenbach 2223

Modifying CVD synthesised carbon nanotubes via the carbon feed rate
E. Borowiak-Palen, A. Bachmatiuk, M.H. Rümmeli, T. Gemming, M. Kruszyńska and R.J. Kalenczuk 2227

Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization

Surface-bound chemical vapour deposition of carbon nanotubes: In situ study of catalyst activation
C. Mattevi, S. Hofmann, M. Cantoro, A.C. Ferrari, J. Robertson, C. Castellarin-Cudia, S. Dolafi, A. Goldoni and C. Cepek 2238

Ex situ and in situ catalyst deposition for CNT synthesis by RF-magnetron sputtering
S. Scalese, V. Scuderi, F. Simone, A. Pennisi and V. Privitera 2243

Investigation of conditions for preparation of oriented nanotubes at department of microelectronics in a modified plasma-enhanced hot filament chemical vapor deposition reactor
P. Vinduska, J. Janik and D. Buc 2247

Catalyzed growth of oriented carbon nanotubes using Fe–organosilicon core–shell nanoparticles

Layer-by-layer deposition of ultra-thin films of carbon nanotubes
C. Bertoni, V. Škákalová and S. Roth 2257

Complex superstructure patterns near defect sites of carbon nanotubes and graphite

On the low-temperature synthesis of SWCNTs by thermal CVD
X. Devaux and M. Vergnat 2268

Nanotubes: Electrical Transport

Development of carbon nanotube-based gas sensors for NO x gas detection working at low temperature
T. Ueda, M.M.H. Bhuiyan, H. Norimatsu, S. Katsuki, T. Ikekami and F. Mitsugi 2272

Hysteresis suppression in self-assembled single-wall nanotube field effect transistors
P. Hu, C. Zhang, A. Fasoli, V. Scardaci, S. Piscana, T. Hasan, J. Robertson, W.I. Milne and A.C. Ferrari 2278

The electronic properties of SWNTs intercalated by electron acceptors
N.A. Kiselev, O.M. Zhigalina, A.S. Kumskov, A.V. Krestinin and J.L. Hutchison 2283

A polaron model of the electronic transport in a nanotube quantum dot
A. La Magna and I. Deretzis 2289

doi:10.1016/S1386-9477(08)00132-X
Influence of capacitive effects on the dynamic of a CNTFET by Monte Carlo method

Direct observation of transition from Tomonaga–Luttinger liquid states to superconductive phase in carbon nanotubes
M. Matsudaira, J. Haruyama, N. Murata, Y. Yagi, E. Einarssson, S. Maruyama, T. Sugai and H. Shinohara 2299

Semiclassical theory of decoherence in mesoscopic dissipative circuit
Y.-H. Ji and J.-q. Wang 2305

Modelling conduction in carbon nanotube networks with different thickness, chemical treatment and irradiation
A.B. Kaiser, V. Skákalová and S. Roth 2311

Decoherence resonances in carbon nanotubes
S. Krompiewski, V.K. Dugaev and J. Barnaś 2319

Multi-wall carbon nanotubes: Purification, morphology and field emission performance

Probing the electronic properties of single-walled carbon nanotubes with resonant and non-resonant microwave absorption
B. Corzilius, K.-P. Dinse and K. Hata 2327

Electronic transport in carbon nanotube based nano-devices
I. Deretzis and A. La Magna 2333

Nanotubes: Structural and Optical Properties

Ab-initio calculation of Raman spectra of single-walled BN nanotubes
V. Pokropivny, S. Kovrygin, V. Gubanov, R. Lohmus, A. Lohmus and U. Vesi 2339

Preferential functionalisation of carbon nanotubes probed by Raman spectroscopy

Optical trapping of carbon nanotubes

Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy
P.H. Tan, T. Hasan, F. Bonaccorso, V. Scardaci, A.G. Rozhin, W.I. Milne and A.C. Ferrari 2352

Carbon nanotube antenna: Far-field, near-field and thermal-noise properties
S.A. Maksimenko, G.Ya. Slepyan, A.M. Nemilentsau and M.V. Shuba 2360

Exciton–photon correlations in carbon nanotubes
I.V. Bondarev and H. Qasmi 2365

Stimulated emission of electron beam in nanotube bundles
K.G. Batrakov, P.P. Kuzhir and S.A. Maksimenko 2370

Scaling of exciton binding energy with external dielectric function in carbon nanotubes
A.G. Walsh, A.N. Vamivakas, Y. Yin, S.B. Cronin, M.S. Ünlü, B.B. Goldberg and A.K. Swan 2375

“Single-beam pumped” coherent anti-Stokes Raman scattering on carbon nanotubes thin films excited through surface plasmons
I. Baltog, M. Baibarac and S. Lefrant 2380

Raman study on single-walled carbon nanotubes and multi-walled carbon nanotubes with different laser excitation energies
Y. Ouyang, L.M. Cong, L. Chen, Q.X. Liu and Y. Fang 2386

Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software
A.G. Arani, R. Rahmani and A. Arefmanesh 2390

Theoretical study on non-covalent functionalization of armchair carbon nanotube by tetrathiafulvalene molecule
N. Sa, G. Wang, B. Yin and Y. Huang 2396

Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes
P. Zhihua, P. Jingcui, P. Yanfeng, O. Yangyu and N. Yantao 2400
Nanotubes: Polymer Composites

Formation of composite organic thin film transistors with nanotubes and nanowires
G.W. Hsieh, P. Beecher, F.M. Li, P. Servati, A. Colli, A. Fasoli, D. Chu, A. Nathan, B. Ong, J. Robertson, A.C. Ferrari and W.I. Milne 2406

Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping
T. Hasan, V. Scardaci, P.H. Tan, A.G. Rozhin, W.I. Milne and A.C. Ferrari 2414

Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy
D. Passeri, M. Rossi, A. Alippi, A. Bettucci, M.L. Terranova, E. Tamburri and F. Toschi 2419

Attenuation of electromagnetic waves by carbon nanotube composites

Direct transfer of CVD-grown transparent SWCNT networks from growth substrate to polymer
A. Ansaldo, V. Skakalova, D. Ricci, E. Di Zitti and S. Roth 2430

Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres
B. Hornbostel, P. Pottschke, J. Kotz and S. Roth 2434

Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites

Nanowires: Growth and Structure

Multilevel modeling of the influence of surface transport peculiarities on growth, shaping, and doping of Si nanowires
A. Efremov, A. Klimovskaya, I. Prokopenko, Yu. Moklyak and D. Hourlier 2446

Water-repellent ZnO nanowires films obtained by octadecylsilane self-assembled monolayers
C. Badre, T. Pauporté, M. Turmine, P. Dubot and D. Lincot 2454

Nanoscale compositional analysis of Ni-based seed crystallites associated with GaN nanowire growth
L. Lari, R.T. Murray, T.J. Bullough, P.R. Chalker, M. Gass, C. Chêze, L. Geelhaar and H. Riechert 2457

Investigation of Au and In as solvents for the growth of silicon nanowires on Si(1 1 1)
A. Kramer, T. Boeck, P. Schramm and R. Fornari 2462

Nanowires: Optical and Electrical Properties

Polyfluorene nanowire active waveguides as sub-wavelength polarized light sources
D. O’Carroll and G. Redmond 2468

Comparative study of memory-switching phenomena in phase change GeTe and Ge2Sb2Te5 nanowire devices

Unipolar rectifying silicon nanowires—TCAD study
K. Fobelets and J.E. Velazquez-Perez 2481

Electrical properties of electrodeposited CdS nanowires

Optical properties of nanostructured ZnO crystal synthesized by pulsed-laser ablation
K. Sakai, S. Oyama, K. Noguchi, A. Fukuyama, T. Ikari and T. Okada 2489

Luminescence and EPR study of ZnO:Mn:Cu nanowire array

GeO2 nanostructures fabricated by heating of Ge powders: Pt-catalyzed growth, structure, and photoluminescence
H.W. Kim and J.W. Lee 2499

Transport properties of electrodeposited ZnO nanowires

A new mechanism for modulation of Schottky barrier heights on silicon nanowires
J. Piscator and O. Engström 2508
Organic and Inorganic Nanostructures

Synthesis of boron nitride nanotubes, bamboos and nanowires
L. Li, C.P. Li and Y. Chen 2513

A ferromagnetic (porous silicon/metal)-nanocomposite with an additional paramagnetic behavior
K. Rumpf, P. Granitzer, P. Pölts, S. Šimić, M. Hofmayer and H. Krenn 2517

New dimensionality classifications of nanostructures
V.V. Pokropivny and V.V. Skorokhod 2521

Low-temperature synthesis of one-dimensional ZnO nanostructures on screen-printed carbon nanotube films

Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix

Comparative optical and structural studies of CdSe films grown by chemical bath deposition and pulsed laser deposition

High specific surface area porous SiC ceramics coated with reticulated amorphous SiC nanowires
L. Shi, H. Zhao, Y. Yan, Z. Li and C. Tang 2540

Characteristics of gold nanowires and UV spectral changes by interaction between gold nanoparticles and DNA
S. Cha, H.J. Kim, N.-H. Kim and Y. Roh 2545

Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake
T. Terao, Y. Bando, M. Mitome, K. Kurashima, C.Y. Zhi, C.C. Tang and D. Golberg 2551

Vibrational and photoluminescence properties of composites based on zinc oxide and single-walled carbon nanotubes
M. Baibarac, I. Baltog, S. Lefrant, J.Y. Mevellec and M. Husanu 2556

Estimation of multi-walled carbon nanotubes toxicity in vitro

Modeling phonons of carbon nanowires
M. Tommasini, A. Milani, D. Fazzi, M. Del Zoppo, C. Castiglioni and G. Zerbi 2570

Nanocolumnar CuInS2 thin films by glancing angle deposition
F.C. Akkari, M. Kanzari and B. Rezig 2577

Nitrogen-doped ultrananocrystalline carbon: Response to small amplitude AC signals
M.C. Feliciangeli, M.C. Rossi, G. Conte and V. Ralchenko 2583

Kinetics of 2D–3D transformations of carbon nanostructures
I.V. Lebedeva, A.A. Knizhnik, A.A. Bagatur’yants and B.V. Potapkin 2589

On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review
V.V.N. Obreja 2596

Density functional non-equilibrium Green’s function (DFT-NEGF) study of the smallest nano-molecular switch
M.D. Ganji and F. Nourozi 2606

Charge fluctuations in quantum point contact
B.R. Bulka, I.V. Dinu and M. Tolea 2614

Ion irradiation of carbon nanotubes encapsulating cobalt crystals

Graphene

Diffusive transport in graphene
K. Ziegler 2622

Electromagnetic response of electrons in graphene: Non-linear effects
S.A. Mikhailov 2626
Contents

Transverse and longitudinal magnetoresistance in graphite intercalated by Co

Wave packet dynamical simulation of electron transport through a line defect on the graphene surface
 G.I. Mářk, L.P. Biró, Ph. Lambin and L.A. Chernozatonskii 2635

Magnetic translation group for graphene
 A. Wal 2639

Departure from the conical dispersion in epitaxial graphene
 S.Y. Zhou, D.A. Siegel, A.V. Fedorov and A. Lanzara 2642
A
Abrahamsson, D. 2343
Agarwal, R. 2474
Aguilar-Hernandez, J. 2535
Akkari, F.C. 2577
Alexandrescu, R. 2252
Alippi, A. 2419
Ansaldo, A. 2430
Antohe, S. 2485, 2504
Antohe, V.A. 2485
Arani, A.G. 2390
Arefmanesh, A. 2390

B
Bachmatiuk, A. 2227
Badre, C. 2454
Bagatur’yants, A.A. 2589
Baibarac, M. 2380, 2556
Baltog, I. 2380, 2556
Bando, Y. 2551
Banhart, F. 2618
Barnas´, J. 2319
Batrakov, K.G. 2370
Bazavan, D. 2504
Bazavan, R. 2504
Beecher, P. 2406
Bein, M.C. 2263
Bertoni, C. 2257
Bettucci, A. 2419
Bhuiyan, M.M.H. 2272
Biro´, L.P. 2263, 2635
Boeck, T. 2462
Bo¨hme, R. 2223
Bonaccorso, F. 2347, 2352
Bondarev, I.V. 2365
Borgese, F. 2347
Borowiak-Palen, E. 2227
Bourgoi, J.P. 2294
Bournel, A. 2294
Buc, D. 2247
Bulka, B.R. 2614
Bullough, T.J. 2457

C
Calogero, G. 2347
Cantoro, M. 2238
Castellarin-Cudia, C. 2238

D
Darabont, Al. 2263
Del Zoppo, M. 2570
Denti, P. 2347
Deretzis, I. 2289, 2333
Devaux, X. 2268
Di Zitti, E. 2430
Dinse, K.-P. 2327
Dinu, I.V. 2614
Dolafi, S. 2338
Dollfus, P. 2294
Dossa, M. 2343
Dubot, P. 2454
Dugaev, V. 2289
Dumitrica, F. 2252

E
Efremov, A. 2446
Einarsson, E. 2299
Eliseev, A.A. 2283, 2531
Enculescu, I. 2485, 2494, 2504
Enculescu, M. 2485, 2504
Engström, O. 2508
Ersen, O. 2252

F
Fang, Y. 2386
Fasoli, A. 2278, 2406
Fazzi, D. 2570
Fedorov, A.V. 2642
Felicianelli, M.C. 2583
Ferrari, A.C. 2238, 2278, 2347, 2352, 2406, 2414
Fleaça, C.T. 2252
Fobelets, K. 2481
Forgani, R. 2462
Fort, Y. 2343
Fukuyama, A. 2489

G
Galdin-Retailleau, S. 2294
Ganji, M.D. 2606
Gass, M. 2457
Gavrila-Florescu, L. 2252
Geelhaar, L. 2457
Gemming, T. 2227
Ghenescu, M. 2485
Ghenescu, O. 2485
Goldberg, D. 2551
Goldberg, B.B. 2375
Goldoni, A. 2238
Görnert, P. 2531
Granitzer, P. 2517
Greco, M.N. 2494
Grynyuk, I.I. 2565
Gubanov, V. 2339
Gucciardi, P.G. 2347

H
Haruyama, J. 2299
Hasan, T. 2278, 2352, 2414
Hata, K. 2327
Hernandez-Perez, M.A. 2535
Hofmann, S. 2328
Hofmayer, M. 2517
Hornbostel, B. 2425, 2434
Hourlier, D. 2446
Hsieh, G.W. 2406
Hu, P. 2278
Huang, Y. 2396
Humbert, B. 2343
Husanu, M. 2556
Hutchison, J.L. 2283

I
Iati, M.A. 2347
Ikari, T. 2489
Ikegami, T. 2272
Ion, L. 2485, 2504

J
Janik, J. 2247
Jennings, A.T. 2474
Ji, Y.-H. 2305
Jinggui, P. 2400
Jones, P.H. 2347
Jonsson, H. 2343
Jung, Y. 2474

K
Kaiser, A.B. 2311
Kalenczuk, R.J. 2227
Kanzari, M. 2577
Karpets, M.V. 2231
Katsuki, S. 2272
Keinonen, J. 2618
Khriachtchev, L. 2618
Kim, H.W. 2499
Kim, H.J. 2545
Kim, N.-H. 2545
Kim, S.-H. 2526
Kim, S.-J. 2526
Kim, S.-W. 2526
Kiselev, N.A. 2283
Kiseleva, E.A. 2283
Klimovskaya, A. 2446
Knizhnik, A.A. 2589
Kolesnik, I.V. 2531
Kolesnik, S.P. 2231
Konchits, A.A. 2231
Kornfeld, D. 2425
Kotz, J. 2425, 2434
Kovyrin, S. 2339
Kramer, A. 2462
Krasheninnikov, A.V. 2618
Krenn, H. 2517
Krestinin, A.V. 2283
Krompiewski, S. 2319
Kruszynska, M. 2227
<table>
<thead>
<tr>
<th>Y</th>
<th>Yanto, N. 2400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yashchuk, V.M. 2565</td>
</tr>
<tr>
<td>Yagi, Y.</td>
<td>2299</td>
</tr>
<tr>
<td>Yan, Y.</td>
<td>2540</td>
</tr>
<tr>
<td>Yanchuk, I.B.</td>
<td>2231</td>
</tr>
<tr>
<td>Yanfeng, P.</td>
<td>2400</td>
</tr>
<tr>
<td>Yangyu, O.</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>Zerbi, G.</td>
<td>2570</td>
</tr>
<tr>
<td>Zhang, C.</td>
<td>2278</td>
</tr>
<tr>
<td>Zhao, H.</td>
<td>2540</td>
</tr>
<tr>
<td>Zhi, C.Y.</td>
<td>2551</td>
</tr>
<tr>
<td>Zhigalina, O.M.</td>
<td>2283</td>
</tr>
<tr>
<td>Zhihua, P.</td>
<td>2400</td>
</tr>
<tr>
<td>Zhou, S.Y.</td>
<td>2642</td>
</tr>
<tr>
<td>Ziegler, K.</td>
<td>2622</td>
</tr>
<tr>
<td>Zimmer, K.</td>
<td>2223</td>
</tr>
</tbody>
</table>