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The elastic constants of tetrahedral amorphous cartiarC) and hydrogenated tetrahedral
amorphous carborita-C:H) thin films were determined nondestructively by surface Brillouin
scattering. Besides the usual Rayleigh surface mode, we also observe a new pseudosurface acoustic
mode of longitudinal polarization, which is a modified version of the longitudinal guided mode
usually found in slow-on-fast supported films. The Young’s modHus a ta-C with 88%sp® is

757 GPa, and the shear modul@ss 337 GPa. The moduli of ta-C:H with 70%p® and 30 at. %

H are lower,E=300 GPa and5=115GPa. ©1999 American Institute of Physics.
[S0003-695(99)02538-3

The determination of the elastic constants of films thin-SBS already derived the elastic constants for thick carbon
ner than 1um poses serious experimental problems. Varioudilms, sometimes in combination with nanoindentatiot?
approaches have been previously used, such aBottaniet al'® used only SBS to get the elastic constants of
nanoindentation;* and laser spectroscopic methods usingthin (~100 nnj, very soft, cluster-beam depositadC films
surface acoustic wavéSAW) such as surface Brillouin scat- on Si.
tering (SBS (Refs. 4—6 and laser-induced SAWLISAW).’ Here, we use SBS to measure the elastic constants of
Nanoindentation measures the hardness, but the reduceatC and ta-C:H thin films. The ta-C was deposited using an
Young’s modulusE’ =E/(1—v?) can be derived from the S-bend filtered cathodic vacuum &ECVA) on S(100 wa-
indentation curvé;? so thatE itself can be found if a value fers at ion energy of 100 e%#. An sp? content of 88% was
for the Poisson’s ratio’ is assumed. Nanoindentation needsobtained from the electron energy-loss spect(&ELS) and
an indentation depth less than 10% of the film thickness and density of 3.26 g/cfhwas derived from x-ray reflectivity
it is high sensitive to the substrate for hard films on soft(XRR).!® The stress was-10 GPa. The ta-C:H films were
substrates. Nevertheless, nanoindentation has been widalgposited on $100) from acetylene using an electron cyclo-
used to derive th&' of various diamond-like carbofDLC)  tron wave resonance plasma soutteijth ansp® content of
films, such as amorphous hydrogenated carba€CH),"  70%, a density of 2.35 g/cihand a hydrogen content of
tetrahedral amorphous carbdta-C),"~* and hydrogenated ~30%2° The stress was-6 GPa. This ta-C:H is more dense
ta-C (ta-C:H).2 The difficulties of this method are clear in than ana-C:H of comparablesp® content because of its
that while the hardness values of ta-C vary between 60 GP@wer H content. The thicknesses were 76 and 70 nm, respec-
(Refs. 1 and Rand 90 GP4, the E' values vary more tively, by XRR. We assume that these amorphous films are
widely, from 400 GP&Refs. 1 and 2to 1100 GP&. elastically isotropic.

SAW-based methods allow nondestructive measure- SBS is the inelastic scattering of laser photons by ther-
ments of the elastic constants of films. In general, SBS isnally excited SAW by the dynamical modulation of the di-
capable of higher accuracy for thin films because the SAWglectric function of the mediun{the elasto-optic effegt
penetration depth decreases with increasing frequency anghd/or dynamic corrugation of the surfadthe surface
SBS works in the 10-100 GHz range while LISAW works in ripple).1” The scattering anglé' is used to probe different
the 0.1-0.2 GHz range. However, LISAW could be faster asAW wave vectors:||‘=(411- sin 6')/)\ The frequency shifts
the laser pulse enhances the phonon population, while SBg of the spectral peaks directly give the experimental SAW
only uses the smaller thermal phonon population. velocitiesve= w/q .

SBS iS, in principle, the best method to measure elastic SBS Spectr;ﬂ:ig_ 1) were recorded in backscattering ge-
constants of films. First, it can give the two independentometry, with §' from 20° to 70°, to give the experimental
elastic constants of an isotropic film. Second, there is NQelocities v, (Fig. 2, using an Ar-ion laser at 514.5 nm.
disadvantage to measure a fast film on a slower substrate, {jijth respect to the $001) substrate, thg001] surface pho-
contrast with nanoindentation, where the yield of the soft,on propagation was explored. The scattered light was ana-
substrate greatly affects measurements on a hard overlay§jzeq py a tandem 33 pass Sandercock interferomet®r,
Indeed, we will show that SBS has the unique ability tyjith a finesse of about 100. The power on the sample was
measure hard carbon layers with thickness less than 10 Nm.100 mw on ~10"3mn?. No sample damage was ob-
served. .
¥Electronic mail: acf26@eng.cam.ac.uk The theoretical SAW velocities, are computed for
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FIG. 1. Experimental Brillouin spectra of ta-C:H and a ta-C. In ta-C:H only E [GPa]
the Rayleigh wave peak is visible, while in ta-C also a second peak2at

GHz, associated with a pseudosurface wave, can be seen. Both spectra &&- 3- E,G confidence plot for uniform ta-C film. The solid contour line
taken at 30°. defines the 95% confidence region. The dashed lines and dotted lines define

the corresponding intervals f@& and v. The zone above the lowest dashed
) ) _ _ ) dotted line is the region of thermodynamic stability.
eachq, by solving the elastodynamics equations with appro-

priate boundary conditions using a Green function method. . ) .

v.. depend on the density and elastic constants of the Sutp_roblems.”The LGM gives a precise estimate ©f;=B
strate and on the thickness, density, and elastic constants gf(4/3)G,"" and thus o (and»), onceG is known. Figure

the film. The density and elastic constants of the Si sub3 Shows that the 95% confidence region corresponding to a
strate are well known and film thickness and density werd?Ulk modulus lower than that of diamond for th,G) pair

2

: 1)

measured independently. Thus, the calculated SAW velociS E=710-805GPa and5=290-385GPa. This selects
ties at eachy, depend only on the two independent elasticwider intervals for (B, »): B=280-445GPa andv
constants of the film, which we take BEsand shear modulus —0.03-0.23.  The averageE=757.5GPa and G
G. E and G are found by fitting the calculated velocities to =337.5 GPa givé8=334 GPa and'=0.12, for ansp’ frac-
the experimental ones to minimize the residRal tion of 0.88(Table ). -
: : For the ta-C:H sample, we detected only the modified
R— 2 { v(E,G)—ve Rayleigh wave. The 95% confidence region corresponding to
i o a bulk modulus lower than diamond covers the rarfge
i i =291-304 GPa an@=105-116 GPa. This corresponds to
wherear, (~30 m/9 are the errors at eaal. . a much wider range of valuesy=0.3-0.39 andB
The ta-C sample Sh‘?wed tWO_ branches of the SAW dis—_ 248-445 GPa, compared EFband G. This does not allow
persion curve, the mod|.f|ed. Raylelgh wave, an(_j a pseudosuh take the averag& and G as the physically meaningful
face.v'vave(PS\./\/) of Iong|tud|nql po'larlzatlc')n. This mode is a values and would imply thaB is essentially undetermined,
modified version of the longitudinal gw_ded modEGM_) in that the computedic(E,G) are sensitive td&e andG and
usually found in slow-on-fas_t supported films, but here it hasalmost insensitive td@. Physically, noting that ta-C:H has a
b_een d_etected for a fz_ast film on a soft subst?ét’é.The density of 66% of diamond and 30 at. % hydrogen, we can
d'?pefs"’” of the Rayleigh wave ltself aIIowg aprecise deter; ssume the minimum d for ta-C:H, of 248 GPa, by scaling
mination ofE andG,_ howc'aver,_n is less sensitive to the pulk from the B of diamond. This sets the Poisson’s ratio to 0.3.
modulus,B, and Poisson’s ratioy, due to error propagation The ta-C and ta-C:H films studied in these two experi-
ments were homogeneous. Another ta-C fiB6%sp®) de-

' o posited with a single-bend FCVA was found to have a lay-
16.0 | ® computed 1] . - i
= ) ered microstructur& with a surface layer about 7 nm thick
O expetimental
__140L i
7 = 2
E f TABLE |. Elastic constants of our films, compared to the isotrapioigt—
~ I} ] Reuss—Hill average for diamond.
> 6.0 | ﬂ T .
= ta-C:H ta-C diamond
Q
o o -
o 55l a) ] Thickness(nm) 70 76
> E Density (g/cnT) 2.35 3.26 3.515
H (at. % 30
50 . s . . . spi(%) 70 88 100
' 20 30 40 50 60 70 E (GPa 30078 757.5-47.5 1144.6
incidence angle [degrees] G (GPa 115", 337.5:47.5 534.3

y+ 197 +111
FIG. 2. Dispersion of surface waves for uniform ta-C. The lower branch is B (GP3 248 33454 4448
the Rayleigh wave. The upper one, consisting of only one p@uoe to v 0.3"30° 0.12°%% 0.07

cross-section problemss the longitudinal guided mode.
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100 et andsp® bonding provide a good chance to test this theory, as
the mean coordinatioZ varies withsp® fraction Xsp3 asZ
=3+Xsp3. Figure 4 shows that this correlatid@) gives a
reasonable straight line for pure carbon networks. The inter-
cept atE=0 corresponds td,=2.6, close to the theoretical
value of 2.4.

The extrapolation of Fig. 4 t@=4 givesE~800 GPa.
This value is less than the isotropic averdgef diamond,
1144 GPa. It is closer to the modulus found in a molecular
dynamics simulation of a 100%p® a-C (823 GPa.?® This
suggests that random networks are softer than the isotropi-
cally averaged crystals. Table | shows that0.12 for taC,
similar to diamond, whilev~0.3 for ta-C:H.
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