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Abstract. The discovery of Novoselov et al. (2004) of a simple method to transfer
a single atomic layer of carbon from the c-face of graphite to a substrate suitable
for the measurement of its electrical and optical properties has led to a renewed in-
terest in what was considered to be before that time a prototypical, yet theoretical,
two-dimensional system. Indeed, recent theoretical studies of graphene reveal that
the linear electronic band dispersion near the Brillouin zone corners gives rise to
electrons and holes that propagate as if they were massless fermions and anomalous
quantum transport was experimentally observed. Recent calculations and experi-
mental determination of the optical phonons of graphene reveal Kohn anomalies
at high-symmetry points in the Brillouin zone. They also show that the Born–
Oppenheimer principle breaks down for doped graphene. Since a carbon nanotube
can be viewed as a rolled-up sheet of graphene, these recent theoretical and exper-
imental results on graphene should be important to researchers working on carbon
nanotubes. The goal of this contribution is to review the exciting news about the
electronic and phonon states of graphene and to suggest how these discoveries help
understand the properties of carbon nanotubes.

1 Introduction

The fundamental building block of both a graphite crystal and a carbon nano-
tube is the graphene layer shown schematically in Fig. 1a. Such an atomic
structure is characterized by two types of C–C bonds (σ, π) constructed from
the four valence orbitals (2s, 2px, 2py, 2pz), where the z-direction is perpen-
dicular to the sheet. Three σ-bonds join a C atom to its three neighbors.
They are quite strong, leading to optical-phonon frequencies much higher
than observed in diamond. In addition, the C–C bonding is enhanced by a
fourth bond associated with the overlap of pz (or π) orbitals. Graphite is
comprised of coherently stacked layers of graphene. Two layers (A and B)
are needed to define the unit cell in graphite. The three-dimensional (3D)
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structure of graphite is therefore held together by a weak interlayer van der
Waals (vdW) force. A single-wall carbon nanotube (SWNT), on the other
hand, is a seamless cylinder of graphene. SWNTs are analogously bound in
a bundle by the vdW force. The electronic properties of graphene, graphite
and carbon nanotubes are determined by the bonding π- and antibonding π∗-
orbitals that form wide electronic valence and conduction bands (Fig. 1b). As
the tube diameter decreases, the bond angle between the σ and π orbitals in-
creases slightly, introducing curvature effects into the electronic and phonon
properties of SWNTs.

Theoretical calculations show that the π-band overlap in graphite disap-
pears as the layers are further separated over their equilibrium distance in
graphite. This leads to decoupled graphene layers that can be described as a
zero-gap semiconductor. The π-band electronic dispersion for graphene near
the six corners of the 2D hexagonal Brillouin zone is found to be linear. Thus,
“cones” of carriers (holes and electrons) appear in the corners of a 2D Bril-
louin zone whose points touch at the Fermi energy, as shown in Fig. 1c. The
linear electronic band dispersion leads to the term “massless Dirac fermions”
for these carriers. The six points where the cones touch are referred to as the
“Dirac” points in the graphene literature.

Graphene, because of its structural simplicity (two atoms per unit cell),
has been extensively investigated in theory for the past 60 years [1]. How-
ever, only recently has it been possible to produce ultrathin films containing
a countable number (n) of graphene layers (i.e., 1 < n < 20). The synthetic
techniques fall into two categories. The first approach exploits the weak bond-
ing between the graphene layers by pealing off an n-graphene layer (nGL) by
chemical means [2–6] or by mechanical means [7, 8]. Mechanical separation
of nGLs from the parent crystal involves rubbing the freshly cleaved quasi-
2D system against a smooth substrate. This technique has allowed graphene
and nGLs to be studied in the laboratory for the first time [7]. It is simple,
inexpensive and produces graphene and nGL flakes of very high quality. How-
ever, this approach lacks the scalability required by mass device production.
The second approach grows epitaxial graphitic films by thermal decomposi-
tion of SiC [9–12]. This technique has the potential of producing large-area
lithography-compatible films and is rapidly advancing at the moment.

In this contribution, we review the connection between the electron and
phonon states in graphene (nGLs) and SWNTs. We begin with a discussion
of the electronic states. Recent theoretical arguments and experiments are
converging on a picture of free carriers in graphene near the Fermi energy
behaving as massless Dirac fermions propagating at ∼ 1/100 the speed of
light, i.e., they do not behave as simple electrons or holes with an effec-
tive mass. Experimental observations of an anomalous integer quantum Hall
effect in graphene has been reported recently and has created a lot of atten-
tion [13, 14]. These and other interesting experimental electronic transport
results are reviewed as well [15] with further discussion provided in the con-
tributions in this volume by Ando and by Spataru et al. We then discuss
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Fig. 1. Illustration of the carbon valence orbitals. (a) The three inplane σ (s, px, py)
orbitals in graphene and the π (pz) orbital perpendicular to the sheet. The inplane
σ and the π bonds in the carbon hexagonal network strongly connect the carbon
atoms and are responsible for the large binding energy and the elastic properties
of the graphene sheet. The π orbitals are perpendicular to the surface of the sheet.
The corresponding bonding and the antibonding σ bands are separated by a large
energy gap of ∼ 12 eV (b), while the bonding and antibonding π states lie in the
vicinity of the Fermi level (EF). Consequently, the σ bonds are frequently neglected
for the prediction of the electronic properties of graphene around the Fermi energy.
Dirac cones located at the six corners of the 2D Brillouin zone are illustrated in (c)

the optical phonons in graphene that are directly accessible by Raman spec-
troscopy and give rise to the most prominent Raman peaks when graphene is
folded into nanotubes. We focus on their coupling to electrons, which is key
to understanding many phenomena in graphene and nanotubes.

For example, it was recently argued that in doped graphene, the adia-
batic Born–Oppenheimer approximation [16], valid in many solid-state sys-
tems, breaks down [17]. The electron–phonon interaction in graphene has
also been carefully re-examined and has been recently shown to give rise to
Kohn anomalies in the phonon dispersion at important points (Γ , K) in the
Brillouin zone where the phonons can be studied by Raman spectroscopy [18–
21]. Many of these new ideas proposed for graphene and nGLs carry over to
nanotubes. Kohn anomalies are responsible for the different Raman spectra of
metallic and semiconducting nanotubes, and non-Born–Oppenheimer effects
strongly shape the Raman spectra of doped and annealed nanotubes [19, 22].
These connections are also discussed in this review.

2 Electronic Properties and Transport Measurements

2.1 Graphene

2.1.1 Electronic Band Structure

Figure 2 shows the ab-initio calculations of the electronic bands of graphene
along the high-symmetry M–Γ–K directions [23]. Its space group (P3m)
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contains a mirror-plane symmetry, allowing symmetric σ and antisymmetric
π states to be distinguishable. In a 2D crystal, a parallel mirror symmetry
operation separates the eigenstates for the whole Brillouin zone, and not only
along some high-symmetry axis. The π and π∗ bands touch at the corners of
the hexagonal Brillouin zone. Such corners are labeled by their momentum
vector usually denoted by K and K ′. Consequently, graphene is a special
semimetal or zero-gap semiconductor, whose intrinsic Fermi surface is reduced
to the six points at the corners of the 2D hexagonal Brillouin zone. Close to
the Fermi energy, the π and π∗ bands are quasilinear (linear very close to
K, K ′) (Fig. 1c), in contrast with the usual quadratic energy–momentum
relation obeyed by electrons at band edges in conventional semiconductors.
When several interacting graphene planes are stacked, as in nGLs or in a
perfect graphite crystal, the former antisymmetric π bands are split (owing
to bonding or antibonding patterns), whereas the σ bands are much less
affected by the stacking.

The graphene sheet is thus highly specific for this linear energy–momentum
relation. The electronic group velocity, estimated at the Dirac points, is quite
high: ∼ 1×106 m/s. Consequently, graphene exhibits electronic properties for
a 2D gas of charged particles described by an equation of the form of the rel-
ativistic Dirac equation rather than the nonrelativistic Schrödinger equation
with an effective mass. Indeed, in graphene, charge carriers mimic particles
with zero mass and an effective “speed of light” c∗ ∼ 1 × 106 m/s. Recently,
graphene has revealed a variety of unusual transport phenomena characteris-
tic of two-dimensional Dirac fermions, such as an anomalous integer quantum
Hall effect, a “minimum” conductivity of order 4e2/h even when the carrier
concentration tends to zero, a cyclotron mass mc of massless carriers with an
energy E described by E = mcc

∗2, and Shubnikov–de Haas oscillations that
exhibit a phase shift of π due to Berry’s phase [13, 14]. These remarkable
properties will be described in the next section.

The electronic structure of graphene can be reasonably well described us-
ing a rather simple tight-binding Hamiltonian, leading to analytical solutions
for their energy dispersion and related eigenstates [23]. Since the bonding
and antibonding σ bands are well separated in energy (> 10 eV at Γ ), they
are frequently neglected in semiempirical calculations since they are too far
away from the Fermi level to play a role. Only the remaining two π bands
are thus needed to describe the electronic properties of graphene.

When the atoms are placed onto the graphene hexagonal lattice (Fig. 1a),
the electronic wavefunctions from different atoms overlap. However, such an
overlap between the pz(π) orbitals and the s or the px and py orbitals is
strictly zero by symmetry. Consequently, the pz electrons, which form the π
bands in graphene, can be treated independently from the other valence elec-
trons. Within this π-band approximation, it is easy to describe the electronic
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Fig. 2. (a) Electronic band structure of graphene from ab-initio calculations [23].
The bonding σ and the antibonding σ∗ bands are separated by a large energy gap.
The bonding π (highest valence band) and the antibonding π∗ (lowest conduction
band) bands touch at the K(K′) points of the Brillouin zone. The Fermi energy
(EF) is set to zero and φ indicates the work function (by the dashed horizontal line).
Above the vacuum level φ, the states of the continuum are difficult to describe and
merge with the σ∗ bands. The 2D hexagonal Brillouin zone is illustrated with the
high-symmetry points Γ , M , K and K′. (b,c) π state at K and (d,e) σ-state at
Γ seen, respectively, from above and from the side of the graphene plane. Note
that the π wavefunction cancels on a hexagonal sublattice due to the e(iK r) phase
factor. The π (σ) state is odd (even) with respect to the graphene plane reflection.
Courtesy of Zanolli, 2007, unpublished

spectrum of the total Hamiltonian and to obtain the dispersion relations
restricted to first-nearest-neighbor interactions only:

E±(kx, ky) = ±γ0

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
, (1)

where a =
√

3aC-C (aC-C = 1.42 Å is the carbon–carbon distance in graphene)
and γ0 is the transfer integral between first-neighbors π orbitals (typical
values for γ0 are 2.9–3.1 eV). The k = (kx, ky) vectors that belong to the first
hexagonal Brillouin zone (BZ) constitute the ensemble of available electronic
momenta.

With one pz electron per atom in the π-π∗ model (the three other s, px,
py electrons fill the low-lying σ band), the (−) band (negative energy branch)
in (1) is fully occupied, while the (+) branch is totally empty. These occupied
and unoccupied bands touch at the K and K ′ points. The Fermi level EF (or
charge-neutrality point) is chosen as the zero-energy reference in Fig. 2 and
the Fermi surface is defined by the set of K and K ′ points. Since the occupied
and unoccupied bands touch at the zone corners, the graphene sheet displays
a semimetallic, or zero-gap semiconducting character.
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Fig. 3. Resistivity, mobility and car-
rier density as a function of gate volt-
age Vg in a single-layer graphene field-
effect transistor device. (a) Vg-depen-
dent Rxx showing a finite value at the
Dirac point. The resistivity ρxx can be
calculated from Rxx using the geome-
try of the device. The inset is an image
of a graphene device on a Si:SiO2 sub-
strate. The Si is the bottom gate; five
top electrodes formed via e-beam lithog-
raphy are shown in the inset. Scale bar
5μm. (b) Mobility μ and carrier den-
sity ns as a function of Vg. The mobil-
ity (dotted curve) diverges artificially at
the Dirac point due to a finite resistivity.
Adapted from [14]

Expanding (1) at K(K ′) yields the linear π and π∗ bands for Dirac
fermions:

E±(κ) = ±�vF|κ| , (2)

where κ = k − K, and vF is the electronic group velocity given by:

vF =
√

3γ0a/2� . (3)

In graphene, vF ≈ 1 × 106 m/s. The resulting cone structure at the six Bril-
louin zone corners is shown in Fig. 1c.

The linear dispersion given by (2) is the solution to the following effective
Hamiltonian at the K(K ′) point [24]:

H = �vF(σ κ) , (4)

where κ = −i∇, and σ’s are the pseudospin Pauli matrices operating in the
space of the electron amplitude on the A–B sublattices of graphene.

In the next section, we briefly describe some of the unusual properties of
graphene [15] derived from the linear dispersion and the “chiral” nature of
the quasiparticles defined by (2) and (4).

2.1.2 Transport Measurements in Single-Layer Graphene

Figure 3 shows the resistivity ρxx, density ns and mobility μ of 2D carri-
ers in a single-layer graphene field-effect transistor (FET) as a function of
gate voltage [14]. Graphene FETs are fabricated with standard lithography
and etching techniques using mechanically cleaved graphene flakes [25]. A de-
generately doped silicon substrate with a thin oxide overlayer serves as an
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insulated gate electrode that can continuously tune EF, and therefore the 2D
carrier density nS across the charge-neutrality point, covers a range of roughly
±1×1013/cm2. The conduction is symmetric about the Dirac point as shown
in Fig. 3a, indicating that the electron and hole mobilities are approximately
equal. In the high carrier density regime, the mobility is found to be roughly
carrier-density independent and temperature independent. Reported mobility
values span a wide range 2000 < μ < 20 000 cm2/(Vs), with the high end rep-
resenting a long mean-free path of ∼ 0.3μm, comparable to that of SWNTs.
The weak temperature dependence found for μ indicates that impurity or
defect scattering is the dominant scattering mechanism and provides room
for future device improvement [13, 26]. Possible sources for scattering centers
include adsorbents, defects in the graphene lattice and ionized impurities in
the SiO2 substrate. The carrier-density dependence of the conductivity (not
shown) near the Dirac point is found to sensitively depend upon the range
of the scatterers [27] and varies from device to device.

Figure 3 also reveals a remarkable property of 2D carriers in graphene.
Although the carrier density approaches zero at the Dirac point, the 2D resis-
tivity ρxx or conductivity σxx remains finite. Such behavior, dubbed the “min-
imum” conductivity, has been observed experimentally in many graphene de-
vices with ρxx ranging from 2 to 7 kΩ at low temperature [13, 14]. A slightly
larger value of ρxx from 6 to 9 kΩ is also reported for bilayer graphene [28].
The origin of this finite conductivity ∼ 4e2/h remains unclear at the moment.
In a real device, ionized impurities in the SiO2 substrate or the rippling of
the graphene sheet [29] may lead to local puddles of electrons and holes with
finite densities and result in finite conduction through the device [30]. On the
other hand, calculations show that a minimum quantum conductivity (of-
ten 4e2/hπ) can also arise intrinsically from the linear excitation spectrum
of Dirac fermions and/or the chiral nature of the quasiparticles (for a more
detailed review, see [15]). However, present experiments seem to converge at
4e2/h. More experiments, particularly with cleaner substrates or suspended
devices, are needed to clarify this intriguing issue.

In a magnetic field perpendicular to the graphene plane, the linear exci-
tation spectrum of Dirac fermions evolves into discrete Landau levels (LLs)
whose energies are given [31, 32] in terms of the LL index by:

En = ±vF

√
2e�|n|B . (5)

The
√

B dependence of En, which distinguishes graphene from conventional
2D semiconductors (that have LLs linear in B), has been confirmed by re-
cent spectroscopic measurements [33–35]. The large splitting in graphene
(ΔE0,1 = 240meV at 45T) leads to the observation of the quantum Hall
effect at room temperature [36].

Including spin and sublattice degeneracy, the number of states for each LL
is 4eB/h. In graphene, because of the touching bands at the K(K ′) points, the
n = 0 LL is shared equally between electrons and holes. This counting scheme
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Fig. 4. Anomalous-integer quantum Hall effect in single-layer graphene.
(a) Magnetic-field sweeps of Hall resistance Rxy (solid) and longitudinal resis-
tance Rxx (dash-dotted) at fixed carrier density (or Vg) showing plateaus in Rxy

quantized at h/e2ν and the corresponding zero-resistance minima in Rxx. Arrows
indicate filling factor ν = nsh/eB = 4(n+1/2), where ns is the carrier density and
n the LL index. Adapted from [14]. (b) Hall conductivity σxy (solid) and longitu-
dinal resistivity ρxx (dashed) as a function of carrier density at B = 14 T. Here,
σxy is calculated as σxy = ρxy/(ρ2

xx + ρ2
xy) and is observed to be quantized as

σxy = 4(n + 1/2)e2/h. Adapted from [13]

gives rise to the occurrence of the quantum Hall effect at half-integer LL in-
dices (Fig. 4), which can also be viewed as the result of a conventional integer
sequence with a phase shift of π known as Berry’s phase [37]. This π phase
shift arises from the linear dispersion of the Dirac fermions and serves as a sen-
sitive indicator of the existence of such an excitation spectrum. It persists to
lower magnetic fields, where quantum Hall states turn into magnetoresistance
(Shubnikov–de Haas or SdH) oscillations [38]. The magnitude of the phase
shift can be accurately extracted from the LL fan diagrams (Fig. 5a) [13,14].

Although the light-like linear electronic band dispersion implies mass-
less particles, Dirac fermions moving in a magnetic field are characterized
by a finite cyclotron mass mc. Values for mc can be extracted from the
thermal damping of SdH oscillations via the same expression as in conven-
tional 2D systems [38]: Rxx ∝ T/ sinh(2π2kTmc/�eB). Experiments find the
carrier-density dependence of mc to be well described by:

mc = EF/v2
F = (h2nS/4πv2

F)1/2 . (6)

Equation (6) is behind the use of mc as the “relativistic” mass of Dirac
fermions, where vF plays the role of c∗. Here, vF is found to be ≈ 1.0 ×
106 m/s experimentally [13,14,34,35], in good agreement with band-structure
calculations for mc/m0 (Fig. 5b). As EF approaches zero, i.e., the charge-
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Fig. 5. Berry’s phase π and the cyclotron mass of Dirac fermions in single-layer
graphene. (a) LL fan diagram plotting the positions of the resistance minima in SdH
oscillations against the LL index n. Different lines correspond to different carrier
densities produced by the backgate. The n-axis intercept yields Berry’s phase 2πβ.
Analysis in single-layer graphene consistently yields β = 0.5 (inset), providing
convincing evidence for Dirac fermions. Adapted from [14]. (b) Cyclotron mass
obtained from temperature-dependent low-field SdH oscillations. mc scales with√

nS and vanishes near the Dirac point. The theoretical fit using (6) (solid line)
yields vF ≈ 1 × 106 m/s. Adapted from [13]. Values of mc as low as 0.007m0 (for
nS ∼ 2 × 1011/cm2) have been reported [14]

neutrality point, mc vanishes accordingly. Values of mc as low as 0.007me

(nS ∼ 2 × 1011 /cm2) have been reported [14].
Graphene in ultrahigh magnetic fields up to 45T displays additional

plateaus in σxy at filling factors ν = 0, ±1, ±4 [39, 40]. Whereas the sin-
gle-particle Zeeman splitting was identified as the origin of the ν = ±4
plateaus [39], the nature of the ν = 0, ±1 states is still unclear. The un-
derlying mechanisms of these quantum Hall states are the focus of many
recent theoretical discussions (see a review by [41]), where a variety of in-
teraction-driven ground states and novel charge and spin excitations have
been predicted by combining quantum Hall physics with graphene’s unique
linear excitation spectrum and four-fold degeneracy. Reducing disorder in the
present samples is crucial to the examination of these exciting ideas.

2.2 Graphene Nanoribbons

Among carbon nanostructures based on graphene, ribbons a few nanometers
in width have also been extensively studied [42–54]. Since graphene nanorib-
bons (GNRs) are just geometrically terminated graphene, their electronic
structure has been modeled by imposing appropriate boundary conditions
(i.e., standing waves) on the Schrödinger equation within the present simple
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Fig. 6. GNR edges. (a) Zigzag edge, (b) armchair edge

tight-binding approximations based on the π-states of carbon [42, 43, 48]
or on a two-dimensional Dirac equation with an effective speed of light
(c∗ ∼ 1 × 106 m/s) [49–51].

Within these models, it is predicted that GNRs with “armchair” edges
(AGNR) can be either metallic or semiconducting depending on their widths
[42,43,48–51], and that GNRs with “zigzag” edges (ZGNR) are metallic with
peculiar edge states on both sides of the ribbon regardless of their widths [42–
51] (Fig. 6). This edge state stems not from graphene nor from the dangling
bonds at the edge, but from the topology of the π-electron networks across a
significant part of the Brillouin zone and has no counterpart in an armchair
edge. The corresponding energy bands are almost flat at the Fermi level,
inducing a sharp peak in the density of states at EF. The charge density
of the edge state is strongly localized on the zigzag edge sites. Although
a general GNR is often characterized by a mixture of zigzag and armchair
sites [42, 44], theory predicts that a GNR edge with three or four zigzag
sites per sequence is sufficient to exhibit the characteristics of a zigzag edge
state [42]. Indeed, STM and STS measurements [55] have observed evidence
of this edge state near EF at zigzag edge sites and at defect sites of armchair
edges, but not at sites along a homogeneous armchair edge.

Although the tight-binding approximation based on π-states of carbon is
known to accurately describe the energy dispersion of the carbon sheet, a
careful consideration of edge effects in GNRs only a few nanometers in width
is required to determine their band structures accurately [45, 48]. Recent
ab-initio calculations [52–54] reveal that all GNRs with hydrogen-passivated
armchair- or zigzag-shaped edges have nonzero direct bandgaps. The gap size
decreases as the width of the GNR increases, approaching zero in graphene
in the limit of infinite width. The origins of the bandgaps for the different
types of homogeneous edges vary.

The bandgaps of GNRs with armchair edges originate from quantum con-
finement, but edge effects play a crucial role [52, 53]. Hydrogen passivation
introduces C–H σ bonds (or other types of terminations in general) at the
edge, causing the C–C bond length and the on-site energy of the C atoms
at the armchair edge to be different from those in the interior of the GNR.
The decrease of the C–C bond length induces an increase of ∼ 12% in the
hopping integral between π-orbitals. This physical deformation at the edge is



Electron and Phonon Properties of Graphene 683

responsible for the presence of a bandgap even for the armchair GNRs [52,53],
which are predicted to be metallic in tight-binding calculations.

In the case of GNRs with zigzag edges, bandgaps arise upon the inclu-
sion of the spin degrees of freedom [47, 52–54]. The existence of the narrow-
band edge states at the Fermi level implies possible magnetization at the
edges [43, 46, 47, 52–54]. The difference in total energy per atom on the edge
between non-spin-polarized and spin-polarized edge states is found to be of
the order of a few tens of meV [52, 53]. Spin-polarization effects in the elec-
tronic structure are discussed in the contribution to this volume by Spataru
et al. Indeed, the zigzag GNRs are predicted to have a magnetic insulating
ground state with ferromagnetic ordering at each zigzag edge and antipar-
allel spin orientation between the two edges. Because the two edge states
with opposite spins occupy different sublattices, magnetic ordering leads to
staggered sublattice potentials, which introduce bandgaps for electrons on a
honeycomb hexagonal lattice [56]. Since the strength of the staggered poten-
tials in the interior of the ribbon decreases as the ribbon width increases, the
bandgaps of zigzag GNRs are inversely proportional to the width.

Similar to carbon nanotubes, optical spectra of GNRs are affected by self-
energy and many-body corrections to the single-particle excitation spectrum
and are characterized by bound excitons, with binding energies ∼ 0.5–1 eV for
ribbons of a width comparable to the circumference of a typical SWNT [57].
The exciton binding energy scales inversely with the ribbon width [57].

Experimental exploration of GNRs is at a very early stage. Recently, GNRs
with 10–500 nm width have been patterned lithographically using hydrogen
silsesquioxane as an etch mask and oxygen plasma etching [58, 59]. Such an
approach most likely produces mixed zigzag and armchair edges terminated
by carboxyl groups. It was shown by Han et al. [58] that lateral confinement
indeed leads to energy gaps with a ribbon width W dependence given by
Egap = α/(W − W ∗), where α = 0.2 eV nm and W ∗ = 16nm represents
the offset in the active ribbon width determination. This empirical relation
is consistent with DFT calculations presented in [52,53]. Furthermore, unlike
the closed structure of carbon nanotubes, the dangling bonds at the edges of
a GNR may be chemically functionalized to perform selective chemical/bio-
logical sensing. Edge functionalisation and atomic substitutions can indeed
modify the electronic and spin properties of the GNRs [60]. This whole new
direction awaits experimentation.

In conclusion, the role of the edges is crucial in determining the values
and scaling rules for the bandgaps in both armchair and zigzag GNRs. In
addition, although the spin-orbit interaction is very small in graphite [61],
the coexistence of electrons with opposite spin orientations in GNRs could
open up a new path to the exploration of spintronics at the nanometer scale
(when the electrical current is completely spin polarized) [54]. The ability
to selectively create specific edge types on demand is essential to test GNR
theories and evaluate GNR-based devices.
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2.3 Graphite and n-Graphene Layer Systems

Bulk graphites consist of a tridimensional (3D) stacking of graphene sheets
with an interlayer spacing around 3.35–3.4 Å. However, various graphites dif-
fer in the stacking sequence of the carbon planes, such as simple hexag-
onal graphite (AAA . . . ); Bernal graphite (ABAB . . . ); and rhombohedral
graphite (ABCABC . . . ). These graphene-based 3D crystals exhibit specific
semimetallic properties that depend directly on the geometry of the stack-
ing between layers [62–65]. Consequently, the nature of the charge carriers
strongly depends on the particular stacking of the graphene sheets and the
corresponding Fermi surfaces exhibit a complex shape around the H–K–H
line at the edge of the 3D hexagonal Brillouin zone [62–65].

In contrast to the corresponding 3D bulk structures, electrons in an n-
graphene layer (nGL, n = a small integer) are confined along the crystallo-
graphic direction perpendicular to the graphene sheets, offering a genuine 2D
character to the nGL electronic states. However, the linear dispersion of the
electronic bands near the Fermi level that appears in monolayer graphene is
lost, as a consequence of the interaction between layers.

Recent ab-initio electronic calculations [66] have revealed that nGLs be-
long to an intermediate case between bulk graphite and a graphene sheet. The
corresponding band structures of nGLs will be reminiscent of both cases.
The weak interlayer interaction that creates the c-axis band dispersion in
3D graphites is now responsible for band mixing of states otherwise associ-
ated with isolated graphene bands. The number of layers and the stacking
order are key factors influencing the transport properties of nGLs [66, 67].
Indeed, depending on these factors, an nGL can behave as a 2D metal (with
a single or mixed-carrier type) or a narrow-gap 2D semiconductor. For ex-
ample, amongst 3- and 4-layer nGLs, ABAC stacking is found to lead to a
narrow-gap semiconductor (with a bandgap ∼ 9meV) [66]. Other stackings
can exhibit a metallic behavior with different signatures: the rhombohedral
family (ABC, ABCA) displays a very small (< 3meV) overlap between elec-
tron and hole bands, while the Bernal family (ABA, ABAB) shows overlaps
of a few tens of meV (from 5–20meV) in agreement with experimental mea-
surements [66]. Besides perfectly stacked ABAB structures, nGLs might also
be made to exhibit a turbostratic random stacking, leading to a weak band
overlap [66, 68].

Among nGLs, the simplest and arguably most interesting case may be bi-
layer graphene (2GL). A calculated band structure of 2GL is given in Fig. 7a
together with angle-resolved photoemission spectroscopy (ARPES) measure-
ments by Ohta et al. [11]. A gap of ∼ 0.8 eV appears for the high-energy
bands due to the interlayer interaction. This splitting is predicted to be in-
dependent of carrier concentration in the two layers [69]. The splitting of
the low-energy bands, however, arises from the broken inversion symmetry of
the two constituent layers and sensitively depends upon the strength of the
interlayer electric field. The experiments of Ohta et al. [11] used potassium
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Fig. 7. Band structure and quantum Hall effect of bilayer graphene. (a) Band
structure measured by angle-resolved photoemission spectroscopy. From left to
right: Tuning the bandgap of the low-energy bands by increasing the amount of
potassium doping. Calculations [69] are shown for comparison (solid lines). Adapted
from [11]. (b) Quantum Hall effect in bilayer graphene showing quantized steps of
σxy at 4ne2/h. σxy jumps from −4e2/h to 4e2/h across the charge-neutrality Dirac
point. Adapted from [28]

atoms to continuously and preferentially dope the top layer of the bilayer
graphene, allowing a continuous tuning of the gap opening in the low-energy
bands. The resulting band structures are shown in Fig. 7a. More recently,
Castro et al. [70] demonstrated that by combining chemical doping and field-
effect doping imposed by a backgate, the gap splitting and the Fermi level of
bilayer graphene can be independently controlled. This gap-tuning capabil-
ity may have important implications in the development of graphene-based
electronics.

Bilayer graphene (2GL) with parabolic but degenerate bands at the Dirac
point (middle panel of Fig. 7a) exhibits a distinctive quantum Hall effect.
The LLs of these massive, chiral quasiparticles are described by [69]:

En =
�eB

m∗

√
n(n − 1) . (7)

The conventional integer quantum Hall sequence σxy = 4ne2/h is restored
for the 2GL. However, the merging of the n = 1 and the n = 0 LLs leads
to an eightfold degeneracy at the charge-neutrality point and the absence of
the ν = 0 plateau σxy. These features are signatures of a bilayer graphene
sample and have been observed recently by Novoselov et al. [28] (Fig 7b).
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Fig. 8. (A) Comparison of the Raman spectra of graphene and graphite measured
with 514.5-nm excitation. (B) Comparison of the 2D peaks in graphene and graphite
(also measured with 514.5-nm excitation)

3 Optical Phonons and Raman Spectroscopy

Presently, the widely used micromechanical cleavage method produces nGL
flakes with varying n and the yield of low-n graphene flakes is low. A simple
method to locate these flakes and determine the number of layers is much
needed for the studies of these materials. nGLs are optically invisible on
most substrates. Their optical detection requires an optimal combination of
detection wavelength and oxide thickness [71] and so far all the successful
observations of single- and bilayer graphene are made with Si substrates
with a specific oxide thickness of ∼ 300 nm [7]. Alternatively, an atomic force
microscope (AFM) may be used to identify nGLs. This approach has two
drawbacks. First, AFM suffers from low throughput. Secondly, instead of the
expected graphite interlayer spacing 0.34 nm, AFM height measurements re-
port an apparent step height of 0.5–1 nm between a graphene flake and the
SiO2 substrate due to their difference in chemical composition. This vari-
able offset can present problems for the AFM identification of 1GL and 2GL
films. Here, we show that an nGL’s electronic structure is uniquely captured
in its Raman spectrum. Raman fingerprints for single-, bi- and few-layer
graphene allow unambiguous, high-throughput, nondestructive identification
of the number of layers.

3.1 Raman D and G Bands, Double Resonance
and Kohn Anomalies

Figure 8 compares the Raman spectra of graphene and bulk graphite collected
with 514-nm (2.41 eV) excitation [72]. In general, the main features in the first
order Raman spectra of graphitic carbons are the so-called G and D bands,
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which lie at ∼ 1580 and ∼ 1360 cm−1, respectively, for visible excitation [73].
The assignment of these bands is straightforward in the “molecular” picture of
carbon materials. They are present in all polyaromatic hydrocarbons [74,75].
The G band is due to the bond stretching of all pairs of sp2-bonded atoms
in both rings and chains. The D band is due to the breathing modes of sp2-
bonded atoms in rings [74, 76, 77]. However, this molecular approach to the
interpretation of these Raman bands in graphitic carbons has undergone a
debate that has lasted several decades. The D band was first attributed to
a breathing mode for phonons with wavevectors near the (K, K ′) points,
activated by disorder (D). This relaxes the fundamental Raman selection
rule, which states that only phonons near the Γ point can be seen in first
order Raman scattering [76]. The D band was then linked to maxima in
the vibrational density of states of graphite at the M and K points of the
Brillouin zone [78, 79]. However, this does not account for the dispersion of
the Raman D-peak position with photon excitation energy [80, 81], or why
the D-peak overtone (2D band) at ∼ 2710 cm−1 can be observed even in the
absence of the D peak, or why the intensity ratio I(D)/I(G) is dispersive
(i.e., a function of the incident photon energy) [80, 81]. Phonon confinement
does not explain why the D mode is more intense than other modes closer
to Γ , nor why it is seen in disordered graphite with an in-plane correlation
length, La, as large as 30 nm [82].

Pocsik et al. [81] proposed that the D band arises due to a resonant Ra-
man coupling in which there is a strong enhancement of the Raman cross
section of a phonon of wavevector q, when q = k, the wavevector of the
vertical electronic transition excited by the incident photon (“quasi-selec-
tion rule”) [77]. However, this “quasi-selection rule” does not explain why,
amongst all phonons satisfying this condition, only those on one particular
optical branch are seen. Thomsen and Reich [83] and Baranov et al. [84] pro-
posed double resonance (DR) as the activation mechanism. Within DR, Ra-
man scattering is a fourth-order process involving four virtual transitions:
1. excitation of an electron–hole pair; 2. electron–phonon scattering with an
exchanged momentum q ∼ K, where K is the K point Brillouin zone vec-
tor; 3. defect scattering; 4. electron–hole recombination. The DR condition
is reached when the energy is conserved over all these four transitions [83].
A similar “intravalley” process is possible. This activates phonons with a
small q, resulting in the so-called D′ peak, that appears at ∼ 1620 cm−1 in
graphite with defects [78].

The phonon dispersion around the K point is also crucial for the cor-
rect interpretation of the Raman D band. Graphene has four frequencies
at the K point, originating from six phonon branches around K (three are
shown in Fig. 9 that focus of the longitudinal optical (LO) and transversal
optical (TO); a fourth lower-lying optical branch crossing the K point at
∼ 800 cm−1 also exists). All these branches should be Raman active if their
electron–phonon couplings (EPCs) are ignored [81, 83, 86–88]. However, only
a single D band is observed [76]. In the molecular approach [74,75,77,89], the
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Fig. 9. Phonon dispersion of graphene calculated by DFPT [18] compared with
the inelastic X-ray scattering data of [85]. The lines emphasize the presence of the
two Kohn anomalies at Γ and K

D band was assigned to the highest optical branch near K. This assignment
is based on symmetry and on the large Raman cross section of large aro-
matic molecules. However, this assignment was initially disputed [81, 83, 86–
88]. In fact, the measured linear D band dispersion with excitation en-
ergy [81] seemed at odds with the flat, or even negative, slope of the high-
est optical branch near K given by previous calculations [90–94]. Many au-
thors [81, 83, 86–88] therefore initially attributed the D band to the doubly
degenerate, linearly dispersive 1200 cm−1 E′ mode at the K point. Piscanec
et al. [18] finally confirmed the attribution of the D band to the highest optical
(A1) branch near K (K–A′

1) [76, 77, 89, 90]. Indeed, theoretical calculations
have shown that the A′

1 branch has by far the biggest EPC amongst all the
K point phonons [20]. Secondly, the K–A′

1 branch exhibits linear dispersion
near the K point (Fig. 9). A Kohn anomaly at K is the physical origin of
this linear dispersion, which is in quantitative agreement with the measured
D-band dispersion [81].

In general, atomic vibrations are partially screened by filled electronic
states. In a metal, this screening is determined by the shape of the Fermi
surface and can change rapidly from one point to another in the Brillouin
zone (BZ). The consequent anomalous behavior of the phonon dispersion
is called a Kohn anomaly [95]. Kohn anomalies may occur only for phonon
wavevectors q such that there are two electronic states k1 and k2 on the Fermi
surface, where k2 = k1 + q [95]. In graphene, the gap between occupied and
empty electronic states is zero at the six corners of the BZ (K and K ′).
These points are connected by a vector of length K. Thus, Kohn anomalies
can occur for q = 0(Γ ) or q = K (Fig. 9 [18]). The cusps in ω(q) calculated
at q = 0 or q = K cannot be described by a finite set of interatomic force
constants [18]. Interestingly, for a given value of q, the Kohn anomalies are
present only in the highest optical branches. This can be understood from
the details of the EPC [18–21].
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3.2 Electron–Phonon Coupling from Phonon Dispersions
and Raman Linewidths

Electron–phonon coupling (EPC) is important to the properties of graphene
and nanotubes. Ballistic transport, superconductivity, excited-state dynam-
ics, Raman spectra and phonon dispersions all fundamentally depend on it. In
nanotubes, the EPC of the optical phonon is also extremely relevant, since
electron scattering by optical phonons sets the ultimate limit to high-field
ballistic transport [21, 96–99]. Many contradicting tight-binding calculations
of EPC for optical phonons in graphene and nanotubes are in the litera-
ture [97, 100–103] (see Table II of Ref. [19] for a summary).

References [18,20] presented DFT calculations of graphene optical phonons
and the EPC, as well as a strategy for their experimental determination. The
presence of the Kohn anomalies is revealed by two sharp kinks in the phonon
dispersion ω(q) (Fig. 9). Their slope S is proportional to the ratio of the
square of the EPC and the electronic π band slope β [18]:

SLO
Γ =

√
3�a2

0

8MωΓ β
EPC(Γ )2 , (8)

and

STO
K =

√
3�a2

0

8MωKβ
EPC(K)2 , (9)

where β = �vF = 5.52 ÅeV, M is the carbon atomic mass, and ωΓ and ωk

are, respectively, the frequency of the E2g phonon at Γ and the K–A′
1 pho-

non. The experimental phonon dispersion therefore can be used to measure
the EPC [18–20].

An alternative strategy for the EPC measurement is based on the analysis
of the G-peak linewidths. The EPC is the major source of broadening for
the Raman G band in graphite, graphene and for the G− peak in metallic
nanotubes [19, 20].

In a perfect crystal, the Raman linewidth γ, or inverse phonon life-
time, is determined by the anharmonic terms in the interatomic potential
and the EPC, i.e., γ = γan + γEPC, in which γan is always present and
γEPC is important only in metals since the carrier density interacting with
phonons would be very low for semiconductors. If γan is negligible or oth-
erwise known, measuring the linewidth is a simple way to determine the
contribution from EPC. This is the case in graphene, graphite and metallic
carbon nanotubes, where γan is much smaller than γEPC [20].

From Fermi’s golden rule, γEPC
0 can be described by a simple analytical

formula [20]:

γEPC
0 =

√
3�

2a2
0

4Mβ2

[
EPC(Γ )

]2
, (10)
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provided that the conservation of energy and momentum is fulfilled (i.e.,
q ≤ �ωΓ /β). Otherwise, γEPC

0 = 0. This condition is satisfied by the Raman
G peak of undoped graphite and graphene. On the other hand, the double-
resonant D′ mode close to G does not satisfy this criterion. Indeed, the D′

peak is sharper than the G peak [104]. The experimental G bandwidth full
width at half-maximum (FWHM(G)) of graphite and undoped graphene is
∼ 13 cm−1 [20,105]. Temperature-dependent measurements show no increase
of FWHM(G) in the 2 − 900K range [105]. Accounting for a Raman spec-
trometer resolution of ∼ 1.5 cm−1, this implies that the anharmonic contribu-
tion is lower than the spectral resolution. Thus, γEPC

0 (G)∼ 11.5 cm−1. Then,
from (10), [EPC(Γ )]2 ∼ 47 (eV/Å)2. This compares very well with DFT
calculations [19, 20], further supporting a small γan.

Finally, [17, 106] extended (10) to finite doping (εF �= 0, εF being the
Fermi level):

γEPC = γEPC
0

[
f

(
−�ω0

2
− εF

)
− f

(
�ω0

2
− εF

)]
, (11)

where f(E) is the Fermi–Dirac distribution. Note that, even for zero dop-
ing, (11) predicts a significant decrease of γEPC with temperature. Since the
anharmonic contribution to the FWHM is much smaller than γEPC, (11)
predicts a net decrease of FWHM(G) with temperature, in contrast to what
happens in most materials. This unusual trend was indeed observed re-
cently [105].

3.3 The Raman Spectrum of Graphene
and n-Graphene Layer Systems

Figure 8 shows that the two most intense features in the Raman spectrum
of graphene are the G peak at ∼ 1580 cm−1 and a band at ∼ 2700 cm−1,
historically named G′, since it is the second most prominent band always
observed in graphite samples [80]. However, we now know that the G′ band
is due to second-order Raman scattering at ω = ω1(q) + ω2(−q), where
q ∼ K and ω1 = ω2 = ωD. Thus, we refer to the G′ band as the 2D band.
Figure 8 also shows another peak at ∼ 3250 cm−1. Its frequency is higher
than double the G-peak frequency, thus it is not the second-order scattering
of G phonons. This peak has been identified with the second-order scattering
of the intravalley D′ band discussed above. Thus, for consistency, we call it
the 2D′ band. Figure 8b shows a significant change in the shape and intensity
of the 2D band of graphene compared to bulk graphite. The 2D band in bulk
graphite consists of two components 2D1 and 2D2 [78, 80], roughly 1/4 and
1/2 of the intensity of the G band, respectively. Graphene has a single, sharp
2D peak, roughly 4 times more intense than the G peak.

Figure 10 shows the evolution of the 2D band in nGLs as a function of
the number of layers for 514.5 nm excitation [72]. Bilayer graphene (n = 2)
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Fig. 10. Left and Center: Raman spectra for the G band (left) and for the 2D-
band (right) of nGL with varying n. Right: The DR process for the 2D peak in
(A) graphene and (B) bilayer graphene

has a much broader and upshifted 2D band with respect to graphene. The
shape of this band is quite different from that of bulk graphite. It can be
well fitted by 4 components, 2D1B, 2D1A, 2D2A, 2D2B, two of which, 2D1A

and 2D2A, are more intense than the other two, as indicated in Fig. 11.
Increasing the number of layers further leads to a significant decrease of the
relative intensity of the lower-frequency 2D1 peaks. The Raman spectrum
of an nGL of more than 5 layers becomes hardly distinguishable from that
of bulk graphite [72]. In contrast, the shape of the G band does not change
with the number of layers. However, a slight frequency upshift can be seen
in the case of graphene. This is due to a combination of self-doping [17], as
discussed later, and the fact that the frequency of the Raman active phonon
in graphene is slightly higher than in graphite, due to mode splitting (see
lower panel of Fig. 1 in [18]).

Figure 12 shows the effect of laser excitation energy on the shape and
position of the 2D band [107]. Spectra for n = 1–4 are shown in three panels
corresponding to excitations at 785 nm (left), 514.5 nm (middle) and 488 nm
(right). These spectra are fitted to four Lorentzian components (2D1A, 2D1B,
2D2A, 2D2B) as described above. The relative intensities of these components
within the 2D manifold change with laser excitation energy. The simple, near-
Lorentzian lineshape of the n = 1 band is preserved and a shift in peak
position of ∼ 100 cm−1/eV with increasing excitation energy is observed [72,
83, 89, 108].

Figure 13 shows the peak-position shift with layer number n for the 3rd-
order Raman band near 4270 cm−1 [109]. The spectra were collected with a
514.5-nm excitation and the ∼ 4270 cm−1 band is identified with a three-
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Fig. 11. The four components of
the 2D peak in bilayer graphene
at two laser-excitation wave-
lengths [72]

Fig. 12. Excitation dependence of the 2D band for n = 1–4 nGLs supported on
SiO2:Si
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Fig. 13. 3rd-order Raman bands assigned to 2D+G phonons. Left: HOPG and
n = 1–5 supported on SiO2:Si. Right: Band position vs. n. Data collected with
514.5-nm excitation

phonon process in which 2D phonons (∼ 2 × 1350 cm−1) and one G phonon
(∼ 1580 cm−1) are created simultaneously in the scattering process. We call
this band 2D+G. The left panel shows the n dependence of the lineshape and
the right panel displays the n dependence of the band maximum. As can be
seen in the left panel, graphene exhibits a nearly symmetric 2D+G band that
asymmetrically broadens to lower frequency and upshifts with increasing n.
The shape of the band remains simple in character. This 3rd-order band
appears to afford a means to determine the number of layers in the nGL (as
shown in the right panel). Therefore, for low n, the frequency rises steeply
and then crosses over to an almost linear upshift with further increases in n
(the dashed curve in the figure is a guide to the eye).

The excitation-energy dependence of the 3rd-order (2D+G) band is shown
in Fig. 14 for 514-nm (left panel) and 488-nm (right panel) excitation. In both
panels, the 3rd-order Raman band shifts to higher frequency with increasing
layer number. The band dispersion of 93 cm−1/eV with excitation energy is
consistent with its identification as a 3-phonon 2D+G process. That is, the
frequency upshift with increasing excitation energy tracks that of the 2nd-
order 2D band (the G-band remains fixed, independent of excitation). Other
overtones up to ∼ 6000 cm−1 were also identified [110].

Ferrari et al. [72] explained why graphene (1GL) has a single 2D band,
and why this band splits into four components in bilayer graphene and evolves
into two distinguishable components in bulk graphite (see Fig. 10b). The 2D
Raman band in graphene is due to two phonons with opposite momenta in
the highest optical branch near the K point [18, 76, 77]. The resulting 2D
frequency is twice that of the scattering phonons, whose q is determined
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Fig. 14. Excitation dependence of the 2D+G band for n = 1–4. nGLs supported
on SiO2:Si

by the DR condition (Fig. 10B). In bilayer graphene, the interlayer inter-
action causes the π and π∗ bands to divide into two hole and two electron
bands, with a different splitting for electrons and holes (Fig. 10B). Amongst
the 4 possible optical transitions, the incident light couples more strongly the
two transitions shown in Fig. 10B. The two almost degenerate phonons in the
highest optical branch couple all electron bands amongst them. The resulting
four scattering processes involve phonons with momenta q1B, q1A, q2A, and
q2B, as shown in Fig. 10B. These wavevectors correspond to phonons with dif-
ferent frequencies, due to the strong phonon dispersion around K [18]. They
produce four different peaks in the Raman spectrum of bilayer graphene [72].

3.4 Doped Graphene:
Breakdown of the Adiabatic Born–Oppenheimer Approximation

Doping moves εF and changes the Fermi surface of graphene. The Kohn
anomaly then moves away from q = 0. Thus, since first-order Raman scat-
tering probes q = 0 phonons, intuitively we might expect the G peak to stiffen
with electron or hole doping. Indeed, this response is reported in [17, 111].
There, the graphene sheet was supported on a SiO2:Si substrate and the
doping level was controlled by applying a gate voltage. The G peak up-
shifts for both hole and electron doping. Figure 15 plots the G-peak position
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Fig. 15. (A) G peak position as a function of electron concentration at 200 K.
(dots) measurements; (horizontal-dashed line) adiabatic Born–Oppenheimer; (line)
finite-temperature nonadiabatic calculation. The minimum observed in the calcula-
tions at ∼ 1012/cm2 occurs when the Fermi energy equals half of the phonon energy.
(B) FWHM(G) at 200 K as a function of electron concentration. (dots) measure-
ments; (line) theoretical FWHM of a Voigt profile obtained from a Lorentzian
component given by (11), and a constant Gaussian component of ∼ 8 cm−1 [17]

and FWHM measured at 200K as a function of electron doping. The trends
in Fig. 15 are similar to those reported in [111] at 10K.

The trend in the FWHM is fully consistent with the prediction of (11).
The upshift of the G peak with doping can be understood by extending
the DFT calculations of [18] to include beyond-Born–Oppenheimer correc-
tions to the dynamical matrix [17]. The detailed theoretical analysis of this
case is reported in [106, 112, 113].

The adiabatic Born–Oppenheimer approximation (ABO) has been stan-
dard in describing the interaction between electrons and nuclei since the
early days of quantum mechanics [16]. ABO assumes that the lighter elec-
trons adjust adiabatically to the motion of the heavier nuclei, remaining in
their instantaneous ground states. ABO is well justified when the energy gap
between the ground and excited electronic states is larger than the energy
scale of the nuclear motion. The use of ABO to describe lattice motion in
metals is, therefore, questionable. Nonetheless, the ABO has proven effective
for the determination of chemical reactions, molecular dynamics and phonon
frequencies in a wide range of metallic systems.

Quite remarkably ABO fails in graphene [17]. Indeed, the inverse of the
G-peak pulsation is ∼ 3 fs, which is much smaller than the typical electron-
momentum relaxation time, which was estimated to be a few hundred fs
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Fig. 16. G-band frequency vs. 1/n. Spectra excited with 5 14.5-nm light and col-
lected from nGLs supported on a single SiO2:Si substrate. The straight line is
obtained by a least-squares fit. Data on the same set of nGLs were collected from
several spots well removed from the edge of the flake

from the electron mobility in graphene [39] and ultrafast spectroscopy in
graphite [114, 115]. Thus, electrons do not have time to relax their momenta
to reach the instantaneous adiabatic ground state, as assumed in ABO. The
nonadiabatic Born–Oppenheimer calculation for the G-band shift Δω with
εF can be described analytically [106]:

�Δω =
�A〈D2

Γ 〉F
πMω0(�vF)2

[
|εF| +

�ω0

4
ln

(∣∣∣∣ |εF| − �ω0
2

|εF| + �ω0
2

∣∣∣∣
)]

, (12)

where A = 5.24 Å
2

is the graphene unit-cell area and ω0 is the frequency of
the G peak in the undoped case. This equation is derived for T = 0. However,
the result of (12) can be extended to any finite temperature T [17,106], giving
reasonable agreement with the experimental data shown in Fig. 15.

A systematic upshift in the position of the G band with increasing 1/n
was reported for nGLs supported on SiO2:Si substrates [72, 116, 117]. This
behavior is plotted in Fig. 16. Shown there are the results of many spectra
collected from nGLs on the same substrate. In most of the cases, a single
nGL was measured several times, but with the laser focused on a spot of
∼ 1μm2 at different locations on the film. n was determined via atomic
force microscope z-scans [116]. Although there is a significant amount of
scatter in the G-band position for a fixed n, a 1/n dependence of the G-
band frequency is evident. The solid line in the plot is a least-squares fit to
the data, which indicates a 5-cm−1 upshift of the G band from its location
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in highly oriented pyrolytic graphite (HOPG) to that for n = 1 graphene.
Gupta et al. proposed that the upshift may be due to an n-dependent bending
of the nGL as it is attracted to the oxide surface and tries to conform to the
surface roughness of the substrate, which is about 2 nm. However, as discussed
above, this trend might be due to the diminishing influence of self-doping
with increasing n [118, 119]. Indeed, measurements on a variety of single
layer graphene have shown a G peak position variation of 13 cm−1, much
bigger than that reported between single and multi-layer graphene [118,119].
Another consequence of doping is the significant decrease of I(2D)/I(G), with
respect to the undoped case [120].

4 Implications for Phonons and Raman Scattering
in Nanotubes

4.1 Adiabatic Kohn Anomalies

Graphene has been used as a model for the calculations of the electronic
and vibrational properties of carbon nanotubes. However, a SWNT can be
either metallic or semiconducting, whereas graphene is a semimetal/zero-
gap semiconductor. The differences between graphene and SWNTs can be
explained in terms of curvature and confinement [19]. Curvature effects arise
because in a nonplanar geometry the C–C bonds in SWNTs assume a mixed
σ–π character. Confinement effects arise because the electronic wavefunctions
in a SWNT have to be commensurate to the tube circumference, resulting
in the quantization of the electronic momentum component perpendicular to
the tube axis.

Neglecting the effects of curvature, it is thus possible to map the elec-
tronic states of a SWNT onto those of graphene. It has been shown that
folding the electronic structure of graphene to describe the band structure
of SWNTs produces accurate results for tubes with diameters larger than
0.8 nm [121, 122]. This technique is known as electronic zone folding (EZF).
In the past, a similar technique had also been applied to phonons. This goes
under the name of phonon zone folding (PZF). However, as discussed in
Sect. 3.1, phonon dispersions of graphene are affected by two Kohn anomalies,
which occur only in metals. Thus, Kohn anomalies cannot be present in semi-
conducting SWNTs, while they can be enhanced in metallic SWNTs because
of their reduced dimensionality [19, 20]. As a consequence, PZF may not be
suitable for the description of the phonon dispersion of metallic SWNTs close
to the Kohn anomalies. Even for semiconducting SWNTs, PZF of graphene
may not be precise, since PZF does not have Kohn anomalies [19]. However,
neglecting the effects of curvature, phonons of SWNTs can be obtained from
the phonons of a flat graphene sheet, if the calculation is done by perform-
ing the electronic Brillouin-zone integration on the lines of the electronic zone
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Fig. 17. Phonon dispersion of the modes for a (11,11) SWNT derived from the
graphene E2g branch. The dots are the results of static PZF calculations. The
dotted and solid lines are obtained with analytical models based, respectively, on
the adiabatic and nonadiabatic description of phonons [19]

folding [19,20]. This approach allows the description of all the effects of quan-
tum confinement, and can be used to compute phonon dispersions of tubes
with a diameter larger than 0.8 nm, which are typical in experiments.

4.2 Nonadiabatic Kohn Anomalies

Nonadiabatic effects lead to a deep modification in the description of the
Kohn anomalies (KAs) [17, 19, 106]. Using the zone-folding approach of [19,
20], it is possible to obtain the theoretical description of the KAs in metal-
lic SWNTs within the adiabatic (static) and nonadiabatic (dynamic) ap-
proaches. These results should then be corrected for curvature effects, as
shown by [19]. Figure 17 compares the modes derived from the graphene
E2g in a (11,11) metallic SWNT, calculated using a static and a dynamic
description of the phonons. In the first case, only the LO mode is affected
by a Kohn anomaly, centered at q = 0(Γ ). On the other hand, calculations
performed with the dynamic, time-dependent approach show the presence of
the anomalies for both the LO and the TO modes, respectively, and predict
the anomalies to be shifted from Γ [19].

4.3 The Raman G Peak of Nanotubes

In SWNTs, the doubly degenerate Raman-active E2g mode of graphene splits
into two dominant phonons. As shown in Fig. 18, such modes are polarized,
respectively, along the tube axis (longitudinal mode) and along the tube
circumference (tangential mode), and are usually referred to as the LO and
the TO modes [19].

In the 1550–1590 cm−1 region, the Raman spectra of SWNTs are char-
acterized by the presence of two distinct features: the so-called G+ and G−
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Fig. 18. Left: G-band of semiconducting and metallic SWNTs. Semiconducting
tubes are characterized by two sharp peaks. Metallic tubes show a characteristic
broad, downshifted G− peak [123]. Right: LO and TO phonon modes of SWNTs
derived from the E2g phonon of graphene

peaks. These peaks are due to the LO and TO modes, and their shape and po-
sition strongly depend on the electronic properties of the tubes. The G band
of a metallic and of a semiconducting SWNT [123] are compared in Fig. 18.
In semiconducting tubes, both the G+ and the G− peaks appear as sharp
Lorentzians, centered, respectively, at ∼ 1590 cm−1 and ∼ 1570 cm−1. The
G+ peak is usually more intense than the G−, and its position is nearly inde-
pendent of the tube’s diameter, whereas the position of the G− peak decreases
for decreasing tube diameter. On the other hand, in metallic tubes, the G−

peak is usually rather intense, very broad, and downshifted with respect to
its counterpart in semiconducting tubes.

In semiconducting tubes, the splitting between the LO and the TO modes
is usually explained in terms of curvature. Indeed, the σ–π mixing of the C–C
bonds along the circumference results in a softening of the TO mode with
respect to the LO, accounting for both the splitting of the peaks and the
diameter dependence of the G− position.

For metallic tubes, different theories have been proposed. The first at-
tempt to explain the broadened, downshifted G− in metallic SWNTs was
based on a Fano resonance between the TO phonon and the plasmons in
metallic tubes [124, 125]. However, this model neglects both the presence of
Kohn anomalies in the phonon dispersion of metallic SWNTs, and the role of
the electron–phonon interaction. Indeed, it is possible to show, as discussed
in Sect. 4, that the G− peak of metallic SWNTs is strongly influenced by the
effects of EPC [19, 20]. Modeling the EPC in metallic SWNTs by using the
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Fig. 19. Comparison between the computed frequency of the LO and the TO pho-
non in SWNTs (lines) and the experimental position of the G+ and the G− Raman
peak in metallic and semiconducting tubes as measured by various authors [19]. Cal-
culations include the dynamic effects and a correction for the curvature effects [19]

same tight–binding model as was used for graphene, it is possible to show
that the EPC affects the LO mode only and acts in two different ways. First,
it is responsible for the onset of a Kohn anomaly resulting in a strong down-
shift of the LO frequency. Secondly, in agreement with the Fermi golden rule,
it reduces the LO–phonon lifetime, resulting in an increase of the phonon
linewidth. Consistent with this view, the G− peak in metallic tubes does not
originate from a curvature-downshifted TO phonon, as in semiconducting
tubes, but is derived from an EPC-affected LO mode [19, 20]. The prediction
given by the dynamic, time-dependent model can be compared with the data
from Raman spectroscopy. Figure 19 shows that the calculated frequencies of
the TO and LO modes in metallic SWNTs are in reasonable agreement with
the position of the G+ and G− Raman peaks. This suggests that the G+

and G− peaks of metallic nanotubes should be assigned to TO (tangential)
and LO (axial) modes, the opposite of semiconducting nanotubes [19, 20].

In SWNTs, due to the reduced dimensionality, the nonadiabatic contribu-
tions are essential to describe the phonons [19] and they should be more im-
portant in the case of doped SWNTs [22]. Thus, the shape of the G peak will
be affected by doping in a similar fashion to doped graphene. Furthermore,
due to energy conservation, measuring a metallic nanotube off resonance can
result in a sharp G− feature. We can thus simply understand the reason
for the large variety of G− lineshapes reported in the literature. Finally, the
nonadiabatic Kohn anomaly at Γ also explains the observed electronic tem-
perature dependence of the Raman spectra [19].

It is important to note the following on the shape of the G− peak [20].
The peak shape observed in an actual experiment depends on the coupling
between the experimental probe and the system, as discussed in the seminal
paper by Fano [126]. Indeed, if the laser couples not only to the G− phonon,
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but also to the continuum that broadens the phonon, the Raman spectrum
shows an asymmetric Fano profile [126]. Thus, the detection of an asym-
metric Fano profile in a Raman measurement gives information on how the
electromagnetic radiation couples to the system, but not on the origin of the
broadening. Here, we discussed how the broadening of the G− peak in metal-
lic nanotubes can be mainly attributed to the coupling of the LO phonon
to the continuum of the electron–hole excitations, not to phonon–plasmon
coupling. This does not imply that a Fano-like profile cannot be observed in
experiments.

5 Outlook

In the past two years, tens of papers have been published and more than 600
papers have been posted on graphene. Thus, by no means could we give a
comprehensive review of this fast-moving field in the limited space available
here. So, we have focused on the basic electronic and phonon properties of
graphene and their relation to nanotubes.

Even if graphene research is at the beginning, scientists can now exploit
the large amount of expertise acquired in the study of carbon nanotubes.
Almost all the experiments reported on nanotubes are now being performed
on graphene. These range from transistor fabrication, to nanoelectromechan-
ical assemblies, to spin transport to optoelectronics. Furthermore, bilayer and
few-layer graphene samples could lead to a variety of interesting new physics
and applications. A research area that is still largely unexplored is the growth
of graphene layers on a substrate of choice. Large-scale deposition of graphene
is the needed breakthrough to make this new material viable for electronic
applications. Once this is achieved, standard top-down processes could be
utilized for large-area production of devices. This is a major advantage com-
pared to nanotubes, for which on-demand chirality is still a dream.
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[58] M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of
graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007) 683

[59] Z. Chen, Y.-M. Lin, M. J. Rooks, P. Avouris: Graphene nano-ribbon elec-
tronics, arXiv URL: cond-mat/0701599 683

[60] F. Cervantes-Sodi, G. Csanyi, S. Piscanec, A. C. Ferrari: Edge functionalised
and substitutional doped graphene nanoribbons: electronic and spin proper-
ties, Cond Mat 0711.2340 (2007) 683

[61] G. Dresselhaus, M. S. Dresselhaus: Spin-orbit interaction in graphite, Phys.
Rev. 140, 401 (1965) 683

[62] J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the elec-
tronic properties of graphite, Phys. Rev. B 43, 4579 (1991) 684

[63] J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the elec-
tronic properties of simple hexagonal graphite, Phys. Rev. B 46, 4531 (1992)
684

[64] J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the stack-
ing effect on the electronic properties of graphite(s), Carbon 32, 289–299
(1994) 684

[65] J.-C. Charlier, X. Gonze, J.-P. Michenaud: Graphite interplanar bonding:
electronic delocalization and van der Waals interaction, Europhys. Lett. 28,
403–408 (1994) 684

[66] S. Latil, L. Henrard: Charge carriers in few-layer graphene films, Phys. Rev.
Lett. 97, 036803 (2006) 684

[67] F. Guinea, A. H. Castro-Neto, N. M. R. Peres: Electronic states and Landau
levels in graphene stacks, Phys. Rev. B 73, 245426 (2006) 684

[68] J.-C. Charlier, J.-P. Michenaud, P. Lambin: Tight-binding density of elec-
tronic states of pregraphitic carbon, Phys. Rev. B 46, 4540 (1992) 684

[69] E. McCann, V. I. Fal’ko: Landau-level degeneracy and quantum Hall effect
in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006) 684, 685

[70] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos
Santos, J. Nilsson, F. Guinea, A. K. Geim, A. H. Castro-Neto: Biased bilayer
graphene: Semiconductor with a gap tunable by electric field effect, arXiv
URL: cond-mat/0611342 685

[71] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus,
K. S. Novoselov, A. C. Ferrari: Rayleigh imaging of graphene and graphene
layers, Nano Lett. 7, 2711 (2007) 686

[72] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri,
S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim: Raman spectrum
of graphene and graphene layers, Phys. Rev. 97, 187401 (2006) 686, 690,
691, 692, 693, 694, 696

[73] A. C. Ferrari, J. Robertson: Raman spectroscopy in carbons: From nanotubes
to diamond, Philos. Trans. Roy. Soc. A 362, 2267–2565 (2004) 687



706 J.-C. Charlier et al.

[74] C. Castiglioni, F. Negri, M. Rigolio, G. Zerbi: Raman activation in disordered

graphites of the A
′
1 symmetry forbidden k �= 0 phonon: The origin of the D

line, J. Chem. Phys. 115, 3769 (2001) 687
[75] C. Castiglioni, M. Tommasini, G. Zerbi: Raman spectroscopy of polyconju-

gated molecules and materials: Confinement effect in one and two dimensions,
Philos. Trans. R. Soc. Lond. A 362, 2425 (2004) 687

[76] F. Tuinstra, J. Koenig.: Raman spectrum of graphite, J. Chem. Phys. 53,
1126 (1970) 687, 688, 693

[77] A. C. Ferrari, J. Robertson: Interpretation of Raman spectra of disordered
and amorphous carbon, Phys. Rev. B 61, 14095 (2000) 687, 688, 693

[78] R. J. Nemanich, S. A. Solin: First- and second-order Raman scattering from
finite-size crystals of graphite, Phys. Rev. B 20, 392 (1979) 687, 690

[79] R. Al-Jishi, G. Dresselhaus: Lattice-dynamical model for graphite, Phys. Rev.
B, 26, 4514 (1982) 687

[80] R. P. Vidano, D. B. Fishbach, L. J. Willis, T. M. Loehr: Observation of
Raman band shifting with excitation wavelength for carbons and graphites,
Solid State Commun. 39, 341 (1981) 687, 690

[81] I. Pocsik, M. Hundhausen, M. Koos, L. Ley: DC electrical properties of amor-
phous carbon with different bonding hybridization, J. Non-Cryst. Solids 227–
230, 1087 (1998) 687, 688

[82] P. Lespade, A. Marchard, M. Couzi, F. Cruege: Caracterisation de materiaux
carbones par microspectrometrie Raman, Carbon 22, 375 (1984) 687

[83] C. Thomsen, S. Reich: Double resonant Raman scattering in graphite, Phys.
Rev. Lett. 85, 5214 (2000) 687, 688, 691

[84] A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, V. I. Petrov: Interpretation
of some peculiarities in Raman spectra of graphite and glassy carbon, Opt.
Spektrosk. 62, 1036 (1987) 687

[85] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt: Phonon dispersion in
graphite, P. Ordejón. Phys. Rev. Lett. 92, 075501 (2004) 688

[86] M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo:
Origin of dispersive effects of the Raman D band in carbon materials, Phys.
Rev. B 59, 6585 (1999) 687, 688

[87] A. Gruneis, R. Saito, T. Kimura, L. G. Cançado, M. A. Pimenta, A. Jorio,
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