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ABSTRACT

Graphene edges are of particular interest since their orientation determines the electronic properties. Here we present a detailed Raman
investigation of graphene flakes with edges oriented at different crystallographic directions. We also develop a real space theory for Raman
scattering to analyze the general case of disordered edges. The position, width, and intensity of G and D peaks are studied as a function of
the incident light polarization. The D-band is strongest for polarization parallel to the edge and minimum for perpendicular. Raman mapping
shows that the D peak is localized in proximity of the edge. For ideal edges, the D peak is zero for zigzag orientation and large for armchair,
allowing in principle the use of Raman spectroscopy as a sensitive tool for edge orientation. However, for real samples, the D to G ratio does
not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented
at well-defined angles, they are not necessarily microscopically ordered.

Graphene is the latest carbon allotrope to be discovered, and
it is now at the center of a significant experimental and
theoretical research effort.1-6 In particular, near-ballistic
transport at room temperature and high carrier mobilities
(between 3000 and 200 000 cm2/Vs)5-10 make it a potential
material for nanoelectronics,11-14 especially for high fre-
quency applications.

Graphene layers can be readily identified in terms of
number and orientation by elastic and inelastic light scat-
tering, such as Raman15,16,18-20,17 and Rayleigh spec-
troscopies.21,22 Raman spectroscopy also allows monitoring
of doping, defects, and strain.15,18,23-26

Once identified, graphene layers can be processed into
nanoribbons (GNRs) by lithography.1,11,14,27,28 Similar to the
case of nanotubes, confinement modifies the electronic
structure of graphene, when cut into GNRs29-35 The edges
of GNRs could in general be a combination of armchair or
zigzag regions.36-39 If a GNR is uniquely limited by one
type of edge, it is defined either as armchair or zigzag.29,30,39

Edges are also preferred sites for functionalization with
different groups.40

Here we show that Raman spectroscopy is a sensitive tool
to probe the nature of graphene edges. Our results challenge
the suggestion that perfectly armchair or zigzag edges are
routinely obtained when exfoliating graphene, even though
they appear to follow defined directions on a large scale.

Single layers are produced by microcleavage of graphite.
These have areas up to 100 µm2 and show sharp edges with
different orientations. Raman spectra are measured with a
100× objective at 514, 633, and 488 nm with a Renishaw
micro-Raman spectrometer, having a 1800 grooves/mm
grating and spectral resolution of ∼3 cm-1. The polarization
of the incident light can be controlled by a Fresnel rhomb.
Raman mapping is performed in another Raman setup based
on an inverted confocal microscope at 633 nm. In this case,
the beam is reflected by a splitter and focused by an objective
with high numerical aperture. The Raman peaks variation
across the edge is recorded by raster-scanning the sample
with a piezo-stage. The acquisition time per pixel is of the
order of few minutes. Gratings of 150 and 600 grooves/mm
are used. The spatial resolution is ∼800 nm. The power on
the samples is well below 2 mW, so that no shift nor change
in width of the Raman peaks is observed, thus ensuring no
damage nor heating.

All carbons show common features in their Raman spectra
in the 800-2000 cm-1 region, the so-called G and D peaks,
which lie at around 1580 and 1350 cm-1 respectively.41 The
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G peak corresponds to the E2g phonon at the Brillouin zone
center. The D peak is due to the breathing modes of sp2 rings
and requires a defect for its activation.42,43 It comes from
TO phonons around the K-point of the Brillouin zone,42,43

is active by double resonance (DR),44,45 and is strongly
dispersive with excitation energy due to a Kohn Anomaly
at K.19 The activation process for the D peak is intervalley
as follows: (i) a laser induced excitation of an electron/hole
pair; (ii) electron-phonon scattering with an exchanged
momentum q ∼ K; (iii) defect scattering; and (iv) electron/
hole recombination. The D peak intensity is not related to
the number of graphene layers, but only to the amount of
disorder.42,43 Indeed, when moving from graphite to nanoc-
rystalline graphite, the ratio between the intensity of D and
G peak, I(D)/I(G), varies inversely with the size of the
crystalline grains or interdefect distance.42,43 DR can also
happen as intravalley process, that is, connecting two points
belonging to the same cone around K (or K′). This gives
rise to the so-called D′ peak, which can be seen around 1620
cm-1 in defected graphite.46 The 2D peak is the second order
of the D peak. This is a single peak in monolayer graphene,
whereas it splits in four in bilayer graphene, reflecting the
evolution of the band structure.16 The 2D′ peak is the second
order of the D′ peak. Since 2D and 2D′ peaks originate from
a Raman scattering process where momentum conservation
is fulfilled by the participation of two phonons with opposite
wavevectors (q and -q), they do not require defects for their
activation and are thus always present.

It is common for as prepared graphene not to have enough
structural defects for the D peak to be seen,16 which is
indicative of the high crystallinity of graphene obtained by
micromechanical cleavage. In this case, the D peak is only
present at the edges,16 since they act as defects, allowing
elastic backscattering of electrons even in an otherwise
defect-free sample. It is crucial to distinguish between
ordered (zigzag or amchair) and disordered edges. In their
seminal work on graphite edges, Cançado et al.47,48 have
suggested that a perfect zigzag edge cannot activate the D
peak due to momentum conservation. Here, we note that a
graphene edge is a translationally noninvariant system. Thus
we introduce a novel real space representation for Raman
scattering in graphene, which allows us to consider the
general case of disordered edges. We first consider more
closely the nature of the intermediate electronic states
involved in the DR process. This starts with the absorption
of a photon of energy pωL and the creation of an
electron-hole pair (e-h). The one-phonon DR Raman
scattering giving rise to the D peak is not a fully resonant
process, since at least one of the elementary scattering
processes must violate the energy conservation, by an amount
of the order of the phonon energy, pωD ≈ 0.17 eV. This
means that the photoexcited electron-hole pair is a virtual
state (no real electron-hole populations are created), with
lifetime determined by the uncertainty principle, of the order
of 1/ωD ∼ 3 fs. This time scale sets the duration of the whole
process. Still, as pωD ≈ 0.17 eV is much smaller than the
electron energy (ε ≈ 1.2 eV for 514 nm excitation), we will
speak about electron and hole energies. Assuming a perfect

symmetry between valence and conduction bands, we can
take the energies of the electron and hole, measured from
the Dirac point, to be ε ≈ pωL/2. Then, again considering
that the photon momentum is negligible, the e and h
wavevectors measured from K have modulus k′ ) ε/(pVF),
where VF is the Fermi velocity. The photoexcited electron
and hole can also be viewed as wave packets of size ∼ pVF/
ε. The time scale 1/ωD translates into the length scale V/ωD,
where V ≈ 1.1 × 106 m/s ≈ 7.3 eV·Å/p is the electron
velocity (the slope of the Dirac cones). This length scale,
V/ωD ≈ 4 nm, sets the spatial extent of the process. This is
much longer than the electron wavelength pV/ε ≈ 0.6 nm,
ensuring that the wave functions determining the matrix
elements for each elementary process admit a quasiclassical
representation. This is fully analogous to the geometrical
optics approximation for electromagnetic waves. Corrections
to this approximation are known as diffraction, and are of
order pωD/ε , 1. Note that this picture is neither an
assumption, nor a hypothesis, but arises automatically in the
Raman matrix elements as a consequence of the separation
of the two scales given by the energy uncertainty and the
energy itself, in analogy to what reported in ref 49 for the
fully resonant two-phonon Raman process.

We note that ref 20 reported a measurement of the length
over which the Raman process is restricted to the edge. The
authors assumed this to be the phase-breaking length, that
is, the average distance traveled by an electron before
undergoing inelastic scattering by a phonon. As discussed
above, to us it seems more natural to associate this length
scale with the distance traveled over the lifetime of the virtual
electron-hole pair, V/ωD ∼ 4 nm. We can also quantify the
electron phase-breaking length from the electron-phonon
coupling of K phonons, which was both calculated and
comparedwithdifferentexperiments.19,50,51Theelectron-phonon
scattering rate can be written as 2γ/p ≈ (60 meV)/p.52 This
allows us to estimate the phase-breaking length as pV/(2γ)
≈ 11 nm. Since the D peak does not arise exactly from K
phonons, we expect the actual phase-breaking length to be
slightly longer. However, the value suggested in ref 20 (∼40
nm) is much bigger. Thus, considering that extracting
nanometer length scales from far field Raman measurements,
as in ref 20, is extremely challenging and given the lack of
a fully quantitative theory, further studies, including near
field Raman measurements, are necessary to reach a definite
conclusion. In any case, the value of the length reported in
ref 20 would further validate our quasiclassical picture.

As discussed above, in the quasiclassical framework the
photoexcited electron and hole can be viewed as wave
packets of size ∼pV/ε ∼ 0.6 nm, initially created at an
arbitrary point of the sample. More precisely, instead of a
point one has to consider a region of length δl, such that
V/ωD > δl > pV/ε. Then, momentum conservation holds up
to δq ∼ p/δl < ε/V by virtue of the uncertainty principle.
Thus, electron and hole momenta of magnitude ε/V (from
the Dirac point) have approximately opposite directions, since
the photon momentum is very small. The same argument
holds for phonon emission and for the radiative recombina-
tion process; in order to emit a photon, the electron and hole
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must meet in the same region of space of size δl with almost
opposite momenta (up to p/δl). In the case of the D-peak
activation by a generic defect, the events that lead to the
e-h recombination are the inelastic scattering with a phonon
and the elastic scattering with a defect. Since the recombining
e, h have opposite momentum, both phonon and defect
scattering have to be back-scattering events.49 Thus, to
activate a D-peak, phonon scattering has to satisfy two
constraints: the first is that the phonon wavevector, q, must
have one end on the Dirac cone around K and the other on
the cone around K′. The second is set by the back-scattering
constraint. This implies that, if k′ and q′ are the electron
and phonon wave-vectors measured from K, we need q′ )
-2k′, as for Figure 1. This limits the subset of q satisfying
the first condition. The defect scattering must also satisfy
two constraints: momentum conservation in the phonon
scattering, and back-scattering. Momentum conservation
implies that the momentum exchanged by the defect elastic
scattering has to be d ) -q. This implies that the back-
scattering condition d ) K′ + 2k′ is automatically satisfied.

Momentum conservation upon reflection from an edge
depends on the orientation and quality of the edge and will
be discussed below. However, regardless of edge quality,
from pure geometric considerations, illustrated in Figure 2,
both phonon and edge must scatter electrons backwards.
Electrons back-scattered by ordered armchair edges change
their momentum by dA, while those by ordered zigzag edges
by dZ, as indicated in Figure 3. Figure 4A shows that dA is
directed along K - K′, while dZ along K - K. Since the D
peak onset requires scattering between the two nonequivalent
cones centered at K and K′ (intervalley scattering), the D
peak cannot be produced by a perfect zigzag edge, while it
should appear near a perfect armchair edge, as proposed by
refs 47 and 48. This does not apply to the D′ peak.
Geometrical considerations, illustrated in Figure 4B, show
that the D′ peak, not involving intervalley scattering, can be
activated both by armchair and zigzag edges, since both dA

and dZ are compatible with the required intravalley scattering.
This is not enough to determine whether one type of edge is
more efficient than the other for the D′ activation. This
question requires a detailed calculation beyond the scope of
the present work.

The backscattering condition has immediate consequences
for the polarization dependence of the Raman scattering
intensity. Indeed, the matrix element of creation/annihilation
of an electron-hole pair with momenta k, -k (from the

Dirac point) by a incident photon with polarization ein, is
proportional to [ein × k]. This is maximum when ein ⊥ k.
Since a perfect edge allows momentum conservation along
its direction, backscattering is possible only at normal
incidence (see Figures 2, 3, and 4C). This gives the
polarization dependence of the D intensity I(D) ∝ cos2 θin,
Figure 4C, in agreement with refs 47 and 48. More generally,

Figure 1. Reciprocal space scheme of the e-h backscattering condition. The circles represent isoenergy cuts on the Dirac cones. A phonon
q (solid red arrow) backscatters an electron from ki ) K + k′ to kf ) K′ - k′. Since q ) K + q′, back-scattering happens only if q′ )
-2k′. The orientation of the crystal is that shown in Figure 5.

Figure 2. Real space representation of the scattering process for
the D peak in the vicinity of an edge. The wavy lines represent the
incident photon generating an electron-hole pair, and the scattered
photon produced from the pair recombination. The solid black
arrows are the quasi-classical trajectories of electron and hole. The
dashed arrow is the emitted phonon. (a) Backscattering off an
ordered edge is possible only at normal incidence (up to the
quantum diffraction correction to the quasiclassical approximation,
of order (pωph/ε)1/2 , 1). (b) For oblique incidence on an ordered
edge, reflection is specular, so the electron and hole will not meet
at the same point and will not recombine radiatively. (c) For a
disordered edge backscattering is possible even at oblique incidence.
The typical distance x from the edge is determined by the lifetime
of the virtual electron-hole pair, ∼V/ωph.

Figure 3. The wavevector direction of electrons back-scattered by
a zigzag, or armchair edge (dz, da) is perpendicular to the edge.
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calling θin and θout the angles formed between the polariza-
tions of incident and scattered photons and the edge, we
would get I(D) ∝ cos2 θin cos2 θout. However, in our
experiments we collect all the scattered photons without an
analyzer, thus we have no dependence on θout.

We now consider disordered edges. An important char-
acteristic is the length scale � over which they are disordered,
which may be viewed as a correlation length. If this is
significantly larger than the C-C bond length, a ≈ 0.14 nm,
the edge behaves as a collection of locally perfect segments.
However, only the armchair segments will contribute to the
D peak. First, let us consider a single segment. If its length
is large enough, � . pV/ε ≈ 0.6 nm, the electron is reflected
almost as if this were a perfect edge, save a small correction
due to diffraction. This implies that backscattering is possible
not only at normal incidence, but also at small angles ∼pV/
(ε�). Thus, the D peak intensity for polarization perpendicular
to the local armchair segment direction will be minimum,
and smaller than the maximum intensity by a factor ∼pV/
(ε�). If the segment is short, � , pV/ε, it behaves as a short-
range impurity. Electron scattering from an arbitrary short-
range impurity was considered in ref 54. For impurities with
the same symmetry as a K point phonon (i.e., those which
efficiently activate the D peak) the backscattering probability
does not depend on the angle of incidence. Thus, for a single
very short armchair segment we do not expect polarization
dependence.

The most general dependence of D peak intensity on
incident photons polarization can be written as

where I(D)min, I(D)max are the maximum and minimum D
intensities, and θmax is the angle at which the maximum is
measured. This follows from the fact that the Raman intensity
is bilinear in the components of the polarization vector. Thus,
for a long armchair segment we expect θmax to correspond
to the armchair direction, and FA0

) I(D)min/I(D)max to be

small. As the length decreases, FA0
f1, while θmax always

selects the armchair direction.

In general, a disordered edge can contain armchair
segments of three orientations.37 If the average direction is
armchair, we expect most segments to be oriented along the
average direction, and some fraction f at (60°. For a random
collection of segments, we add the intensities incoherently

The resulting ratio is then

and the maximum is at θmax ) 0.

We now consider a disordered edge with an average zigzag
orientation. Here, we expect armchair segments at (30° with
respect to the average zigzag direction. If the edge is
symmetric on the average, they contribute equally; otherwise
one of the two directions is favored. Denoting their weights
by f1 and f2, we add the intensities as

which gives

Figure 4. (A) Schematic of intervalley process: only the exchanged momentum from armchair edges dA can connect K and K′. (B) Schematic
of intravalley process: both the exchanged momentum from armchair and zigzag edges, dz and dA, can connect points belonging to the
same region around K (K′). The blue line is a iso-energy contour, taking into account the trigonal warping.53 (C) Schematic of polarized
Raman: when the incoming light is polarized along ein, the D intensity depends on θin, the angle between the incident polarization and the
armchair direction (eA). The orientation of the crystal is that shown in Figure 3.

I(D)(θin) ) I(D)min + [I(D)max - I(D)min]cos2(θin - θmax)
(1)

(1 - f)[FA0
+ (1 - FA0

)cos2 θin] +

(f/2)[FA0
+ (1 - FA0

)cos2 (θin - 60°)] +

(f/2)[FA0
+ (1 - FA0

)cos2 (θin + 60°)] (2)

FA )
FA0

+ 3f/(4 - 3f)

1 + 3fFA0
/(4 - 3f)

g FA0
(3)

f1[FA0
+ (1 - FA0

)cos2 (θin - 30°)] +

f2[FA0
+ (1 - FA0

)cos2 (θin + 30°)] (4)

FZ )
FA0

+ (2 - k)/(2 + k)

1 + FA0
(2 - k)/(2 + k)

, k ) �1 + 3
(f1 - f2)

2

(f1 + f2)
2

(5)
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If the edge is on the average symmetric, f1 ) f2, θmax ) 0
and FZ is between one-third (long armchair segments) and 1
(short armchair segments).

To summarize, in all cases the presence of short
armchair segments with two or three different orientations
tends to increase I(D)min/I(D)max f 1 and moves θmax f
0. However, there is another effect which prevents I(D)min/
I(D)max f 1. As seen from Figure 2c, if the electron-hole
pair is created at a distance x from the edge, and the
propagation direction is oblique at an angle � with respect
the average edge normal direction, this results in a longer
path to reach the edge ∝ 1/cos �. Since the electron-hole
pair lives only a time ∼1/ωph, it has more chance to reach
the edge at normal incidence than oblique. This again favors
θmax ) 0, but makes I(D)min/I(D)max smaller than unity
(although a significant fraction of unity). Thus, we expect
in general to observe the maximum D peak intensity for
polarization parallel to the edge, irrespective of edge orienta-
tion and disorder. Should an angle different from zero be
measured, this would imply a prevalence of a certain

orientation of armchair segments distributed along the
average edge direction.

The quasiclassical real space picture for the D′ peak is
fully analogous to that for the D peak. For regular edges
this leads to the same cos2 θin polarization dependence of
the intensity. To determine the polarization dependence for
a disordered edge, one has to add contributions for both
armchair and zigzag edges, since they can both be active,
but their relative weights are not known. In any case, the
presence of segments with different orientations tends to
increase I(D′)min/I(D′)max and moves θmax toward 0.

If we apply the quasiclassical picture to the G peak, we
get that this q ) 0 phonon cannot change the electron
trajectory, so the whole Raman process must occur very
quickly in a small region of length pV/ε ≈ 0.6 nm at most,
which is impossible to resolve with Raman spectroscopy.
Thus, only a negligible fraction of the signal from the
immediate vicinity of an edge could be affected by its
presence, the rest being the bulk G peak, which has no
polarization dependence. Thus, we expect the same depen-
dence for I(D) or I(D)/I(G).

We now consider edge identification from optical micro-
graphs. If we examine two edges and assume them ideal,
their relative angle would depend only on their nature, as
shown in Figure 5, where red lines identify armchair
directions and blue identify zigzag directions. For example,
if two edges form an angle of 120°, they should be the same.
In contrast, an angle of 90 or 150° implies a change (Figure
5). Note that unless the crystallographic orientation of the
flake is known a priori or one of the two edges assigned
independently, absolute edge assignment is not possible just
based on their relative angle.

Figure 6A-C plots the optical micrographs of three
samples. They contain single layers, as identified by
Rayleigh21 and Raman spectroscopy.16 Figure 6B,D shows
samples containing edges forming angles of 90 and 150°,
as observed by optical and atomic force microscopy (AFM).

Figure 5. Possible angles formed between two edges. Red lines
indicate armchair edges, while blue ones indicate the zigzag edges.

Figure 6. (A) Optical micrograph of the flake used to study a single edge, indicated by the arrow; (B) flake containing two edges at 90°;
(C,D) optical and AFM images of a flake with two edges at an angle of 150°.

θmax ) 1
2

arctan
√3(f1 - f2)

(f1 + f2)
(6)
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Note that these edges appear uniform on a micron length
scale.

We first consider the Raman spectra measured at 514 nm
for the edge indicated by the arrow in Figure 6A. The edge
Raman spectrum, shown in red in Figure 7, has a strong D
peak (note the log scale of the y-axis used to enhance the
smaller peaks). The peak at ∼1450 cm-1 in Figure 7 is not
due to graphene, since it is visible on the substrate as well,
but it is the third order Raman peak of the silicon sub-
strate.55-57 The D peak dispersion at the edge is ∼50 cm-1/
eV, similar to the D peak inside graphite.41,58-60 That of the
2D and 2D′ peaks is ∼95 and ∼21 cm-1/eV, respectively,
as in refs 17 and 61.

Figure 8A plots the spectra for different incident polariza-
tion. The D intensity strongly depends on the angle between
incident polarization and edge; it is maximum for polarization
parallel to the edge and minimum when perpendicular. This
agrees with what previously was observed in polarized

measurements at the edge of graphite and graphite ribbons47,48

but is here measured on a single graphene layer. Figure 8B
shows I(D)/I(G) as a function of θin for the edge in Figure
6A. The D intensity is consistent with a cos2(θin) dependence;
however, it does not go to zero for light polarized perpen-
dicular to the edge (Figure 8). The residual I(D)/I(G) at the
edge is ∼0.14, larger than in the bulk where I(D)/I(G) <
0.1. The ratio of the residual intensity I(D)min to the maximum
intensity I(D)max, I(D)min/I(D)max ∼ 0.2. From eqs 3 and 5,
this is compatible with the case of an edge with average
armchair direction and with armchair segments (i) longer
than pVF/ε, and (ii) oriented predominantly along the edge
average direction. We then consider a sample with edges
oriented at 90°, one respect to the other, similar to Figure
6B. Repeating the same procedure on the two edges we find
the results in Figure 9. In this case one of the two edges
shows I(D)min/I(D)max ∼ 0.2 and θmax ∼ 0, while the other
has I(D)min/I(D)max ∼ 0.35 and a near zero θmax ∼ 7°. It would
be thus tempting to assign the first to an edge with average
armchair direction and the second to an edge with average
zigzag direction but with relatively long armchair segments
and not fully symmetric. As discussed later, these cannot be
taken as general findings. However, in all the samples we
examined, we found the maximum D peak intensity for
incident polarization parallel (or near-parallel) to the average
edge direction.

To understand how the intensity of the G, 2D and D peaks
changes when crossing an edge, Raman mapping is per-
formed with light polarized parallel to the edge direction.
Figures 10 show a map of I(G), I(D), I(2D), I(D)/I(G) across
the edge. The D peak is localized at the edge, unlike the G
peak, which increases, as expected, when moving from
outside to inside the sample. Figure 11 plots the profile of
I(G), I(2D), I(D) and I(D)/I(G) across the edge. When going
from outside to inside the flake, I(D) increases, reaches a
maximum and then decreases. Fitting this variation with a
Gaussian, we get a width of ∼700 nm, comparable with our

Figure 7. Raman spectra inside the sample (black) and at the edge
(red) at 514 nm; a strong D peak is visible at the edge. Note the
log scale for the intensity and that the peak at ∼1450 cm-1 is the
third order of the silicon substrate.55,56

Figure 8. (A) Raman spectra of one edge measured for different incident polarization at 633 nm. (B) I(D)/I(G) as a function of θin. Note
that I(D)/I(G) does not go to zero for perpendicular polarization. This indicates that the edges are not perfect. Red line is the fitting curve
according to eq 1, giving I(D)/I(G) ) 0.14 + (0.74 - 0.14)cos2(θin).
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spatial resolution. On the other hand, I(G) decreases moving
from inside to outside the flake. This is expected since the
Raman intensity of the allowed peak is proportional to the
volume of the sample. The same is observed for the 2D peak
(Figures 10 and 11).

The D peak behaves in a different way compared to the
G and 2D, because its intensity is proportional to the amount
of defects, which, neglecting structural disorder, can be
assumed to be proportional to the edge length under the laser
spot, as discussed above. Thus, the maximum I(D) should
be measured when the diameter of the laser beam crosses
the edge (dotted vertical line in Figure 11). Here, I(G) is
roughly half of I(G) inside the flake. We define this position
as the “edge”. Thus, when we refer to any Raman parameter
as measured at the edge, we mean measured at this position.
This is needed to safely compare values of I(D)/I(G)
measured on different edges or different points on the same
edge.

Figure 12A shows the Raman spectra obtained when
scanning across an edge. We detect a small red shift of the
G peak when the laser spot is almost outside the flake,
accompanied by a FWHM(G) decrease (Figure 12B). This
is not due to increasing disorder, since in this case we expect
FWHM(G) to increase,15 but it could be related to a doping
variation,15,18,24 that is, this edge shows a slightly higher
doping level compared to the bulk. Figure 12B also plots
the D peak position. It decreases from 1348 to 1346 cm-1

when moving from inside to the edge. This variation is very
small, within the spectrometer resolution, and in the opposite
direction compared to the G peak. Thus, stress is not the
reason of this G peak trend.25,26 However, not all the
measured edges show this trend, and a more systematic
investigation is needed.

Finally, we perform a Raman map on two edges forming
angles of 90 and 150°, similar to Figure 6(B,C). This angle
implies, for ideal edges, that if one edge is zigzag the other
must be armchair or vice-versa, but the two edges cannot
have the same chirality, as shown in Figure 5. Unlike the
single point measurements of Figures 8 and 9, here we try

Figure 9. I(D)/I(G) as a function of θin measured on two edges
forming an angle of 90°. Note that I(D)/I(G) does not go to zero
for perpendicular polarization in both directions. This indicates that
both edges are not perfect. Red lines are fits to the data according
to eq 1. These give I(D)/I(G) ) 0.1 + (0.49 - 0.1)cos2(θin) for the
top black data points and I(D)/I(G) ) 0.06 + (0.17 - 0.06)cos2(θin

- 7°) for the bottom blue data points

Figure 10. (A) Raman map of I(G) in proximity of the edge shown
in red in Figure 6A; (B) Raman map of I(D); (C) Raman map of
I(2D); (D) Raman map of I(D)/I(G). Measurements are taken for
incident polarization parallel to the average edge direction

Figure 11. Profile variation of the intensity of G, 2D, D, derivative
of the G peak, d(IG), and I(D)/I(G), measured along the white arrow
in Figure 10.
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to capture the response of the entire sample. However, if
we mapped the sample with a fixed polarization, as done in
the single edge maps in Figure 10, we would preferentially
enhance the D peak response of one of the two edges. Thus,
we do Raman mapping with circular polarization. Figures
13(A,B) shows the maps of I(D) and I(D)/I(G). No strong
variation of I(D) is detected at the edges (Figure 13A); I(D)/
I(G) is never null (Figure 13B) in contrast to what expected
for ideal zigzag edges. Thus, in this case, the circular
polarization maps do not allow to conclusively assign the
edges orientation.

It is interesting to compare our data with those in ref 47

for two graphite edges with an angle of 150°. Reference 47
states that I(D) at the edge is never null due to disorder.
However, they claim that a small I(D)/I(G) can be taken as
a signature of zigzag edges, while a large I(D)/I(G) indicates
armchair edges. This is not the case, as we have discussed
above, and only an accurate analysis of the polarization
dependence could derive the average edge orientation.
Furthermore, the case of a graphite edge, consisting of
multiple fractured graphene layers, is much more complex
to analyze than a single graphene layer. The D peak intensity
should always be maximum along the graphite edge, in
agreement with the measurements of ref., 47, but this alone
is not sufficient to confirm the average edge orientation.
Indeed, here we find that none of the samples we analyzed
have perfect edges on a microscopic scale, even though they
look very smooth by optical microscopy. In particular, we
never observe perfect zigzag edges since our measured I(D)
is never null.

In conclusion, Raman spectroscopy is an ideal tool to
probe graphene edges. We have developed a real space theory
for Raman scattering to analyze the general case of disor-
dered edges. The D to G peak ratio strongly depends on
polarization, relative position of the laser spot with respect
to the edge, and amount of edge disorder. In some samples,
Raman mapping with circular polarization shows no signifi-
cant dependence of the D peak intensity on the macroscopic
edge orientation. This indicates that edges can be mixed and
disordered at least on the laser spot scale even though they
follow well defined crystallographic directions at a larger
scale.
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Figure 12. (A) Raman spectra measured at 514 nm across an edge. The green circle represents the laser spot and the gray square is the
graphene; (B) G, D peak positions, Pos(D), Pos(G), and FWHM(G) as a function of the distance from the edge.

Figure 13. (A) Raman map of I(D) for two edges forming an angle
of 150°. I(D) does not show strong variation along the two edges.
(B) Raman map of I(D)/I(G) in proximity of two edges forming
an angle of 90°. I(D)/I(G) is never null, nor comparable with that
inside the flake.
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(20) Cançado, L. G.; Beams, R.; Novotny, L. arXiv:0802.3709v1 [cond-
mat.mtrl.sci].

(21) Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan,
H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C. Nano. Lett. 2007, 7,
2711.

(22) Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang,
D.; Yang, R.; Booth, T. J.; Geim, A. K. Appl. Phys. Lett. 2007, 91,
063124.

(23) Ferrari, A. C. Solid State Commun. 2007, 143, 47.
(24) Das, A.; Pisana, S.; Piscanec, S.; Chakraborty, B.; Saha, S. K.;

Waghmare, U. V.; Yang, R.; Krishnamurhthy, H. R.; Geim, A. K.;
Ferrari, A. C.; Sood, A. K. Nat. Nanotechnol. 2008, 3, 210.

(25) Ferralis, N.; Maboudian, R.; Carraro, C. Phys. ReV. Lett. 2008, 101,
156801.

(26) Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini,
G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.;
Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. arXiv:0812.1538.

(27) Lu, X.; Huang, H.; Nemchuk, N.; Ruoff, R. S. Appl. Phys. Lett. 1999,
75, 193.

(28) Chen, Z. H.; Lin, Y.-M.; Rooks, M. J.; Avouris, P. Physica E 2007,
40, 228.

(29) Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Phys.
ReV. B 1996, 54, 17954.

(30) Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. J. Phys. Soc.
Jpn. 1996, 65, 1920.

(31) Miyamoto, Y.; Nakada, K.; Fujita, M. Phys. ReV. B 1999, 59, 9858.
(32) Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Phys. ReV. B 1999,

59, 8271.
(33) Son, Y. W.; Cohen, M. L.; Louie, S. G. Phys. ReV. Lett. 2006, 97,

216803.
(34) Pisani, L.; Chan, J. A.; Montanari, B.; Harrison, N. M. Phys. ReV. B

2007, 75, 064418.
(35) Nakada, K.; Igami, M.; Fujita, M. J. Phys. Soc. Jpn. 1998, 67, 2388.
(36) Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.;

Fukuyama, H. Phys. ReV. B 2006, 73, 085421.
(37) Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Phys.

ReV. B 2005, 71, 193406.
(38) Sols, F.; Guinea, F.; Castro Neto, A. H. Phys. ReV. Lett. 2007, 99,

166803.
(39) Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.;

Fukuyama, H. Appl. Surf. Sci. 2005, 241, 43.
(40) Cervantes, F.; Piscanec, S.; Csanyi, G.; Ferrari, A. C. Phys. ReV. B

2008, 77, 165427.
(41) Ferrari, A. C.; Robertson, J. Phil. Trans. R. Soc. London, Ser. A 2004,

362, 2267–2565.
(42) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126.
(43) (a) Ferrari, A. C.; Robertson, J. Phys. ReV. B 2000, 61, 14095. (b)

Ferrari, A. C.; Robertson, J. 2001, 64, 075414.
(44) Baranov, A. V.; Bekhterev, A. N.; Bobovich, Y. S.; Petrov, V. I. Opt.

Spektrosk. 1987, 62, 1036.
(45) Thomsen, C.; Reich, S. Phys. ReV. Lett. 2000, 85, 5214.
(46) Nemanich, R. J.; Solin, S. A. Phys. ReV. B 1979, 20, 392.
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