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Supplementary Section 1. Transmission Electron Microscopy (TEM) and Electron 

Energy Loss Spectroscopy (EELS) of CVD h-BN multilayers. 

Figure S1a and b show high-resolution TEM images of a stacked ML-hBN of about 2 nm 

thickness. The hBN layers are visible in profile due to folding, which results in rounded 

edges (marked in Figure S1), with the atomic layers parallel to the electron beam (as 

sketched in Figure S1c). We find that the multilayer structure is well formed but that the 

number of atomic layers within the same multilayer can change. We count 3 to 4 and 9 to 

10 atomic layers in Figure S1a and b, respectively, which show images of the same 

sample. The surface of the sample shows some amorphous material. Additionally, we find 

interlayer defects (see area marked by the orange rectangle in Figure S1c) which may 

originate from the irregular stacking along the grain boundaries. This information, 

together with the Moirè pattern observed in Figure 1b of the main text, lets us assume that 

polycrystalline domains exist independently in every layer and the grain boundaries do 

not propagate through the whole thickness of the multilayer. 

 

Figure S1. High-resolution TEM image of a CVD h-BN multilayer. (a) Image of two 1 nm-thick CVD-

grown h-BN multilayers, which were stacked onto each other by folding. The folding edge is marked by an 

arrow and reveals the individual atomic h-BN layers.  (b) Image several few nm-thick CVD-grown h-BN 

multilayers, which were stacked onto each other by folding. The folding edges are marked by arrows and 

reveal the individual atomic h-BN layers. (c) Illustration of the multilayer sample shown in panel (b). The 

yellow rectangle makes the folding edge, which corresponds to the area marked by the yellow rectangle in 

panel (b). 

 

Figure S2 represents EELS spectra of B and N acquired from approximately 2x2 m2 

area (adjusted to the diameter of the hole in the carbon film) in diffraction mode at low 

scattering angles around central spot in the region shown in Figure 1b of the main text. 

The Boron pre-edge peak at 192 eV corresponds to the transition to * level of hBN -

system. Its sharpness indicates (FWHM is about 0.5 eV) low degree of disturbance of -

system over the measured area. 

 



 
Figure S2. EELS spectra of CVD grown h-BN multilayer. (a) Spectral region of the K absorption edge 

of the Boron (B) atoms. (b) Spectral region of the K absorption edge of the Nitrogen (N) atoms.    

 

 

Supplementary Section 2. Model for simulating the s-SNOM images of Figure 2h. 

In this note we model s-SNOM images of a ML-hBN layer (i) using the conductive sheet 
model[1,2] to describe the polariton propagation, and (ii) including a random distribution 
of perfect scatterers with an anisotropic polarizability to mimic the PhP scattering at the 
defects. We assume that the polaritons are launched exclusively by the tip, which is 
treated as a vertically polarized point dipole source with a dipole moment 𝐩0. The 
polaritons propagate along the layer, scatter at the defects and eventually propagate back 
to the tip [located at the position 𝐫 =  (𝑥, 𝑦)], where they are scattered additionally to the 
incident field into the far-field radiation that is recorded by a detector. The tip-scattered 
field can be thus expressed as 
 

𝐸sca(𝐫) ∝ 𝐸inc+ Δ𝐸(𝐫),       (S1) 
 

where 𝐸inc is the incident field at the tip position and Δ𝐸(𝐫) is the total polariton field at 
the tip position. 
 
Assuming that the defects are randomly distributed, monodisperse and that their size is 
much smaller than their mutual distance and the polariton wavelength, we model the 
defects (numerated j) as point scatterers with a polarizability tensor, α̂𝑗 , and a dipole 

moment 𝐩𝑗: 

 

𝐩𝑗 = α̂𝑗𝐄p(𝐫𝑗) = (

𝛼𝑗|| 0 0

0 𝛼𝑗|| 0

0 0 𝛼𝑗𝑧

) 𝐄p(𝐫𝑗),     (S2) 

 
where 𝐫𝑗 is the position of the jth defect and 𝐄p the field of the tip-launched polaritons at 

the position of the defect, which can be expressed as 
 

 𝐄p(𝐫𝑗) = 𝐺̂(𝐫𝑗 , 𝐫) ⋅ 𝐩0       (S3) 

 



where 𝐺̂(𝐫, 𝐫𝑗) is the Dyadic Green’s function (DGF). We assume that the polarizability 

of the defects is in-plane isotropic, but that it can be different to the out-of-plane 
polarizability. Assuming that the polariton scattering between the defects is negligibly 
small, the total polariton field at the tip position (i.e. the tip-scattered polariton field) can 
be then expressed as 
 

Δ𝐄(𝐫) = ∑ 𝐺̂(𝐫, 𝐫𝑗) ⋅ 𝐩𝑗𝑗 ,       (S4) 

 

Since the polariton modes supported by the layer are transverse magnetic (TM), they 

comprise an out-of-plane (vertical) electric field component as well as an in-plane electric 

field component parallel to the wavevector, yielding an out-of-plane dipole moment, 𝑝𝑗𝑧, 

and an in-plane component, 𝐩𝑗||, parallel to the vector Δ𝐫 = 𝐫𝑗 − 𝐫: 

 

𝑝𝑗𝑧   =  𝛼𝑗𝑧𝐺𝑧𝑧(|𝐫𝑗 − 𝐫|) 𝑝0  and 𝐩𝑗||  =  𝛼𝑗||𝐺||𝑧(|𝐫𝑗 − 𝐫|) 
𝐫𝑗−𝐫

|𝐫𝑗−𝐫|
 𝑝0. (S5) 

 
In the following, we consider only the z-component of the polariton field at the tip 
position, ∆𝐸𝑧(𝐫), because it is the dominant field component scattered by the vertically 
elongated tip. Thus, by combining Equations S4 and S5 we obtain the following 
expression for the z-component of the total polariton field that is scattered by the tip: 
 

∆𝐸𝑧(𝐫)  =  𝑝0 ∑ [ 𝛼𝑗𝑧 𝐺𝑧𝑧(|𝐫 − 𝐫𝑗|)
2

+ 𝛼𝑗||𝐺||𝑧(|𝐫 − 𝐫𝑗|)
2

 ]𝑗 .  (S6) 

 
We can simplify Equation S6 by considering only the fundamental TM polariton mode 
(for hBN phonon polaritons the so-called M0 mode, which has the longest propagation 
length[3]) and the polariton field is recorded at fixed height. In this case, we can express 
the Green´s function as a cylindrical wave: 
 

 𝐺𝑧𝑧(𝑟) ∼
𝑒𝑖𝑘p𝑟

√𝑟
  and 𝐺||𝑧(𝑟) ∼

𝑒𝑖𝑘p𝑟

√𝑟
 ,                 (S7) 

 

where 𝑘p is the complex-valued wavevector of the polariton mode. Thus, Equation S6 

can be further simplified to the following equation:  
 

∆𝐸𝑧(𝐫) ∼ ∑ 𝛼𝑗
e

2𝑖𝑘p|𝐫−𝐫𝑗|

|𝐫−𝐫𝑗|𝑗        (S8) 

 

where 𝛼𝑗 = 𝛼𝑗𝑧 + 𝛼𝑗||. To simulate the s-SNOM images shown in Figure 2h of the main 

text, we applied Equation S1 and S8 using Δ𝐸(𝐫) = ∆𝐸𝑧(𝐫), and assumed that 𝛼𝑗 is the 

same for all defects.  

 
 
 
Supplementary Section 3. Analytical expression describing the Fourier transform of 

s-SNOM near-field images 

To use our analytical model for the analysis of the Fourier transforms (FTs) of the 
experimental s-SNOM images, we calculated the FT of the simulated near-field images 
obtained by Equation S8. We find: 
 



 𝜎̂(𝐤) ≡ ℱ[∆𝐸𝑧(𝐫)](𝐤) ∼ ∑ α𝑗 ∫ 𝑑2𝐫 𝑒𝑖𝐤𝐫 𝑒
2𝑖𝑘p|𝐫−𝐫𝑗|

|𝐫−𝐫𝑗|𝑗 .    (S9) 

 

 

Shifting the coordinates in the integrand according to 𝐫 → 𝐫 + 𝐫𝑗, we obtain: 

  

 𝜎̂(𝐤) ∼ ∑ 𝛼𝑗𝑒𝑖𝐤𝐫𝑗 ∫ 𝑑2𝐫 𝑒𝑖𝐤𝐫 𝑒2𝑖𝑘p|𝐫|

|𝐫|𝑗  .      (S10) 

 

The result of the integration reads as: 

 

𝜎̂(𝐤) ∼ ∑ 𝛼𝑗𝑒𝑖𝐤𝐫𝑗
1

√𝑘2−4𝑘p
2

𝑗 .       (S11) 

 

For convenience, we calculate the square of the FT absolute value, splitting 𝑘p into real 

and imaginary parts: 
 

|𝜎̂(𝐪)|2 ∼
1

√(𝑞2−4[(𝑅𝑒[𝑞p])
2

−(𝐼𝑚[𝑞p])
2

])
2

+64(𝐼𝑚[𝑞p])
2

(𝑅𝑒[𝑞p])
2

|∑ α𝑗𝑒𝑖𝑘0𝐪𝐫𝒋
𝑗 |

2
 (S12) 

 

where we introduce the normalized wavevector 𝐪  =  𝐤/𝑘0. 

 
The first factor in Equation S12 represents a smooth envelope with a maximum at q close 
to twice the polariton wave vector. The square of the sum equals 𝑆(𝐤)𝑁, where 𝑁 is the 

number of defects and 𝑆(𝐤) =
1

𝑁
|∑ α𝑗𝑒𝑖𝐪𝐤𝟎𝑟𝑗

𝑗 |
2
 is the structure factor of the disordered 

film. For a purely random distribution of the defects, as we assume in our modeling of 
the h-BN layer, it is known that 𝑆(𝐤) → 1 for 𝑁 → ∞, which is independent of 𝐤. In the 
case of a near-field image with a size much larger than the wavelength, 𝑆(𝐤) leads to 
noise on the smooth envelope, which can be seen in the FT of simulated (colored curves 
in Figure S3a) and experimental (black curve in Figure 3a of the main text) images.  As 
shown in Figure S3 with simulation data, we can well fit the FT of s-SNOM images using 
the smooth envelope function, which is independent of the distribution and structure of 
the defects: 

 

|𝜎̂(𝑞)|2 ∼
1

√(𝑞2−4[(𝑅𝑒[𝑞𝑝])
2

−(𝐼𝑚[𝑞𝑝])
2

])
2

+64(𝐼𝑚[𝑞𝑝])
2

(𝑅𝑒[𝑞𝑝])
2
     .        (S13)  

 

 

 

Supplementary Section 4. Validation of Equation 1 of the main text via simulations  

To verify that Equation 13 of the main text (Equation S13) can be applied to determine 

the complex-valued polariton wavevector 𝑘p, we simulated complex-valued s-SNOM 

images (i.e. amplitude and phase images) of a 13 nm thick ML-hBN layer with defects of 

a density of 30 m-2 (the same as in Figure 2h) for different illumination frequencies 𝜈. 

For the dielectric function of the layer we used that of ML-hBN. FT of the images was 

performed and radial line profiles, |𝜎̂(𝑘𝑥, 𝑘𝑦)|2, were extracted (colored curves in Figure 

S1a). They can be perfectly fitted by applying Equation 1 of the main text (Equation S13), 

yielding the complex-valued polariton wavevector 𝑘p=𝑘p
´ + 𝑖𝑘p

´´ and subsequently the 



polariton dispersion 𝜈(𝑘p
´ /𝑘0) and polariton lengths 𝐿p(𝜈) = 1/𝑘p

´´ (colored symbols in 

Figure S3b and c, respectively). The fitting results excellently match the analytically 

calculated (see Methods) phonon polariton dispersion and propagation lengths (black 

solid lines in Figure S3b and c) of a 12 nm thick hBN layer with the same dielectric 

function as the one used for simulating the s-SNOM image. Figure S3 thus clearly 

demonstrates the validity of Equation 1 of the main text (Equation S13) to determine the 

complex-valued polariton momentum from FTs of complex-valued simulated s-SNOM 

images. 

 

 
 
Figure S3. Extraction of phonon polariton dispersion and propagation lengths from Fourier 

transform of simulated s-SNOM images. (a) Colored curves: Radial profiles of the Fourier transform of 

simulated complex-valued s-SNOM images at different illumination frequencies,|𝜎̂(𝑘𝑥 , 𝑘𝑦)|2, assuming 

a 13 nm thick h-BN layer with defects of a density of 30/m2. Black curves: Fitting based on Equation 1 of 

the main text (Equation S13). (b,c) Symbols show the phonon polariton dispersion and propagation lengths 

𝐿p(𝜈) obtained from panel (a). Solid line shows the analytical phonon polariton dispersion 𝜈(𝑘p
´ /𝑘0) and 

propagation lengths of a 12 nm thick h-BN slab without defects.   

  

 

 

Supplementary Section 5. Comparison of FTs of real and complex-valued s-SNOM 

images 

Figure S4 shows s-SNOM images of a 13 nm thick ML-hBN at 1430 cm-1, similar to 

those presented in Figure 2f of the main text. The interferometric detection of the s-

SNOM allows us to record the phase 𝜑3 and amplitude 𝑠3 images (Figure S4a and b top), 

from which we can calculate the complex-valued s-SNOM signal 𝜎3 = 𝑠3𝑒𝑖𝜑3 and images 

showing the real and imaginary parts, Re(𝜎3) and Im(𝜎3), respectively (Figure S4c and 

d top). All the images show random interference fringes. However, the periodicity of the 

fringes is partially different, which can be verified with the FT of the images (Figure S4a-

d bottom). We observe that the FT maps of the 𝑠3 and Re(𝜎3) images show rings with 

larger diameters than the FT maps of the 𝜑3 and Im(𝜎3) images. Further, the 𝑠3 and 

Re(𝜎3) images show a bright disk-like feature in the center, which is absent in the the 𝜑3 

and Im(𝜎3) images. Typically, the polariton momentum is determined as the radius of the 

ring observed in the FT of polariton images.[4] Since the ring diameter is different in the 

various FTs, measuring the ring radius thus eventually does not provide the correct result. 

For that reason, we performed FT of complex-valued s-SNOM images and fitted the 

radial line profiles with Equation 1 of the main text. The validity of the procedure is 

demonstrated in Supplementary Section 4.  

 



 
 
Figure S4. Fourier transforms of real valued signals. (a-d) Top: s-SNOM images showing phase 3, 

amplitude s3, real part Re(𝜎3) and imaginary part Im(𝜎3) of the near-field signal. Bottom: Fourier 

transforms of the s-SNOM images. (e) Radial profiles extracted from the FT maps shown in panels a to d. 

Black curves shows the square of the Fourier transform of the complex-valued s-SNOM image, |FT(𝜎3)|2. 
 

 

 

Supplementary Section 6. Calculation of the reflection phase of propagating PhPs 

at hBN edges 

To calculate the PhP reflection phase 𝜃 at hBN edges (used to obtain the Fabry-Perot 

model results shown in Figure 5 of the main text), we performed full-wave numerical 

simulations using the COMSOL Multiphysics software package. We assumed a 13 nm 

thick ML-hBN and excited via a so-called numerical port a plane PhP wave propagating 

along the layer. The PhP is back-reflected at an edge at a distance L from the port, yielding 

interference between forward and backward propagating PhPs, as can be seen in the 

resulting field distribution shown in Figure S5a. The back-reflected field is measured at 

the position of the port and normalized to the excitation field, yielding the complex-

valued reflection coefficient 𝑆11 (S-matrix formalism), which is given by 

 

𝑆11 =
∫ ((𝐄−𝐄𝐢

∗)∙𝐄𝐢
∗)𝑑𝐴port

∫ (𝐄𝐢∙𝐄𝐢
∗)𝑑𝐴port

,       (S14) 

 

where 𝐄𝐢 is the initial polariton field launched by the port, 𝐄 is the total field (including 

the initial and back-reflected polariton field), and 𝑑𝐴 is an element of the port surface. 

Assuming that only the initial and the back-reflected polaritons contribute to the total 

field 𝐄 at the port, we can write 𝑆11 = 𝑒𝑖2𝑘p𝐿𝑒𝑖𝜃, where 𝑘p is the PhP wavevector. The 

PhP refection phase is subsequently obtained as 

 

 𝜃 = Arg[𝑆11/𝑒𝑖2𝑘p𝐿].        (S15) 

 

Figure S5b and c show that 𝜃 is about 0.32, nearly independent of L and wavenumber 

. The weak oscillations of the phase observed in Figure S5b (corresponding to an 

uncertainty of less than ±0.02) can be attributed to numerical errors, as well as to 



polariton scattering at the sample edge into free-space waves and higher-order polariton 

modes that are not considered in Equation S15. 

 

 

Figure S5. PhP reflection Phase. (a) Simulated near-field amplitude distribution of a PhP wave in a 13 

nm thick CVD-grown h-BN layer, excited on the left side (via a so-called port in COMSOL) and reflected 

by the h-BN edge on the right side. (b) PhP refection phase as a function of distance L between port and h-

BN edge for  = 1470 cm-1. (c) PhP refection phase as a function of wavenumber for L = 500 nm. 

 

 

 

Supplementary section 7. Reproducibility of PhP observation on different CVD-

grown hBN layers 

 

To demonstrate the reproducibility of PhPs on CVD-grown hBN layers, we show in 

Figure S6 our results obtained with samples named hBN6 and S1. The main text shows 

results obtained with the sample named S3. Each of the samples was grown in a separate 

process, but with similar process parameters. 

 

In Figure S6a and b we present topography z, near-field amplitude s3, near-field phase 3, 

and the square modulus of FT of the complex-valued near-field image, |FT(3)|
2, of 

sample hBN6, which is a 6 nm-thick hBN layer (one ML-hBN layers) on a CaF2 substrate. 

In Figure S6b we show the results obtained with sample S1, which is a 11 nm-thick hBN 

layer (two stacked ML-hBN layers) on a SiO2/Si substrate (sample S1). Similar to the s-

SNOM images shown in Figure 2 of the main text, we observe random PhP interference 

fringe patterns in the near-field amplitude and phase images. Accordingly, the FTs of the 

complex-valued near-field images reveal a bright ring. The fits (red curves in Figure S6c 

and d) of the radial profiles of the FTs (black curves in Figure S6c and d) yield – 

analogously to the main text – the complex-valued PhP wavevectors 𝑘p
exp

, which are 

shown in Figure S6e and f (red text). They agree well with calculations of the PhP 

wavevectors 𝑘p
calc (blue text in Figure S6e and f), which consider the specific layer 

thickness and substrate. For all calculations we used the dielectric function reported in 

Figure 1e of the main text (obtained from sample S3). The good agreement between the 

measured and calculated wavevectors for all samples (S1, S3, and hBN6) using the same 

dielectric function (obtained from S3) demonstrates the good reproducibility of the hBN 

layer growth and the PhP properties.  

 



 

 
Figure S6. s-SNOM study of different hBN samples. (a,b) From left to right: Topography z, near-field 

amplitude s3 and phase  images, and square modulus of the FT of the complex-valued near-field images. 

(a) Sample S1: 6 nm thick hBN layer (one ML-hBN layer) on a CaF2 substrate, recorded at 1400 cm-1. (b) 

Sample hBN6: 11 nm thick hBN layer (two stacked ML-hBN layers) on a SiO2/Si substrate, recorded at 

1420 cm-1. (c,d) Radial profiles (black curves) extracted from the FT maps shown in panels a and b. Red 

curves show fits. 

 

 

 

References 

[1] J. S. Gomez-Diaz, M. Tymchenko, A. Alù, Phys. Rev. Lett. 2015, 114, 233901. 

[2] A. Y. Nikitin, in World Scientific Handbook of Metamaterials and Plasmonics: 

Volume 4: Recent Progress in the Field of Nanoplasmonics, World Scientific, 2018, 

pp. 307–338. 

[3] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. 

Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. 

H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov, 

Science 2014, 343, 1125. 

[4] N. Zhang, W. Luo, L. Wang, J. Fan, W. Wu, M. Ren, X. Zhang, W. Cai, J. Xu, Nat 

Commun 2022, 13, 983. 

  


