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Table S1. Summary of typical synaptic behaviors of artificial synaptic electronic devices. SLG: Single 
layer graphene; SM = sensory memory; LTM = long term memory; STP = short term plasticity; LTP = 

long term plasticity; LTD = long term depression; STDP = spike-timing dependent plasticity; SRDP = 

spike response dependent plasticity; PPF = paired-pulse facilitation. 

 
 

Device structure Size Tested structure Synaptic functions Reference 

Au/Pd/WSe2 10 μm  
Polymer electrolyte gated 

transistor 
STP to LTP transformation  S1 

Pt/InGaZnO/Pt  Ø 0.5 mm Vertical structure 
STP, LTP,  

Learning experience 
S2 

Au/SnSwe/BP/Au 5 μm BP−SnSe heterojunction 
STDP, Potentiation, 

depression 
S3 

MoS2/hBN/SLG ~ μm 
Heterostructure,  

Floating gate engineering 

pulsed potentiation and 

relaxation, STDP 
S4 

IZO/P-doped SiO2 80 μm 

laterally coupled oxide-based 

protonic/electronic hybrid 

artificial synapse network 

PPF, dynamic filtering and 

spatiotemporally correlated 

signal processing 

S5 

Au/Ti/MoS2 ~ μm 
Biopolymer electrolyte gated 

MoS2 transistor 
EPSC, STDP S6 

Pt/Ag-doped 

SiOxNy /Pt 
10 μm 

Inert electrodes sandwiched 

structure 
STP, LTP S7 

Ag/MgO/Pt  2 μm Electrochemical metallization PPD, LTP, PPF S8 

Au/LixMoS2/Au 5 μm Lateral structure 
Synaptic competition and 

synaptic cooperation effects 
S9 

T iN/Ge2Sb2Te5/T iN Ø 75 μm T-cell phase transition area Pair STDP S10 

Pd/Ta2O5x/TaOy /Pd 1 μm Crossbar structure STDP, LTP S11 

Ni/Nb-SrTiO3/T i Ø 400 μm MIM structure learning, forgetting S12 

Pt/InGaZnO/Pt  Ø 0.5 μm Shadow mask patterned MIM Learning experience S13 

Pt/T iO2/Pt 2 μm Vertical structure Triplet-STDP, LTP S14 

HfOx/ta/TaOx/Pt  4 μm MIM structure with sidewalls Heterosynaptic interactions S15 

Au/Ti/MoS2 5 μm multi-terminal memristors Cooperation/competition S16 

Pt/GO/Au 50 nm
2
 CAFM tip-sample junction 

Potentiation, PPF, EPSC 

relaxation, non-volatile RS 
Our work 
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Table S2: Cell size of cross-point and cross-bar devices fabricated by nanolithography. 

 

Device structure Cell size Fabrication technique Reference 

Pt/TiO2/Pt 50 nm×50 nm nanoimprint lithography S17 

TiN/Hf/HfOx/TiN 10 nm×10 nm E-beam lithography S18 

Pt/Cr/Ag-Si/Si/W 100 nm×100 nm E-beam lithography S19 
Pt/GO/Au, Pt/GO/Cu 50 nm

2
 - Our work 

 

 

 

 
 

 
 

Supplementary Figure 1: (a) and (b) Wettability measurement of graphite and GO, respectively. GO 

exhibits good hydrophilic properties, indicating the existence of a large amount of oxygen-containing 

functional groups. (c) SEM image of CAFM tip (Type: Arrow CONTPt) after spray-coating with a 
~100 nm thick GO film. The image shows conformal coating. GO is recognized by the formation of 

wrinkles.  

 

 

 

 

 

 
 
Supplementary Figure 2: Zoomed-in images of (a) fresh Pt tip (b) GO-coated Pt tip cropped from the 

SEM images in Figures 1c, d of the main text, respectively. The radius of each tip (highlighted with a 

yellow and red circles) can be estimated to be ~8 nm (fresh tip) and ~65 nm (GO-coated). 

 



     

3 
 

Supplementary Note 1: Effective contact area between tip and sample 
 

According to Hertz’s contact theory [S20-S21], the most used to study interactions between tip and 

sample in AFM systems [S20-S23], Ac can be quantified as [S20-S21]: 

 

   with       (Eq.S1) 

 

where  is the contact radius (the radius of the contact area), is the contact force between tip and 

sample,  is the tip radius,  are the elasticity moduli and  are the Poisson ratios of tip and 

sample. is given by Hooke's law [S24]: 
 

 

      (Eq. S2) 
 

 

where  is the spring constant of the tip, is the tip deflection, and  is the sum of external forces, 
such as capillary forces, electrostatic forces and others [S25].  

Ref.S26 reported calculations of AC for different Rtip, FC, and tip/sample materials composition, 
giving a 1-1000 nm2 range [S26]. However, the effective area (Aeff), defined as the sum of all the 

spatial locations on the surface of the sample electrically connected to the CAFM, across which the 

electrons can flow, also depends on relative humidity [S26], and the thickness of the water layer on the 

surface of tip and sample [S27]. Therefore, when studying insulating materials with a CAFM tip in air, 

Aeff is normally>AC [S26]. We estimate the tip/sample contact area, i.e. the size of the Pt/GO/Au nano-
synapses (formed by placing a Pt tip on GO/Au sample) and Pt/GO/Cu nano-synapses (formed by 

placing a Pt/GO tip on a Cu surface) to be very small (<50 nm2) [S27].  

Ref.S27 reported that the most (statistically) accepted value for Aeff when using sharp Pt tips (Rtip 

<25 nm) on the surface of SiO2 is ~50 nm2. This tip/sample system is similar to our Pt/GO/Au nano-

synapses, with the only difference that our Pt tip is sharper (Rtip ~8 nm, see Supplementary Fig.2a) and 
that the GO film is softer than Pt. According to Eq.1, a smaller Rtip decreases Aeff, and softer materials 

increase Aeff. For this reason, in our experiments we use a very low deflection setpoint (i.e. FC) ~0.2 V, 

to minimize tip penetration into the GO film. There is no tip penetration into GO because topographic 

AFM maps collected after tip landing on the GO surface do not show any hole. Therefore, the size of 

our Pt/GO/Au nano-synapses is slightly <50 nm2.  
When GO-coated Pt tips are placed in contact with the Cu surface in order to form Pt/GO/Cu 

nano-synapses, the radius of the GO-coated Pt tip is ~65 nm, Fig. S2b. Refs. S27-S28 reported that an 

increase of Rtip by~20 times produces one order of magnitude increase of AC (from Eq. S1 this would 

be 202/3 = 7.36). Therefore, as the radius of the GO-coated Pt tip is ~65 nm (i.e. ~8 times larger than 

that the~8nm size of the of Pt tip), the size of the Pt/GO/Cu nano-synapse (i.e. the tip/sample contact 

area) is not >500 nm2. 

 

 
 
 
 

 
(see next page) 
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Supplementary Figure 3: I-V curves showing volatile resistive switching characteristics in 
Pt/GO/Au synapses. Each I-V curve (red and black) corresponds to different positions. 
 

 
 
Table S3: Write current of memristive synapses with different device sizes.  

 

Synapse structure  
Device 

size (µm
2
) 

Write  

voltage (V) 

Write  current / 

power 1
st

 pulse  

Write  current/ 

power last pulse   
# pulses Ref. 

Au/hBN/Au 25 5.8 70 µA / 406 µW 760 µA / 4.4 mW 26 S29 

Ag/CH3NH3PbI3-xClx/FTO 5000 0.5 0.5 µA / 0.25 µW 0.75 µA / 0.38 µW 10 S30 

Pt/SiOxNy:Ag/Pt 100 2.8 250 µA / 700 µW 1400 µA / 3.9 mW 500 S7 

TiN/TaOx/Pt 4 1 800 µA / 800 µW 2200 µA / 2.2 mW 300 S31 

Ni/Nb-SrTiO3/Ti 160000 6 0.5 µA / 3 µW 6 µA / 36 µW 62 S12 

Au/Ti/h-BN/Cu 25 0.7 1 µA / 0.7 µW 70 µA / 49 µW  19 S32 

Ag/Zr0.5Hf0.5O2:GOQDs/Ag 10000 0.8 200 µA / 160 µW 3000 µA / 2.4 mW 30 S33 

Ag/N-GOQDs/Pt  7850 0.3 100 µA / 30 µW 2000 µA / 600 µW 30 S34 

Cu/pV3D3/AI 25 2 ~4 750 µA / 2.3 mW 3000 µA / 9 mW 50 S35 

Au/WS2/PZT/Au 24.3 3.5 0 µA / 0 µW 0.15 µA / 0.53 µW 10 S36 

Ag/CιC:Ag/ITO 10000 0.8~1.1 10 µA / 10 µW 60 µA / 60 µW 100 S37 

ITO/ZnO/ITO 22500 1 50 µA / 50 µW 250 µA / 250 µW 150 S38 

W/Ag/MgO/Ag/W 25 3 1300 µA / 4 mW 2000 µA / 6 mW 10 S39 

Pt/LSO/TiN/Ti/SiO2/Si 0.64 0.1 30 µA / 0.3 µW 300 µA / 30 µW 100 S40 

TiN/HfO2/Ti/TiN 1600 0.7 460 µA / 322 µW 700 µA / 490 µW 300 S41 

Pt/WOx/Ti 282600 2 3.6 µA / 7.2 µW 5.2 µA / 10.4 µW 50 S42 

TiN /HfO2/Pt 1600 1 400 µA / 400 µW 1000 µA / 1 mW 300 S43 

Pt/HfOx/ZnOx/TiN 17662 2 420 µA / 840 µW 540 µA / 1 mW 80 S44 

ITO/LiF/CuPc/Al 10000 11 120 µA / 1.3 mW 270 µA / 3 mW 10 S45 

Au/C3N/PVPy/ITO 250000 5 750 µA / 3.8 mW 1800 µA / 9 mW 14 S46 

Pt/GO/Au 5×10
-5

 3 0.03 µA / 0.1 µW 5 µA / 15 µW 50 
This 
work 
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Supplementary Figure 4: Schematic switching mechanism in volatile regime (left) and non-
volatile regime (right). The migration of oxygen requires low energy and, at the low current 
levels (<1 µA) presented in that regime, these defects are volatile. The migration of Cu

+
 (or 

Au
+
) ions produces non-volatile conductance changes because they are heavier and cannot 

recover their initial state when the bias is switched off. 
 

 
Supplementary Note 2: Thermal simulations 
 

We simulate the current across the Pt/GO/Au nano-synapse in LRS before the reset event, using 
the model of Ref. [S51], and comparing the resulting values with experiments. We estimate the 

resistance of the Pt/GO/Au nano-synapse and solve the three-dimensional heat equation [Eq. S5]. The 

simulation is designed taking into consideration that the thickness of the GO film is ~50 nm. The top 

Pt electrode has the shape of a CAFM tip, and the bottom electrode consists of a Au layer.  

Eq.S5 is solved using a fully explicit finite difference method [S50]. Therefore, the features of the 
nano-synapses that are thermally dependent are correctly described. The grid consists of 301 × 301 × 

751 nodes, with a uniform mesh with 0.2 nm grid mesh distance (in line with comparable simulations 

[S51-S52]). Dirichlet boundary conditions [S53] are employed at the outer electrode layer surfaces, 

and room temperature is assumed outside the device (due to the high electrode thermal conductivity 

(Au: 317 W/mK, Pt: 71.6 W/mK) [S54]). Perfectly matched layers (PML) are used at the lateral faces 
[S51, S55-S56] to describe open boundary problems, such as ours.  

 

     (Eq. S5) 
 

We account for Joule heating to determine the heat generation rate ( ) in Eq.S5. As the current is 
generated by applying a negative bias to the CAFM tip, it is expected to consist of Au+ ions that 

migrate from the Au bottom electrode towards the cathode (Pt tip). A non-fully formed conductive 
path is assumed with high electrical conductance and truncated-cone shaped [S57-S58]. The 

temperature peak is achieved at the narrower part of this region, see Figure S5. The heat generation 

rate ( ) is calculated using the electrical conductivity and the electric field distribution in the 
Pt/GO/Au nano-synapse.  
 



     

6 
 

 
 

Figure S5: Three-dimensional temperature distribution for different cross-sections in the device 
structure (Fig. 1 in the main text). The simulations are performed for 6V in the LRS, the simulated 

current is equal to the experimental one for one of the cycles in Fig. 4c in the main text (30 µA). (a) 

Longitudinal cross-section in the XZ plane (the non-continuous conductive path extends from Z=50 to 

100nm), taken in the middle of the simulation domain. The variations in the temperature distribution 

correspond to the limited extension of the AFM tip, affecting the final result. (b) Same cross-section as 

(a) from another bird’s eye view. (c,d) contour plots of the temperature distributions in (a,b), 
respectively.  

 

For the electrodes, the following thermal conductivity values are employed KTH (Au) = 317 

W/Km [S54], KTH (Pt) =71.6 W/Km [S54]. The partially formed conductive path is assumed to have 

KTH (path)~15 W/Km consistent with that of Refs. [S52, S59]. For GO we use KTH (GO)~2.83 W/Km 
[S60]. The weighted residual method is employed to numerically solve the heat equation [S51, S61].  

 

 

Table S4: Physical parameters used in the simulations [S51,S52,S54,S59,S60,S61] 

 

KTH (Au)  317 W K-1 m-1 Cu thermal conductivity 

KTH (path) 15 W K-1 m-1 Conductive path thermal conductivity 

KTH (Pt) 71.6 W K-1 m-1 Pt thermal conductivity 

KTH (GO) 2.83 W K-1 m-1 GO thermal conductivity 

σCF_path 1.67 x 106 Ω-1 m-1 Conductive path conductivity 

T0 300 K Room temperature 
 

 

A simulation is performed, using current and voltage data corresponding to the I-V curves 
measured in Fig. 4c in the main text, with the parameters in Table S5. The thermally activated physical 

mechanisms behind RS trigger the broadening of the gaps in the conductive path that gives the reset 

process (see Fig.4c in the main text). Therefore, the thermal description is crucial for the study of our 

Pt/GO/Au nano-synapses [S56-S57].  
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