Thermionic graphene/silicon Schottky infrared photodetectors

S. Doukas,¹ P. Mensz,² N. Myoung,³ A. C. Ferrari,⁴ I. Goykhman,² and E. Lidorikis^{1,5}

 ¹Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
 ²Micro Nanoelectronics Research Center, Technion, Haifa 320000, Israel
 ³Department of Physics Education, Chosun University, Gwangju, 61452, Republic of Korea
 ⁴Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
 ⁵University Research Center of Ioannina (URCI),

Institute of Materials Science and Computing, 45110 Ioannina

S1. LIST OF SYMBOLS AND ACRONYMS

$\alpha_{l,\mathrm{SLG}}$	Graphene lattice constant
$c_{e,\mathrm{SLG}}$	Graphene electronic heat capacity
C_j	Graphene/Semiconductor junction capacitance
$c_{l,\mathrm{SLG}}$	Graphene lattice heat capacity
$C_{q,\mathrm{SLG}}$	Graphene quantum capacitance
CMOS	Complementary metal-oxide-semiconductor
CNP	Charge neutrality point
D^*	Specific detectivity
$d_{ m Au}$	Au backmirror thickness
$d_{n,\mathrm{Si}}$	n-doped Si layer thickness
$d_{ m Si}$	Undoped Si layer thickness
$d_{{ m SiO}_2}$	Silicon dioxide layer thickness
$D_{\rm SLG}$	Deformation potential for disorder – assisted supercollisions
$d_{\rm SLG}$	Graphene layer thickness
$E_{C,\mathrm{Si}}$	Silicon conduction band energy level
$E_{F,\mathrm{Si}}$	Silicon Fermi level
$E_{F,\mathrm{SLG}}$	Graphene Fermi level
$E'_{F,\mathrm{SLG}}$	Graphene Fermi level before contact with Silicon
$E_{F0,SLG}$	Graphene Fermi level upon contact with Silicon at zero bias
$E_{g,\mathrm{Si}}$	Silicon bandgap
e-h	Electron hole pair
EPC	Electron phonon coupling
e - ph	Electron phonon
$e\phi_{\rm Si}$	Energy difference between Silicon conduction band and fermi level
F	Inverse surface coverage ratio
FWHM	Full-width at half-maximum
$f_{\rm FD}$	Fermi - Dirac distribution
$f_{ m opt}$	Optics limited operation frequency

_

$f_{ m RC}$	Electronics limited operation frequency
$f_{ m tr}$	Carriers' transition limited frequency
i_d	Dark current
i_j	Johnson (thermal) noise current
i_n	Total noise current
$I_{ m ph}$	Photocurrent
i_s	Shot noise current
IPE	Internal photoemission
IR	Infrared
J_d	Saturation current density at dark
$J_{\rm el}$	Photocurrent density
$J_{e-{\rm ph}}$	Total electron-to-phonon thermal current density
J_{op}	Electron-to-optical phonon thermal current density
J_R	Total reverse current density under illumination
$J_{ m SC}$	Electron-to-phonon thermal current density due to supercollisions
$J_{ m th}$	Thermal current density due to thermionic emission of carriers
$k_{F,\mathrm{SLG}}$	Graphene Fermi wavevector
L	Optical cavity length
LDR	Linear dynamical range
l	Mean free path for supercollision scattering
MWIR	Mid wave infrared
N(x)	Bose – Einstein distribution
$n_{\rm SLG}^*$	Free carrier concentration associated with graphene doping
$n_{0,\mathrm{SLG}}$	Initial (before contact) graphene carrier concentration
$n_{ m Au}$	Au layer refractive index
$N_{C,\mathrm{Si}}$	Effective density of states in the conduction band of silicon
$N_{d,\mathrm{Si}}$	Silicon donor concentration
$n_{e,\mathrm{SLG}}$	Graphene electron concentration
$n_{h,\mathrm{SLG}}$	Graphene hole concentration

$n_{\rm min,SLG}$	Graphene minimum carrier density
$n_{ m Si}$	Silicon layer refractive index
$n_{\rm SiO_2}$	Silicon dioxide layer refractive index
$N_{V,\mathrm{Si}}$	Effective density of states in the valence band of silicon
$N_{\alpha,\mathrm{Si}}$	Silicon acceptor concentration
NEP	Noise equivalent power
nSi	n – doped Silicon
nSLG	n - doped single layer graphene
$P_{\rm in}$	Input power density
pSi	p – doped Silicon
pSLG	p – doped single layer graphene
PD	Photodetector
PTh	Photothermionic
PV	Photovoltaic
Q	Bragg cavity quality factor
R	External responsivity
R_C	Contact resistance
$R_{\rm CW}$	Quasi-cw illumination external responsivity
R_{el}	Sum of series and contact resistance
$R_{\rm eq}$	Equivalent resistance at reverse bias in dark
$R_{ m lin}$	Linear regime external responsivity
$R_{\rm peak}$	Peak external responsivity
R_s	Series total resistance
$R_{\rm Si}$	Silicon layer resistance
$R_{\rm SLG}$	Single layer graphene resistance
RT	Room temperature
S	Single layer graphene geometrical cross section
S_0	Diffraction limited area
$s_{ m SLG}$	Sound velocity on single layer graphene

SBH	Schottky barrier height
SC	Semiconductor
SLG	Single layer graphene
SNR	Signal to noise ratio
$T_{e,\mathrm{Si}}$	Electronic temperature in Silicon
$T_{e,\mathrm{SLG}}$	Electronic temperature in single layer graphene
$T_{l,\mathrm{SLG}}$	Lattice temperature in single layer graphene
V_0	Built in potential in depletion region
$v_{F,\mathrm{SLG}}$	Graphene Fermi velocity
V_R	Reverse bias voltage
V_{R}^{\prime}	Reverse bias voltage drop in silicon depletion region
V_R^{BD}	Reverse bias breakdown potential
$v_{\mathrm{sat},Si}$	Carrier saturation velocity in silicon
$\alpha_{\rm inter,SLG}$	Single layer graphene interband absorption
$\alpha_{\rm SLG}$	Single layer graphene absorption
γ_a	Total absorption rate in Bragg cavity
γ_d	Total decay rate in Bragg cavity
$\Gamma_{\rm SLG-Si}$	Cooling rate from single layer graphene to Silicon
$\gamma_{ m SC}$	Prefactor for calculation of supercollision scattering
$\delta_{n,\mathrm{SLG}}$	Graphene non-equilibrium carrier density
$\Delta E_{F,\mathrm{SLG}}$	Induced graphene Fermi level shift due to reverse bias
$\Delta Q_{D,\mathrm{Si}}$	Induced change in depletion region charge due to reverse bias
$\Delta Q_{ m SLG}$	Induced change in single layer graphene charge due to reverse bias
$\delta \Phi_B$	Induced change in Schottky barrier height due to reverse bias
$\epsilon_{ m Si}$	Silicon dielectric permittivity
$\epsilon_{ m SLG}$	Single layer graphene dielectric function
$\epsilon_{\infty,\mathrm{SLG}}$	High frequency limit of the graphene dielectric permittivity
$\mu_{c,\mathrm{SLG}}$	Graphene conduction band non-equilibrium chemical potential
$\mu_{e,\mathrm{Si}}$	Electron mobility in Silicon

$\mu_{q,\mathrm{SLG}}$	Carrier mobility in single layer graphene
$\mu'_{ m SLG}$	Graphene chemical potential before contact with silicon
$\mu_{ m SLG}$	Graphene equilibrium chemical potential
$\mu_{v,\mathrm{SLG}}$	Graphene valence band non-equilibrium chemical potential
$\mu_{0,\mathrm{SLG}}$	Graphene chemical potential upon contact with silicon at zero bias
$ u(\epsilon)$	Graphene density of electronic states
$ ho_{ m SLG}$	Graphene mass density
$\sigma_{ m DC,SLG}$	Graphene DC conductivity
$\sigma_{ m inter}^{ m opt}$	Graphene interband optical conductivity
$\sigma_{ m intra}^{ m opt}$	Graphene intraband optical conductivity
$\sigma_{ m SLG}^{ m opt}$	Graphene total optical conductivity
τ	Total temporal response limit
τ_{e-e}	Time scale for relaxation in a Fermi – Dirac distribution in graphene
$\tau_{e-\mathrm{ph}}$	Time scale for electron – phonon scattering in graphene
$ au_{ m inj}$	Time scale for carrier injection from graphene to semiconductor
$ au_{ m opt}$	Free electron relaxation time related to charge carrier's mobility in graphene
$ au_{ m ph}$	Photon lifetime inside the optical cavity
$\tau_{\rm pulse}$	Pulse duration of illumination source
$ au_{ m RC}$	Charge/discharge RC time constant of the diode/circuit combination
$ au_{ m tr}$	Transit time of charge carriers across the depletion zone
Φ_B	Schottky barrier height
Φ_{B0}	Schottky barrier height upon contact at zero bias
Φ_{B0}^{\min}	Lower limit of Schottky barrier height
$\Phi_B^{ m CNP}$	Schottky barrier height in respect to graphene charge neutrality point
$\Phi_{\rm Si}$	Silicon workfunction
$\Phi_{ m SLG}^{\prime}$	Graphene workfunction before contact with silicon
$\Phi_{ m SLG}$	Graphene workfunction upon contact with silicon
χ_d	Depletion region width
$\chi_{ m Si}$	Silicon electron affinity

$\chi_{ m SLG}$	Single layer graphene electron affinity
$\Omega_{i,\mathrm{SLG}}$	Graphene optical phonon energy

TABLE S1: Summary of symbols and acronyms used

throughout this work.