
 
Fig. 1. (a) Absorption spectra of GSA and quartz substrate.  (b) Laser setup. LD: Laser diode; T: Telescope. 
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Abstract: We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 
solid-state laser, generating  ~14nJ pulses with ~1W average output power. This shows the 
potential for high-power pulse generation. 
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1. Introduction  

Passively mode-locked solid-state lasers are the main work-horse for various applications in industry, research 
and military [1-2]. Currently, high-power ultrafast solid-state lasers are mainly mode-locked by semiconductor 
saturable absorber mirrors (SESAMs)[1-3]. These devices require expensive and complex epitaxial growth 
techniques (e.g. molecular beam epitaxy)[2–3] and subsequent post-processing to reduce recovery time[2-3]. 
Single wall carbon nanotubes[4-13] and more recently, graphene [13-19] based saturable absorbers have 
attracted great attention for ultrafast pulse generation, due to their unique properties, such as sub-picosecond 
recovery time, broadband operation, low saturation intensity, easy fabrication and integration. In particular, 
graphene based saturable absorbers (GSA) are attractive SAs because they do not require bandgap engineering 
[13-25], due to the linear band dispersions [20]. After the first demonstration of graphene mode-locking [13], 
most efforts on GSA focussed on fiber laser mode-locking [13-19], while very few groups reported graphene 
mode-locked solid-state lasers[21-22]. Thus far, for graphene mode-locked solid-state lasers, the maximum 
output pulse energy and average power are ~1nJ and 100mW [21], not exploiting the high-power capabilities of 
solid-state lasers. 

Here, we report a high-power passively mode-locked Nd:YVO4 laser using GSA, with ~1W average power. 
The repetition rate and pulse energy are ~75MHz and ~14 nJ, respectively. 

2. Experimental Setup and Results 

Graphene dispersions are prepared using method in Ref.[17], then spin-coated on quartz to form a GSA. The 
absorption spectra of the GSA and a reference quartz substrate are presented in Fig.1(a). The GSA absorption is 
featureless[17], while the quartz substrate contributes small peaks in the infrared spectral range [26]. 

The GSA is then inserted in a solid-state laser, shown in Fig.1 (b). We use a 3×3×15mm3 Nd:YVO4 crystal 
with a Nd3+-doping concentration of 0.3 at.% as the gain medium. Both facets of the crystal are coated with an 
anti-reflection (AR) coating for 1064 nm. The crystal is pumped by an 880nm fiber-coupled laser diode (LD). 
The fiber has a 200µm core diameter and a 0.22 numerical aperture (NA). The beam diameter of pump beam 
inside the crystal is ~400m, coupled with a beam shaping telescope. M1 is a flat mirror with AR coating at 880 
nm and high reflection (HR) coating at 1064nm. M2 is a wedge-shaped mirror used as an output coupler with 
10% transmittance at 1064nm. Both have HR coating at 1064nm. M5 is a flat mirror with HR coating at 1064 
nm. The GSA is put between M3 and M5 for passive mode-locking. The total cavity length is ~2.0m. 

Continuous wave (CW) lasing threshold is ~2W. Mode-locked pulses are observed when the pump power 
is increased to 3.6W. The pulses are shown in Fig.2. The pulse profile is measured using a digital oscilloscope 
(Agilent DSO6104A) with 1GHz bandwidth and a photodiode with 100ps rising time. As shown Fig. 2, the 
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Fig. 2. Mode-locked pulse.

pulse interval equals to ~13.3ns cavity round trip time, indicating mode-locking [2]. The repetition rate is 
~75MHz, in agreement with the cavity design parameters. The peak output wavelength is ~1064nm. The full 
width at half maximum of the output spectrum is ~0.17nm. 

The average output power increases almost linearly with the pump power. The maximum average output 
power we achieved is ~1W at 2.6W pump power. The optical-to-optical conversion efficiency is ~16% with a 
~20% slope efficiency. The corresponding pulse energy is ~14nJ. Our output power is around one-order of 
magnitude higher than previous graphene mode-locked lasers [13-19,21-22].  

3. Conclusions 
We reported a high-power passively mode-locked solid-state laser using GSA, with a ~1W output power and an 
optical-to-optical conversion efficiency of 16%. The repetition rate and pulse energy are ~75MHz and ~14 nJ, 
respectively. This work paves a way to GSA based high-power and high-efficiency ultrafast lasers. 
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