High-power Ultrafast Solid-state Laser Using Graphene Based Saturable Absorber

Z. Sun^{1*}, X. C. Lin², H. J. Yu², T. Hasan¹, F. Torrisi¹, L. Zhang², L. Sun², L. Guo², W. Hou², J.M. Li², and A. C. Ferrari¹

1Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom 2Laboratory of All-solid-state Light Sources, Institute of Semiconductors, Beijing, 100083, China E-mail: zs244@cam.ac.uk

Abstract: We demonstrate a graphene based saturable absorber mode-locked Nd:YVO₄ solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America

OCIS codes: (320.7090) Ultrafast lasers; (140.3580) Lasers, solid-state; (160.4330) Nonlinear optical materials.

1. Introduction

Passively mode-locked solid-state lasers are the main work-horse for various applications in industry, research and military [1-2]. Currently, high-power ultrafast solid-state lasers are mainly mode-locked by semiconductor saturable absorber mirrors (SESAMs)[1-3]. These devices require expensive and complex epitaxial growth techniques (e.g. molecular beam epitaxy)[2–3] and subsequent post-processing to reduce recovery time[2-3]. Single wall carbon nanotubes[4-13] and more recently, graphene [13-19] based saturable absorbers have attracted great attention for ultrafast pulse generation, due to their unique properties, such as sub-picosecond recovery time, broadband operation, low saturation intensity, easy fabrication and integration. In particular, graphene based saturable absorbers (GSA) are attractive SAs because they do not require bandgap engineering [13-25], due to the linear band dispersions [20]. After the first demonstration of graphene mode-locking [13], most efforts on GSA focussed on fiber laser mode-locking [13-19], while very few groups reported graphene mode-locked solid-state lasers[21-22]. Thus far, for graphene mode-locked solid-state lasers, the maximum output pulse energy and average power are ~1nJ and 100mW [21], not exploiting the high-power capabilities of solid-state lasers.

Here, we report a high-power passively mode-locked Nd:YVO₄ laser using GSA, with \sim 1W average power. The repetition rate and pulse energy are \sim 75MHz and \sim 14 nJ, respectively.

2. Experimental Setup and Results

Graphene dispersions are prepared using method in Ref.[17], then spin-coated on quartz to form a GSA. The absorption spectra of the GSA and a reference quartz substrate are presented in Fig.1(a). The GSA absorption is featureless[17], while the quartz substrate contributes small peaks in the infrared spectral range [26].

The GSA is then inserted in a solid-state laser, shown in Fig.1 (b). We use a $3 \times 3 \times 15 \text{ mm}^3$ Nd:YVO₄ crystal with a Nd³⁺-doping concentration of 0.3 at.% as the gain medium. Both facets of the crystal are coated with an anti-reflection (AR) coating for 1064 nm. The crystal is pumped by an 880nm fiber-coupled laser diode (LD). The fiber has a 200µm core diameter and a 0.22 numerical aperture (NA). The beam diameter of pump beam inside the crystal is ~400m, coupled with a beam shaping telescope. M1 is a flat mirror with AR coating at 880 nm and high reflection (HR) coating at 1064nm. M2 is a wedge-shaped mirror used as an output coupler with 10% transmittance at 1064nm. Both have HR coating at 1064nm. M5 is a flat mirror with HR coating at 1064 nm. The GSA is put between M3 and M5 for passive mode-locking. The total cavity length is ~2.0m.

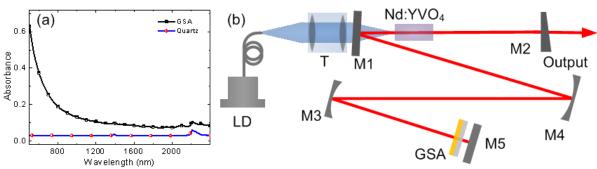


Fig. 1. (a) Absorption spectra of GSA and quartz substrate. (b) Laser setup. LD: Laser diode; T: Telescope.

Continuous wave (CW) lasing threshold is ~2W. Mode-locked pulses are observed when the pump power is increased to 3.6W. The pulses are shown in Fig.2. The pulse profile is measured using a digital oscilloscope (Agilent DSO6104A) with 1GHz bandwidth and a photodiode with 100ps rising time. As shown Fig. 2, the

pulse interval equals to ~13.3ns cavity round trip time, indicating mode-locking [2]. The repetition rate is ~75MHz, in agreement with the cavity design parameters. The peak output wavelength is ~1064nm. The full width at half maximum of the output spectrum is ~0.17nm.

The average output power increases almost linearly with the pump power. The maximum average output power we achieved is ~1W at 2.6W pump power. The optical-to-optical conversion efficiency is ~16% with a $\sim 20\%$ slope efficiency. The corresponding pulse energy is ~ 14 nJ. Our output power is around one-order of magnitude higher than previous graphene mode-locked lasers [13-19,21-22].

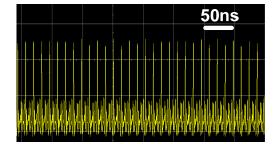


Fig. 2. Mode-locked pulse.

3. Conclusions

We reported a high-power passively mode-locked solid-state laser using GSA, with a ~1W output power and an optical-to-optical conversion efficiency of 16%. The repetition rate and pulse energy are ~75MHz and ~14 nJ, respectively. This work paves a way to GSA based high-power and high-efficiency ultrafast lasers.

We acknowledge funding from EPSRC grants GR/S97613/01, EP/E500935/1, ERC grant NANOPOTS, King's College, Royal Society Brian Mercer Award, Royal Society Wolfson Research Merit Award and the Cambridge Integrated Knowledge Centre.

4. References

[1] W. Koechner, Solid-State Laser Engineering, (Springer, New York, 2006).

[2] U. Keller, Ultrafast solid-state lasers. (Elsevier, Amsterdam, 2004).

[3] U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831 (2003).

[4] S. Y. Set et al., in Optical Fiber Communication Conference (OFC), Vol. 87 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), postdeadline paper PD44.

[5] F. Wang et al., "Wideband-tuneable, nanotube mode-locked, fibre laser," Nat. Nanotechnol. 3, 738 (2008).

[6] S. Kivistö et al., "Carbon nanotube films for ultrafast broadband technology," Opt. Express 17, 2358-2363 (2009).

[7] Z. Sun et.al., "A compact, high power, ultrafast laser mode-locked by carbon nanotubes," Appl. Phys. Lett. 95, 253102 (2009)

[8] K. H. Fong et.al., "Solid-state Er : Yb : glass laser mode-locked by using single-wall carbon nanotube thin film," Opt. Lett. 32, 38(2007).

[9] V. Scardaci et al., "Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers." Adv. Mater. 20, 4040 (2008).

[10] W. Cho et.al.,"Boosting the Nonlinear Optical Response of Carbon Nanotube Saturable Absorbers,"Adv. Funct. Mater. 20, 1937 (2010).

[11] E. J. R. Kelleher et al., "Nanosecond-pulse fiber lasers mode-locked with nanotubes," Appl. Phys. Lett. 95, 111108 (2009).

[12] Z. Sun et.al., "Ultrafast Stretched-Pulse Fiber Laser Mode-Locked by Carbon Nanotubes," Nano Res. 3, 404 (2010).

[13]T. Hasan et.al., "Nanotube-Polymer Composites for Ultrafast Photonics," Adv. Mater. 21, 3874 (2009).

[14] Z. Sun et.al., "Graphene Mode-Locked Ultrafast Laser," ACS Nano 4, 803(2010).

[15] Z. Sun et.al., "A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser," Nano Res. 3, 653(2010),
[16] Y.Song et.al., "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction" Appl. Phys. Lett. 96,051122(2010). [17] F. Bonaccorso et.al., "Graphene Photonics and Optoelectronics," Nat. Photonics 4, 611(2010).

[18] A. Martinez et.al.,"Optical deposition of graphene and carbon nanotubes in a fiber ferrule," Opt. Express 18,23054 (2010).

[19] D. Popa et al., "Sub 200fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett. 97, 203106 (2010).

- [20] A. K. Geim et al., "The rise of graphene," Nat. Mater. 6,183(2007).
- [21] W. Tan et.al., "Mode locking of ceramic Nd:yttrium aluminum garnet with graphene " Appl. Phys. Lett. 96, 031106 (2010).
- [22] C. Lee et al., "Ultra-Short Optical Pulse Generation with Single-Layer Graphene," J. Nonlinear Opt. Phys. Mater., In press (2010).
- [23] H. Yu et.al. "Large Energy Pulse Generation Modulated by Graphene Epitaxially Grown on Silicon Carbide", ACS Nano, DOI: 10.1021/nn102280m (2010)
- [24] Y. M. Chang et.al., "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers" Appl. Phys. Lett. 97,211102 (2010).
- [25] D. Popa et.al., "Graphene Q-switched, tunable fiber laser", arXiv, 1011.0115v1 (2010).
- [26] J. H. Simmons and K. S. Potter, Optical Materials (Academic Press, 2000).