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ABSTRACT. Graphene exhibits electrical and optical properties promising for future ap-
plications in ultra-fast photonics[1]. High carrier mobility and Fermi velocity[2, 3] com-
bined with its constant absorption over the visible wavelength range to the near-infrared[4]
potentially allow its application for photodetection over a broad wavelength spectrum, op-
erating at high frequencies. However, absorption being 2.3% per monolayer[4], responsiv-
ity of these devices is rather low[5, 6]. Here we show that by combining graphene-based
photodetectors with metal-nanostructures, plasmonic effects lead to an increased respon-
sivity.

Graphene is receiving large attention for its peculiar electronic properties and poten-
tial use in future electronic devices[7]. However, the field of photonics and optoelec-
tronics is largely unexplored and it is speculated that graphene’s real strength lies in this
area[1] with applications such as ultra-fast lasing[9] and photodetection[5, 6]. Graphene’s
electronic properties such as high carrier mobility and Fermi velocity allow ultra-fast op-
erating speeds[2, 3, 10]. Combined with its optical properties such as constant absorp-
tion of 2.3% per monolayer over the visible wavelength range to the near-infrared[4, 11],
a broad wavelength operating range in graphene-based photodetectors is feasible, due
to absence of a cut-off wavelength. Several groups have demonstrated graphene-based
photodetectors[5, 6, 12]. However, the reported responsivities have been rather low com-
pared to traditional photodetectors[13].

The working principle of graphene-based photodetectors relies on the formation of a
p-n junction to separate incident light generated electron-hole pairs[5, 6, 12, 14], like any
other photodiode[15]. One possible way to form such a lateral p-n junction in graphene is
to deposit a metal contact, as schematically shown in Fig. 1. This induces a Fermi-level
shift within the graphene underneath[14, 16]. In the vicinity of the contact, the Fermi-level
relaxes back to the initial doping level, and an internal electric field is created right next to
the contact[5, 6, 12, 14]. In this region the photodetector is responsive to incident light and
a photovoltage/-current is produced.
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Figure 1. Pn-junction formation in graphene by metal induced doping.

Figure 2. Graphene-based photodetector with nanostructured metal-gratings.

We fabricate graphene by mechanical exfoliation[2] on Si+SiO2 (300 nm), and charac-
terize it by a combination of Raman spectroscopy[17] and optical microscopy[11]. E-beam
lithography is used to define the contacts; subsequent e-beam evaporation and lift-off are
used to deposit the contact metals (3nm Ti+80nm Au). After bonding into a chip carrier,
samples are electrically characterized using a Keithley 2400 Sourcemeters. Photovoltage
mapping using lasers covering the visible to the near-infrared range of 457, 488, 514, 633
and 785 nm is carried out to determine the photoresponse. During mapping, a laser beam
with a spot size of ≈1.5µm is scanned over the sample in the x/y direction, and the po-
sition dependent response of the device is recorded with a nano-voltmeter, which allows
determination of the response of individual regions of the device.

To enhance responsivity of the graphene-based photodetector, we fabricate nanostruc-
tured metal gratings next to the macroscopic contacts (Fig. 2), with a variety dimensions.
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Figure 3. Photovoltage map of a metal nanostructure enhanced graphene-based
photodetector.

Upon excitation of the metal nanostructured grating with incident laser light of wave-
length matching the plasmon resonance of these gratings, a strong enhancement in photo-
voltage can be observed. Fig. 3 shows a photovoltage map of a device measured at 514nm.
A photovoltage enhancement of ≈20 times of photovoltage is detected at the tips of the
nanostructured metal grating, compared to the flat metal contact. At different wavelengths,
the enhancement reduces to 1-2 times, demonstrating the wavelength selectivity and plas-
monic nature of the enhancement. Plasmonic oscillations within the metal nanostructures
concentrate and enhance the electric field of the incident light directly at the location of
the pn-junctions. Wavelength and polarization dependence can be achieved depending on
the geometry of nanostructures. This could have significant implication for broadband
photovoltage generation in photovoltaic devices.
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