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6 Lectures

3 Main Sections 
~2 lectures per subject

I Transmission Lines

I.1 Telegrapher’s Equations

I.2 Characteristic Impedance

I.3 Reflection

I.0 The wave equation
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II Electromagnetic Waves in Free Space

II.1 Electromagnetic Fields

II.2 Electromagnetic Waves

II.3 Reflection and Refraction of Waves

III Antennae and Radio Transmission

III.1 Antennae

III.2 Radio
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OBJECTIVES

As the frequency of electronic circuits rises, one can 

no longer assume that voltages and currents are 
instantly transmitted by a wire. 

•Appreciate when a wave theory is needed

•Derive and solve simple transmission line problems

•Understand the importance of matching to the 
characteristic impedance of a transmission cable

•Understand basic principles of EM wave propagation 
in free space, across interfaces and the use of 
antennae

The objectives of this course are:
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This course deals with transmission of electromagnetic waves
1) along a cable (i.e. a transmission line) 
2) through free space (the ‘ether’).

In the first half of these lectures, we will derive the differential 
equations which describe the propagation of a wave along a 
transmission line.  

In the second half of these lectures we will look at the behaviour of 
waves in free space. 
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Reference: OLVER A.D. 
Microwave and Optical Transmission
John Wiley & Sons, 1992, 1997
Shelf Mark: NV 135

Then we will use these equations to demonstrate that these waves
exhibit reflection, have impedance, and transmit power.

We will also consider different types of antennae for transmission 
and reception of electromagnetic waves.
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Handouts

The handouts have some gaps for you to fill

You will be able to download a PDF of the complete 
slides from

http://www-g.eng.cam.ac.uk/nms/lecturenotes.html
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1) DO NOT PANIC IF YOU DO NOT 
MANAGE TO WRITE DOWN IN “REAL TIME”

2) Prefer to just sit back and relax?

NOTE:
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I.0 The Wave Equation

Aims

To recall basic phasors concepts
To introduce the generalised form of the wave equation

Objectives

At the end of this section you should be able to recognise 
the generalized form of the wave equation, its general 
solution, the propagation direction and velocity
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I.0.0   Introduction

An ideal transmission line is defined as: 
“a link between two points in which the signal at any 
point equals the initiating signal”

i.e. transmission takes place instantaneously and 

there is no attenuation

Real world transmission lines are not ideal, there 
is attenuation and there are delays in transmission 
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A transmission line can be seen as a device for 
propagating energy from one point to another 

The propagation of energy is for one of two 
general reasons: 

1. Power transfer (e.g. for lighting, heating, 
performing work) - examples are mains electricity, 
microwave  guides in a microwave oven, a fibre-
optic illuminator.

2. Information transfer. Examples are telephone, 
radio, and fibre-optic links (in each case the 
energy propagating down the transmission line 
is modulated in some way).
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Power

Plant

Consumer

Home
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AntennaAntenna Optical Fibre Link Optical Fibre Link 
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CoCo--axax cablecablePair of wiresPair of wires

PCB tracksPCB tracks IC interconnectsIC interconnects
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Waveguides
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Dielectric of thickness T, with a conductor deposited on 
the bottom surface, and a strip of conductor of width W 
on the top surface

Mircostrip

Can be fabricated using Printed Circuit Board (PCB) 
technology, and is used to convey microwave frequency 
signals
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15Microwave Oven
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Optical Fibres
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Phasor Notation

A means A is complex

{ } { } i A
A e A m A i A e

∠= + =ℝ I

A A=

mI

eℝ{ }e Aℝ

A∠A
{ }m AI
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j x
Ae

β
is short-hand for { }( )e j x t

Ae
β ω+

ℝ

which equals: ( )cosA x t Aβ ω+ + ∠

Proof

( )
cos( ) sin( )

j
e j

θ θ θ±
= ±

( )
cos( ) sin( )

j x t A
Ae A x t A jA x t A

β ω
β ω β ω

+ +∠
= + + ∠ + + + ∠

then

( ) ( ) ( )j x t j A j x t j x t A
Ae Ae e Ae

β ω β ω β ω+ ∠ + + +∠= =
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I.0.1   The Wave Equation

The generalised form of the wave equation is:

2
2 2

2

A
v A

t

∂
= ∇

∂

Where the Laplacian of a scalar A is:

2 2 2
2

2 2 2

A A A
A

x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
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We will be looking at plane waves for which the wave 

equation is one-dimensional and appears as follows:

2 2
2

2 2

A A
v

t x

∂ ∂
=

∂ ∂

Where A could be:

Either the Voltage (V) or the Current (I)
as in waves in a transmission line

Or the Electric Field (E) or Magnetic Field (H)
as in electromagnetic waves in free space

or

2 2

2 2 2

1A A

x v t

∂ ∂
=

∂ ∂
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There are many other cases where the wave equation is used

For example

1) Waves on a string. These are planar waves where A 

represents the amplitude of the wave

2) Waves in a membrane, where there is variation in both x 

and y, and the equation is of the form 

2 2 2
2

2 2 2

A A A
v

t x y

 ∂ ∂ ∂
= + 

∂ ∂ ∂ 
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The constant v is called the wave speed. 

( )A f x vt= ±

Note

( )A f x vt= − Forward moving 

( )A f x vt= + Backward moving 

22

This comes from the fact that the general solution to 

the wave equation (D’Alembert solution) is
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∆∆xx

xx

∆∆xx

t+t+∆∆t               tt               t

F(t+x/vF(t+x/v))

xx

If t increases (t→t+∆t), x must also increase if x-vt is to 
be constant

Direction of travel

Consider a fixed point, P, on the moving waveform, i.e. 
a point with constant f

An x increase implies that the wave is moving to the
right (Forward)

f(x-vt) will be constant if x-vt is constant

PP

t             t+t             t+∆∆tt

Similarly, for x+vt ⇒ wave is moving to left (Backward)

( )f x vt+( )f x vt−
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Verify that                           is general solution

'( )
A

vf x vt
t

∂
= ± ±

∂

2
2

2
''( )

A
v f x vt

t

∂
= ±

∂

'( )
A

f x vt
x

∂
= ±

∂

2

2
''( )

A
f x vt

x

∂
= ±

∂

2 2
2

2 2

A A
v

t x

∂ ∂
=

∂ ∂
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( )A f x vt= ±
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I.1  Electrical Waves

Aims

To derive the telegrapher’s equations
To account for losses in transmission lines

Objectives

At the end of this section you should be able to recognise 
when the wave theory is relevant; to master the concepts 
of wavelenght, wave velocity, period and phase; to 
describe the propagation of waves in loss-less and lossy
transmission lines 
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I.1.1  Telegrapher’s Equations
Let us consider a short length (δδδδx) of a wire pair

26

This could, for example, represent a coaxial cable
xδ

For a small δx, any function A(x) can be written as
( )

( ) ( )
A x

A x x A x x
x

δ δ
∂

+ ≈ +
∂

In our case A can be Voltage (V) or Current (I)
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L

Let us define

series/loop inductance per unit length [H/m]

L
V

I

L

I
V L x

t
δ

∂
=

∂

xδ

L xδ
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C parallel/shunt capacitance per unit length [F/m]

C
I

C
C

V
I C x

t
δ

∂
=

∂

C
V

xδ

C xδ
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C L
V V V= +

F

I
I I x

x
δ

∂
= +

∂

xδ

C

V
V V x

x
δ

∂
= +

∂

2( )C
C

V V V V V
I C x C x V x C x C x C x

t t x t x t t
δ δ δ δ δ δ

∂ ∂ ∂ ∂ ∂ ∂ 
= = + = + ≈ 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 

L

I
V L x

t
δ

∂
=

∂
I

C

I
I x

x
δ

∂
= −

∂

C
VL

V

B
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C L

V V V= −
V I

V x V L x
x t

δ δ
∂ ∂

+ = −
∂ ∂

 
F C

I I I= −
I V

I x I C x
x t

δ δ
∂ ∂

+ = −
∂ ∂

V I
L

x t

∂ ∂
= −

∂ ∂

I V
C

x t

∂ ∂
= −

∂ ∂

(1.1)

(1.2)
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Eqs. (1.1),(1.2) are known as the “telegrapher’s equations”

They were derived in 1885 by Oliver Heaviside, and were crucial in 
the early development of long distance telegraphy (hence the name)
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I.1.2  Travelling Wave Equations

2

2

V
L

x t

I

x

∂

∂

∂ ∂  
= −  

∂ ∂  

I

x

∂

∂

2

2

I
C

x t

V

x

∂

∂

∂ ∂  
= −  

∂ ∂  

(1.1a)

(1.2a)

Then in (1.1a) substitute  

Let us differentiate both (1.1) and (1.2) with 
respect to x

using (1.2)

Then in (1.2a) substitute  
V

x

∂

∂

2

2

V
LC

t

∂
=

∂

2

2

I
LC

t

∂
=

∂

using (1.1)
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2 2

2 2

V V
LC

x t

∂ ∂
=

∂ ∂

2 2

2 2 2

1A A

x v t

∂ ∂
=

∂ ∂

2 2

2 2

I I
LC

x t

∂ ∂
=

∂ ∂

(1.1a)

(1.2a)

Same functional form as wave equation:

We try a solution for V in (1.1a) of the form

j x j t
V Ae e

β ω=

2 1
v

LC
=

32
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2 2j x j t j x j t
Ae e LC Ae e

β ω β ωβ ω− = −

LCβ ω= ±

( ){ }j x j x j t

F BV e V e V e e
β β ω−= +R

( ){ }j x j x j t

F BI e I e I e e
β β ω−= +R

Hence

Phase Constant     (1.3)

Since β can be positive or negative, we obtain expressions 
for voltage and current waves moving forward (subscript 
F) and backward (subscript B) along the transmission line

(1.4)

(1.5)
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I.1.3  Lossy Transmission Lines

Thus far we considered a lossless transmission line. Therefore 

we did not include any resistance along the line, nor any 

conductance across the line.

To derive the relevant expressions for a lossy transmission line 
our equivalent circuit would become:

R= series resistance per unit length [ΩΩΩΩ/m]

G= shunt conductance per unit length [S/m]

34

If we now define
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B

xδ

0
R L C

V V V V− − − =

G xδ C xδ

R xδ

V

L xδ
I

I
I x

x
δ

∂
+

∂

C

V
V V x

x
δ

∂
= +

∂R
V LV
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0
I V

V R xI L x V x
t x

δ δ δ
∂ ∂ 

− − − + = 
∂ ∂ 

( ) j t
I f x e

ω=

( )
V

R j L I
x

ω
∂

= − +
∂

V I
RI L

x t

∂ ∂ 
= − + 

∂ ∂ 

For simplicity we assume

( ) j tI
j f x e j I

t

ωω ω
∂

= =
∂

Then

Compare with (1.1) 
V I

L
x t

∂ ∂
= −

∂ ∂
j LIω= −
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Similarly using Kirchoff’s current law to sum currents:

0
I

I G xV j C xV I x
x

δ ω δ δ
∂ 

− − − + = 
∂ 

( )
I

G j C V
x

ω
∂

= − +
∂

I V
C j CV

x t
ω

∂ ∂
= − = −

∂ ∂
Compare with (1.2) 
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L in a lossless line with:

( )
'

G j C
C

j

ω

ω

+
=

( )
'

R j L
L

j

ω

ω

+
= in a lossy line

C in a lossless line with:

in a lossy line

Then LCβ ω= In a lossless line corresponds to:

1
' ( )( )R j L G j C

j
β ω ω= + +

in a lossy line
38

Thus, we can write the expression for a lossy line 
starting from that of a lossless line, if we substitute
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We get
( ) ( ){ } (1.6)

j x j x j t

F B
V e V e V e e

α αβ β ω− + + = + R

( ) ( ){ } (1.7)
j x j x j t

F B
I e I e I e e

α αβ β ω− + + = + R

Substituting β⇒ β’ into (1.4) and (1.5) and defining

( )( )R j L G j C jγ ω ω α β= + + = +

β is the phase constant

The real term α corresponds to the attenuation along the 
line and is known as the attenuation constant

γ is called propagation constant
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Voltage
VF

x

For a forward travelling wave:

V = VF e jωt e-γx = VF e-αx e j(ωt-βx)

amplitude factor phase factor

time variation

40

x

F
V V e

α−=
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0α ≈

2( )( )R j L G j C LC j LCγ ω ω ω ω= + + ≈ − =

L Rω >> :C Gω >>At high frequencies: 

The expressions approximate back to those for 

lossless lines

and

Note:

Thus

LCβ ω≈

41
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I.1.4  Wave velocity: v

Our expressions for voltage and current contain 2 exponentials

The one in terms of x: 
j x

e
β±

gives the spatial dependence of the wave, hence the wavelength:

2π
λ

β
=

The other:
j te ω

gives the temporal dependence of the wave, hence its frequency:

2
f

ω

π
=

42
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For a wave velocity v, wavelength λ and frequency f:

v f λ=

2

2
v

ω π

π β
=

then

LCβ ω=since

1
v

LC
= (1.8)
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I.1.5  Example: Wavelength 
An Ethernet cable has L= 0.22 µHm-1 and C = 86 pFm-1.

What is the wavelength at 10 MHz ?

2π
λ

β
= LCβ ω=From

23metres≈

and 

2

LC

π
λ

ω
=

Then
6 6 12

2

2 10 10 0.22 10 86 10

π
λ

π − −
=

⋅ ⋅ ⋅ ⋅ ⋅
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I.1.6 When must distances be accounted for in 
AC circuits?

λ

2

λ

4

λ

45
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Large ship is in serious trouble (as you can see) and we cannot ignore 

the effect of the waves

A much smaller vessel caught in the same storm fares much better

If a circuit is an eighth of a wavelength across, then the difference is
of the amplitude2

If a circuit is one quarter of a wavelength across, then one end is at 
zero the other at a maximum

In general, if the wavelength is long in comparison to our electrical 
circuit, then we can use standard circuit analysis without considering 

transmission line effects.

A good rule of thumb is for the wavelength to be a factor of 16 longer

46
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16
L

λ
≥

16
L

λ
≤

Wave Relevant

Wave Not Relevant

47
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I.1.7 Example: When is wave theory relevant?

A designer is creating a circuit which has a clock rate of 5MHz and 
has 200mm long tracks for which the inductance (L) and capacitance  

(C) per unit length are:

L=0.5µHm-1 C=60pFm-1

2π
λ

β
= LCβ ω=From and 

2

LC

π
λ

ω
=

6 6 12

2
36.5

2 5 10 0.5 10 60 10
m

π
λ

π − −
= ≈

⋅ ⋅ ⋅ ⋅ ⋅
Then

36.5 m is much greater than 200 mm (the size of the circuit 

board) so that wave theory is irrelevant.

Note: The problem is even less relevant for mains frequencies 

i.e. 50 Hz. This gives λ~3650 km 48
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Aims

To define and derive the characteristic impedance for 
lossless and lossy lines

Objectives

At the end of this section you should be able to describe 
the forward and backward waves in a transmission line and
calculate the characteristic impedance

I.2 Characteristic Impedance

49
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I.2.1 Lossless Lines

Recalling the solutions for I & V (equations 1.4&1.5):

( ){ }j x j x j t

F BV e V e V e e
β β ω−= +R

( ){ }j x j x j t

F BI e I e I e e
β β ω−= +R

(1.4)

(1.5)

Differentiating (1.5) with respect to x

( ){ }j

F

tx j

B

j x
j I ej e

I
e e

x
I

β β ωββ −− +
∂

=
∂

R

( ){ }j x

F

x tj

B

j
Cj V e

V
C e Cj V e e

t

ββ ωω ω−∂
− −−=

∂
R

(1.4) with respect to t and multiplying by -C

(2.1)

(2.2)
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According to the second Telegrapher’s equation:

          (1.2)
I V

C
x t

∂ ∂
= −

∂ ∂

We can then equate (2.1) and (2.2):

( ){ } ( ){ }j j j tx x j x

B F

j tx

B

j

F j I ej Ie e ee C C eV ej V e j
ωββ β ωββ ω ωβ − −= −−+−R R

( )j t x
e

ω β− ( )j t x
e

ω β+
Since and 

represent waves travelling in opposite directions they 
can be treated separately. 

This leads to two independent expressions in V and I
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j x j x

F F
j I e Cj V e

β ββ ω− −− = −

F

F

V

CI

β

ω
=

j x j x

B BI j e Cj V e
β ββ ω= −

B

B

V

CI

β

ω
= −

FV
BV

FIBI

Note: If we consider and to have the same sign

and have opposite signs

then, due to the differentiation with respect to x,
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0

L
Z

C
=

0Z
C

β

ω
=F

F

V

CI

β

ω
=

0
F

F

V
Z

I
=

The characteristic impedance, Z0, is defined as the 
ratio between the voltage and the current of a 

unidirectional forward wave on a transmission line 
at any point, with no reflection: 

Z0 is always positive

Since

From (1.3) LCβ ω=

(2.3)
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Units

1[ ] mβ −=

[ ]0

V L
Z

CI

  
= = = Ω  
   

1[ ] sω −=

1
[ ]

F A s s
C

m m V m

⋅
= = =

Ω ⋅

1
[ ]

H V s s
L

m m A m

⋅ Ω ⋅
= = =

Z0 is the total impedance of a line of any length if there are no 

reflections ⇒ I and V in phase everywhere. Z0 is real

The line we have analysed (lossless) has no resistors. Yet Z0 has units 

of Ω.

The characteristic impedance does not dissipate power. It stores it
54

If there are reflections, the current and voltage of the advancing wave 
are again in phase, but not necessarily with the current and voltage of 
the retreating wave
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I.2.2 Lossy Lines
( ) ( ){ }  (1.6)

j x j x j t

F BV e V e V e e
β βα α ω+ +− = + R

( ) ( ){ } (1.7)
j x j x j t

F B
I e I e I e e

α αβ β ω− + + = + R

( )( )R j L Gj j Cγ ω ωα β+ +== +

L in a lossless line with:

( )
'

G j C
C

j

ω

ω

+
=

( )
'

R j L
L

j

ω

ω

+
= in a lossy line

C in a lossless line with:

in a lossy line
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Remembering that we can write the expressions for a lossy line 

starting from those of a lossless line, if we substitute

56SPECTROSCOPY GROUP

NANOMATERIALS AND CAMBRIDGE UNIVERSITY

DEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES 

AND MATERIALS GROUP

0

L
Z

C
≈

Thus

corresponds to

0

L
Z

C
=

0

'

'

L
Z

C
=

0

R j L
Z

G j C

ω

ω

+
=

+

Note: at high frequencies L Rω >> and ,C Gω >>

we recover the expression for lossless lines

56
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I.2.3 Summary

1) For a unidirectional wave:

0V Z I= at all points

2) For any wave:

0F FV Z I= and 0B BV Z I= −

Hence
FV and

FI are in phase

BV and BI are in antiphase

3) For a lossless line Z0 is real with units of ohms.

4) For a lossy line
0Z is complex
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I.2.4 Characteristic Impedance – Example 1

Q: We wish to examine a circuit using an 

oscilloscope. The oscilloscope probe is on an 
infinitely long cable and has a characteristic 

impedance of 50 Ω.

What load does the probe add to the circuit?

A:  
1) Since the cable is infinitely long there are no 

reflections

2)For a unidirectional wave with no reflections          
Z0=V/I at all points, hence the probe behaves like a 

load of 50Ω
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I.2.5 Characteristic Impedance – Example 2

FV

BV

Q: A wave of = 5 volts with a wavelength λ=2 metres

= 1 voltshas a reflected wave of

If Z0 = 75Ω, what are the voltage and current 3 metres 
from the end of the cable.

A: From Equation 1.4:
j x j x

F B
V V e V eβ β−= +

12 2
  [ ]

2
m

m

π π
β π

λ
−= = =

x = - 3m  therefore: 3 35 1    [volts]j j
V e e

π π+ −= +

0

F
F

V
I

Z
=Since and

0

B
B

V
I

Z
= −

3 35 1
   [amps]

75 75

j j
I e e

π π+ −= −Then
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Aims

To introduce the concept of voltage reflection coefficient and
Its relation to the reflected power at the load

Objectives

At the end of this section you should be able to calculate 
the voltage reflection coefficient, the incident and reflected 
power on the load, the conditions for ringing and quarter 
wave matching 

I.3 Reflection
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I.3.1 Voltage reflection coefficient

F B LV V V V= + =

From Equation 1.4: j x j x

F B
V V e V eβ β−= +

From Equation 1.5: j x j x

F B
I I e I e

β β−= +

At the load x=0, thus

F B LI I I I= + =
61

Consider a load added to the end of a transmission line
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F B L L L
V V V V Z I= + = =But: ( )L F BZ I I= +

From our derivation of characteristic impedance:

0

F
F

V
I

Z
=

0

B
B

V
I

Z
= −

IF and IB have opposite signs relative to VF and VB

Hence: ( )
0

F
F

B
B BF L LZ I I

V V
V V Z

Z

−
+ = + =

0

0

B L

F L

V Z Z

V Z Z

−
=

+
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The Voltage Reflection Coefficient, Lρ

the complex amplitude of the reverse voltage wave 
divided by the complex amplitude of the forward 
voltage wave at the load:

, is defined as

B
L

F

V

V
ρ = (3.1a)

0

0

L

L

L

Z Z

Z Z
ρ

−
=

+
(3.1b)
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I.3.2 Power Reflection
At the load

{ }( ) Re cos( )j t
V t Ve V t V

ω ω= = + ∠

{ }( ) Re cos( )j t
I t Ie I t I

ω ω= = + ∠

Instantaneous Power dissipated

( ) ( ) ( ) cos( )cos( )P t V t I t VI t V t Iω ω= = + ∠ + ∠

Remembering the identity:

[ ]
1

cos( )cos( ) cos( ) cos( )
2

A B A B A B= + + −

we get:

1
( ) cos(2 ) cos( )

2
P t VI t V I V Iω = + ∠ + ∠ + ∠ − ∠  64
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Mean Power dissipated in any load

0

1 1
( ) cos( )

2

T

Av
P P t dt VI V I

T
= = ∠ − ∠∫ { }*1

Re
2

V I=

At the load:

F B
V V V= +

But, from (3.1a):

B L FV Vρ=

(1 )LF
V V ρ= +

65

Where
*

I is the complex conjugate of I

{ } { } i II e I m I i I e ∠= + =ℝ I
*

{ } { } i I
I e I m I i I e

− ∠= − =ℝ IThus
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Similarly:

At the load:

0 0

1
( ) 1

F B
F B F B

F

V V
I I I V V

Z Z V

 
= + = − = − 

 

0

(1 )F
L

V
I

Z
ρ= −

Hence:

( )( )
2

* *

0

1 1
1 1

2 2

F

L L

V
V I

Z
ρ ρ= + −

( )
2

2*

0

1
2

F

L L L

V

Z
ρ ρ ρ= + − −
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*

LρBut Is the complex conjugate of
Lρ

*

L L
ρ ρ− is imaginary

so: { } ( )
2

2*

0

1
Re 1

2 2

F

L

V
V I

Z
ρ= −

2

02

F
V

Z

2

2

02

F

L

V

Z
ρ

Therefore:

Incident power= Reflected power=

The fraction of power reflected from the load is:
2

L
ρ

67

power dissipated in the load
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I.3.3 Standing Waves
Reflections result in standing waves being set up in the 

transmission line.  The Voltage Standing Wave Ratio (VSWR) 

is a measurement of the ratio of the maximum voltage to the 

minimum voltage.

Maximum voltage

Minimum voltage

F B

F B

V V
VSWR

V V

+
= =

−

The VSWR can be stated in terms of the reflection coefficient L
ρ

1 1
1

1
11

B
B

F LF

LB B

F
F

V V

V V
VSWR

V V

VV

ρ

ρ

+ +
+

= = =
−

−−
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Or alternatively (and more usefully) the reflection coefficient L
ρ

can be stated in terms of the VSWR (which can be measured)

1

1
L

VSWR

VSWR
ρ

−
=

+
(3.2)

If there is total reflection then
Lρ is 1 and the VSWR is infinite. 

Zero reflection leads to a VSWR of 1
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I.3.4 Summary

•For full power transfer we require 0Lρ =

•When 0Lρ = a load is said to be “matched”

•The advantages of matching are that:

1) We get all the power to the load

2) There are no echoes

•The simplest way to match a line to a load is to set

0 LZ Z=

Since, from (3.1b): 0

0

L
L

L

Z Z

Z Z
ρ

−
=

+
70

i.e. so that the load equals the characteristic impedance
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•Fraction of power reflected =
2

L
ρ

•Reflections will set up standing waves.

The Voltage Standing Wave Ratio (VSWR) is given by:

1

1

L

L

VSWR
ρ

ρ

+
=

−
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