1.3.5 Ringing

Ringing=Unwanted oscillations of voltage and/or current

Ringing is caused by multiple reflections. The original
wave is reflected at the load, this reflection then gets
reflected back at the generator, etc, etc

We will illustrate this by looking at the step change in
voltage when a device is switched on
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1.At switch-on, a pulse V. is generated and travels towards the load
At the generator:

V-V, =V, =V,




Thus: V,=V-1,.Z_,

But, for a unidirectional (un-reflected) wave:

= V—‘;Z

4y
Z+Z

mm) V.=

2. Part of the pulse is then reflected at the load as V, =V, = p,V,
Z -7,

Z, +Z,

3.V, is reflected at the generatoras V. = p .V, = p.p,V,
e =2,

Z.+Z,

Where

PL=

Where pG —

4. The amplitude at the load asymptotically approaches V,
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What is the asymptotic value?
V; =V

VP2 :VF +10LVF :VF(1+pL)
V, =V +p, Ve +pp,V, =V.(+p, + p,p,)

V: =V +po. Ve + 00 Vi + pszLVF —
Vi(l+p,+ pePr+ PoPr)

Ve =Ve(l+p,+ oL+ PP, +P6 P+ Pg P )

Vlf can be rewritten as:

Ve =Vill+ pp, +(pep,) +. 14 Vep [+ pop, +(0ep,)" +.]

Hence, the asymptotic value, for n=oo is:
VPOO — VF [1 + IOL]Z (IOGIOL)n
0

Since, by definition, |p, |<1 and |pg|<1
1
I—x

3 1
= % =V, l1+p,1-

and for |x|<1 Zx” =
0

cPr




Substituting the definitions of pgand py:

Z,+Z,

Thus, if we wait long enough, any "transmission line" effects
should go away, and we converge to what we would have if the
line was just some wire connecting the source to the load

V=V

V.

In this case, the load resistor and the source resistor would form
a voltage divider= the voltage across the load is determined by

the voltage divider equation

If Z, —oo, Open circuit, then:

Vo=V

Ringing

\
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1.3.6 V2 Wave Matching

Zy

b

B

The impedance of a line is Z, only in the absence of reflections.
With reflections the impedance at point B is a function of:

> Intrinsic impedance Z,
»|mpedance of the load Z;
»Distance from the load

»Wavelength.

The general expression of impedance at x is: Z(x)= ‘;((x))
X

Remembering that: V(x)= V_Fe‘fﬁx +‘7Befﬁ’x

j(x) = Ee_jﬁx + ﬁefﬁx




Since, from (3.1a), (3.1b):

We get:
Z( V=7 e‘jﬁx+p_Lejﬂx (Z_L+ZO)e_jﬁx+(Z_L—ZO)ejﬁx
X)= — - =7 == . —L .
Y _p e (2, +Z))e P —(Z, - Z,)e”

Remembering that:
e" 7 = cos(Bx) + jsin(Bx)
e /7" = cos(Bx) — jsin(Sx)

and cos(-x)=cos(x)

We can replace the exponential with sin and cos and substitute x=-b
Z,cos(Bb)+ jZ,sin(Sb)

Z,cos(Bb)+ jZ.sin(Bb)

Z.+ jZ,tan(Bb)

" Z,+ jZ 1 tan(Bb)

Zy=7Z(-b)=7Z,

Zy=Z(-b)=Z

A
A quarter of a wavelength back from the load b= "

Remembering that: S = 2z

T
A

, ZitZ, tan (7

We get

"Z,+ jZ,tan(x




Since tan(7Z'/2) = o0

The impedance at point b = 2 is:

2
= Z
Z,=—2 (34
/1
This expression is important when we are trying to connect

two lines with different impedances, and we do not want to
have any reflections

This leads to the concept of quarter wave transformer

1.3.7 Quarter wave transformer

Two lines are to be linked. The first has an impedance
Zoine1= 950 Q, while the second has an impedance Z; .= 75 Q

What should the impedance Z, of a quarter wavelength section
of line be, in order to eliminate reflections?

M4

*+— —>

ZG]me 1:50!-_-‘]

Second line appears as Z,= Z;,.,=75Q to the "4 wave link
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Remembering that

P =

-7,
+Z,

To have no reflections we need 0, = 0= 4, =27,

We want Z at b to equal 50Q, the Z, of line 1, so there is no
reflection back along the line. Hence

Z

0Linel =

232
=2 Em) 7,-61.20

Z[)Iiucl = 50Q

ZO line2 = 750

The graph below shows how Z varies along the 4 wavelength
section. Note: this solution is only valid for one frequency

b =MN4 b=0

— | | | | —
Loline1 = S(V . ine2 — /-
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Il.1 Electromagnetic Fields

Aims

Define E, B, D, H, recall basic maths and Maxwell’s equations

Objectives

At the end of this section you should be able to describe
the relation between E, B, D, H, understand the meaning of
displacement current density and its role in Maxwell’s
equations

II.L1.1 Definitions

E

A charge g placed in an electric field experiences a force F
which is dependent on the charge itself and on the electric field
strength E

We define Electric Field, E , so that
F=qE
For an electron: g=-1.602 1019 C

Units [E] =%=K
m




Magnetic Flux

A charge moving with velocity v in a magnetic field also
experiences a force

We define Magnetic Flux Density, B , such that
F=qvXB Lorentz Force

For an electron: g=-1.602 10-1° C

N N
Units [B]=—i=—=T (Tesla)
Cm

mA

Electric and magnetic fields are closely related. One can give
rise to the other, and vice versa

Electric fields are not only created by charges (such as the
charge on the plates of a capacitor)

but also by a changing magnetic field

Magnetic fields are created not only by moving charges, i.e.
current in a coil or aligned spins in an atom (as in a permanent
magnet)

but also by changing electric fields
(Maxwell's displacement current, as discussed later)

In addition to the above, we have to allow for charges and
currents in materials. We thus define two new quantities:

91




Electric Flux Density: D [D]=C/m?

Magnetic Field Intensity: H [H]=A/m

In linear materials, D and E; B and H, are directly related by the
permittivity € and permeability i of such materials

D=¢E B=pH
Permittivities and permeabilities are often expressed relative to
those of free space:

e=¢gy€, , Where g, is the permittivity of free space
w=Uol, , Where p, is the permeabilitiy of free space

and  g;=28.854 x 1072 F/m Mo= 41 107 H/m

Representation of Flux Density B

[RTIRTRTTT

iy
_,-""f

Unit Volume

Strength of the field = Number of flux lines per unit area

Direction of the field = Direction of the flux lines




I1.1.2 The laws of electromagnetism
11.1.2.0-Useful Maths

Vector Notation

A=A=Aa +Aa +A.aq,

Divergence of A (div A)

A, BA L OA
ax dy az

(j) A.dl = circulation integral

V-A=

dsS

J‘A.dg = flux




Stokes Theorem

pAdl=[(VxA)dS
C S
Divergence Theorem

[ads=] v-aav

11.1.2.1 Maxwell’s Laws
Integral Form

Maxwell-Faraday: dl = —I B dS

b
Maxwell-Ampere: C‘Pﬁdl I J +D) dS

S

where
5= 0B
o

J Conduction current density [A/m?]

0D

D:_—
— ot

Displacement current density [A/m?]




Differential Form

VxE=-B

VxH=J+D

Differential form linked to integral form by Stokes theorem

<_[>§.dg = jS (VXE)dS  Stokes

but CﬁE dl = —IB dS Maxwell Faraday

== VxE=-B

The Maxwell-Faraday Law CPE.d[ = —IE.dQ implies that

a changing magnetic flux Q has rings of field £ around it

B

The Maxwell-Ampere Law Cfﬂdl = I(l+2)d§

implies that a steady current’ J ora éhanging electric flux Q
have rings of H field around them mH

J




11.1.2.2 Gauss’s Laws
Differential Form

V-B=0
V. Q =P where p charge density [C/m3]

Integral Form

[ B.dS =0
BdS

. DdS =0 where Q total charge [C]
e

We can get the integral form from the differential one, by
integrating over volume and applying the divergence theorem

For example jV-BdV=jB-dS Divergence
v o= s— =

But V-B=0 ==) jsg.dgzo

The divergence V gives a measure of the difference between
the number of flux lines entering a volume and those leaving it:

;=1

V - X is positive : V- X isnegative

Hence, Gauss’ laws imply that:

1)The B flux lines are continuous, i.e. they are never broken. A
flux line exiting from the north pole of a magnet will return to that
magnet at the south pole

2) The D flux lines are continuous except when broken by point
charges = lines of D begin and end on point charges

D B

@ © /-

0




11.1.2.3 Displacement current density

It is one of Maxwell’'s key contributions and explains
electromagnetic waves propagation

In Ampere’s law the term D is missing. Thus:

C_‘SQ.dle(l).diZ[ This applies in a wire

A

Maxwell added the term D to take into account situations such
as a wire with a break in it carrying an a.c. current

The displacement current allows us to take into account the
effect of the gap formed by the break

Consider a capacitor with an applied voltage V(1)

—%

("

A

+++
++ +
++ + 4+

C

—>

d
When the voltage reverses

E(1) However, the charges of opposite

— B sign on the two plates create a
o+ varying electric field E(t), thus a
+ + varying electric field density

++ | D(t)=¢,E(t)

The charges on plate A move to B,
thus creating a current I(t)
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oD _9(&E) _d(gV/d) g 0V
ot ot o

But, in a parallel plate capacitor (C =

dV _¢g dV
of d ot

m=) [(t) in the circuit= C

=J, Displacement current density

I1.2 Electromagnetic Waves

Aims

To derive the equations for wave propagation in free space,
as well as dielectric and conducting media

Objectives

At the end of this section you should be able to describe
the propagation of a plane wave, derive its velocity and
intrinsic impedance in any medium




I1.2.1 Derivation of Wave Equation
Consider an infinite plane z = 0 in which, at all points

=(E,,0,0)¢’ and B=(0,B,,0)e™
Hence E and B are perpendicular and uniform

oB
B +—20
y aZ <

By
T/ £, b Ex"‘aE

X
Z
A

7

In the plane z=0z, the fields will have varied by the rates of
change of B and E with z 106

We can use the diagram to evaluate Maxwell's equations and
derive the wave equation

CEP Edl = —J §d§ Maxwell-Faraday

c s
[f/x+aaEx 2 1Ok +0+(—H.0x)+0=- at %51/7

_ 9E, _ aBy
Bz ot

Note that the differential form is:




If we then repeat the calculation, but this time using Hand Q

and taking the plane 0zdy No currents

+D).dS (Maxwell-Ampere)




B and H are directly related by the permeability p.:

D and E are directly related by the permittivity &:

Summarising:

oE, aBy

oz o
The next step is to eliminate B from the first equation and D
from the second

Since B=uH D=¢E

We get the following equations in E and H:

OE,  OH

= — Y 5.1
- My B

(5.2)




These are similar to the telegrapher’s equations:

v _

0x

P
Applying the same technique of differentiating eq. 5.1 and 5.2
with respect to z, and substituting in from 5.2, we end up with

the equations for electromagnetic waves in free space (or pure
dielectric medium, with J=0)

O°’E, 0 (0dH ) EBZEX
’ “at 0z # ot’

0°H, %)

7 o

= UE
0 or
0°H, 0°H,
2 — ‘ng 2
0z ot

These have the same form as the equations for waves in
transmission lines. Therefore they have similar solutions

Wave velocity is defined by:

velocity =

1
— analogous to
JUE




|

Vot \/8.854-10‘12 [

Remembering that [F]=é and [H]=Q-s

In free space

speed of light

All the results obtained from the telegrapher’s equations can
now be reused for electromagnetic waves:

= Re{(Eye s g o

H,= Re{(H—yFe—j/)’z _|_H—yBejﬁz )ejwr}




THE
LONDUN, EDINBURGIL ano DUBLIN

PHILOSOPHICAL MAGAZINE

AND

JOURNAL OF SCIENCE.

——*———"

[FOURTH SERIES.]

MARCH 1861,

XXV. On Mhysical Lines of Foree. By J. C. Maxwerr, Pro-

V=E,
== 810,740,000,000 millimetres per sccond, p . (136)
=103,088 milcs per second.

The velocity of light in air, as determined by M. Fizeau*, is
70,843 leagues per second {25 leagnes to & degree) which gives

V =314,858,000,000 mlthmctrca
=195,647 miles per second, . . . (187)

The veloeityof transversc undulations in our hypotlietical medium,
caleunlated from the electro-magnetic experiments of MM. Kohl-
rausch and Weber, agrces so exactly with the velocity of light
caleulated from the optical experiments of M. Fizeau, that we
can scarcely aveid the mference that fight consisie m the fransverse
undulations of the same medivm which is the cause af electric and
magnelic phenomena. b

B =

117




11.2.2 Intrinsic Impedance
For electromagnetic waves we define the quantity:

1] intrinsic impedance

This is a function of permeability and permittivity in the same way
as Z,, the characteristic impedance, was a function of inductance
and capacitance per unit length

Z =]= @

c
£ (53
E

77 links E & H in the same way as Z, linked V & |

Similar to Z, =

Note: The vectors E and H are orthogonal to one another,
hence the subscripts x and y in our expression for M

In free space

-7
_ 47 -10 3770
8.854-10




1.2.3 Wave propagation in conducting media

So far we have considered EM waves propagation in air or
in a pure dielectric medium: @O = conductivity = 0

f c#0 then J#0 J=0E

The Maxwell-Ampere law becomes:

Cﬁﬂ.dl:j(l+2).d§=j(aE+€E).d§

S

This changes the wave equation to:

Helmholiz equation

We then proceed in a similar fashion to what done in lossy
transmission lines

For simplicity we assume

oE .
L= jof (2)e’ = joE,

E=f(e” mm)

0°E

BZZ" = jou(o+ joe)E, =

7/:(05+j,8)=\/ja)/1(0'+ja)8) (5.4)

propagation constant




xFe_(OH-jIB)Z + ExB e(a"'j,B)Z :| e](()l‘} (55)

e (@rib): +EyBe(“”mZJ ejwt} (5.6)

jou

— =lle
o+ jwe . .
is a complex impedance

i£1 (5.7)

Note that if o =0 (i.e. infinite resistivity) then
_ |Jou _ [a
n=\——--== \/;
JE

Having a finite conductivity leads to a complex impedance. This,
in turn, leads to the E and H waves having a real decay term in
the exponent. This signifies a wave with decaying amplitude as it
travels into a conductive medium. The decay constant is o




Il.2.4 Example — Characteristic Impedance
A printed circuit board is one millimetre thick, has an earthing
plane on the bottom and e, =2.5 & u, =1

Estimate the characteristic impedance of a track 2 mm wide

7 4.

W=2mm

_ . Area
Capacitance E, ——— =

r

Capacitance per unit length C =

Wave velocity

1

1
“LC ) \/8081'/1'101111’

Hence :

L= —gogré‘oﬂr ~0.63-10° L

m

Then

Z, =\Ez1zog
C




I1.2.4 Example — Termination of a Coaxial Cable

_-plastic jacket
diglectiic insulator

'
metallic shield

centra core~

BNC Connector
(Bayonet Neill Concelmann)

Bayonet mount locking Patent 1951

Paul Neill
{ > ' Carl Concelmann
: Octavio Salati

The characteristic impedance is given by:

The voltage reflection coefficient is:
; _ L, — Zo
;===
Z, +7Z,

In order to avoid unwanted reflections, we need a Z to
terminate our coaxial cable with the same impedance as the
characteristic impedance of the cable

ZOZZ_L




|
S~

2b Capacitance per unit length

c=—1
AV

b outer radius
a inner radius

with q:% charge per unit lenght

Jpds=0 D=¢E

=)

EE2mrl =gl




We can work out the inductance per unit length L of the cable
from Ampere’s law:

gl}ﬂ.ﬂ =!(1+Q').d_S

Where S is any surface bounded by a closed curve C

In the absence of a changing electric field Q
we can simplify the equation to:

§H.dl=[(])dS

S

Since J is the current density then:

for the surface shown below

H

r

T~

I Surface (S) Closed curve (C)

Note: since the field strength comes from the total current
flowing, this explains how coaxial cables shield fields

The inner conductor carries current flowing in one direction. The
outer in the opposite direction. Hence, summing the currents for
a surface which includes both inner and outer conductors gives a

total current of 0, thus a field strength of 0 131




The field strength per unit length in the cable is then:

H =— Radial
27y

The total magnetic flux per unit length, Wis derived by integrating
he field strength per unit length between inner and outer

onductors
- 2b H, dS=drdl NOT 2nrdr

¢

If we consider a typical b/a~3-3.5

And atypical e~2  (e.g. Teflon, PTFE)

We get a typical value for Z, ~50Q

Thus, we can use a 50 Q resistor to terminate our coax

So, for example, if we have an input impedance of 50Q for a
television aerial socket, then the aerial lead should also have a

characteristic impedance of 50Q 133




1.2.6 The Poynting vector and power in EM waves

Let us consider a parallel plate transmission line:

From the Maxwell-Ampere law:

$H.dl=|(J+D)dS

\)

But D is in the same direction as E . Therefore it is orthogonal
todS =dxdya,  Thus:

jQ’-d§=0

N c_‘iﬂ.dg:jj.dS




We consider W>>d and neglect fringe effects
Solving for the top plate:

2H W =1
Solving for the bottom plate
2H W =1

Since the current is | on the top plate and —I on the bottom, the H
fields sum inside the transmission line, while they cancel outside:

Hlnside:I_l_I :I
' W 2w W

1 1

H Outside __

Y TOw oW




=> [=HW
The electric field and voltage are related by:

Ed=V

The transmission line average power is:

Wd=Area of the line

The average power density of the electromagnetic wave is then

Fa =1Re{EH *}: lRe{gxg
Area 2 Y 2

_— —

—_— —_— —k
S = lEX H  Complex Poynting Vector  J. H. Poynting 1884

=
This gives the direction of power flow, which is is perpendicular
to both E and H

For a plane wave F = (EX,O,O) and H

Thus E:l H
S =SB4,

Si = Lo
ince o

y
Average Power=

2

‘ X

C.f. in a transmission line=




§ = EXH Poynting vector points in the direction of propagation
(note different definition with respect to Complex Poynting Vector)

Wavefront is locus of points having the same phase

A duck with a cross-sectional area of 0.1m?2 is heated in a
microwave oven. If the electromagnetic wave is:

E = Re{7506j(wt_ﬁz)}Vm_l,Hy = Re{2ej(wt_’82)} Am™

What power is delivered to the duck ?

P=P - Area=—Re ExH -Area=1(750-2)-0.1z75W
Av 2 2
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