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I.3.5 Ringing

Ringing=Unwanted oscillations of voltage and/or current

Ringing is caused by multiple reflections. The original 
wave is reflected at the load, this reflection then gets 

reflected back at the generator, etc, etc

We will illustrate this by looking at the step change in 
voltage when a device is switched on
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ZL

G
e
n

e
ra

to
r

L
o

a
d

IF

ZG
Z0

GZV

V

F
V

1.At switch-on, a pulse VF is generated and travels towards the load

At the generator:

GZ FV V V− = and
GF G ZI Z V=

P
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Thus: F F GV V I Z= −

But, for a unidirectional (un-reflected) wave:

0

F
F

V
I

Z
=

0

F
F G

V
V V Z

Z
= −

0

0

F

G

Z
V V

Z Z
=

+

2. Part of the pulse is then reflected at the load as 2B L F
V V Vρ= =

Where 0

0

L
L

L

Z Z

Z Z
ρ

−
=

+

3. V2 is reflected at the generator as 
3 2G G L FV V Vρ ρ ρ= =

Where 0

0

G
G

G

Z Z

Z Z
ρ

−
=

+ 74
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4. The amplitude at the load asymptotically approaches VL

L F
Vρ=

2G G L FV Vρ ρ ρ= =

Lattice Diagram or Bounce Diagram

LV
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What is the asymptotic value?
1

P FV V=

2 (1 )
P F L F F L

V V V Vρ ρ= + = +

3 (1 )
P F L F G L F F L G L

V V V V Vρ ρ ρ ρ ρ ρ= + + = + +

4 2

2       (1 )

P F L F G L F G L F

F L G L G L

V V V V V

V

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

= + + + =

+ + +

...

2 2 2 2 3
(1 ...)

n

P F L G L G L G L G LV V ρ ρ ρ ρ ρ ρ ρ ρ ρ= + + + + +
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0

[1 ] ( )n

P F L G L
V V ρ ρ ρ

∞
∞ = + ∑

2 2[1 ( ) ...] [1 ( ) ...]n

P F G L G L F L G L G L
V V Vρ ρ ρ ρ ρ ρ ρ ρ ρ= + + + + + + +

0

1

1

nx
x

∞

=
−

∑

1
[1 ]

1
P F L

G L

V V ρ
ρ ρ

∞ = +
−

n

PV can be rewritten as:

Hence, the asymptotic value, for n⇒∞ is:

Since, by definition, |ρL|≤1 and |ρG|≤1

and for |x|≤1
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Thus, if we wait long enough, any "transmission line" effects 

should go away, and we converge to what we would have if the 

line was just some wire connecting the source to the load 

Substituting the definitions of ρG and ρL:

PV V
∞ =

L
P L

L G

Z
V V V

Z Z

∞ = =
+

If ZL→∞, open circuit, then:

In this case, the load resistor and the source resistor would form 

a voltage divider⇒ the voltage across the load is determined by 
the voltage divider equation 
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Ringing
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I.3.6 ¼ Wave Matching

The impedance of a line is Z0 only in the absence of reflections.  

�Intrinsic impedance Z0

�Impedance of the load ZL

�Distance from the load

�Wavelength.

With reflections the impedance at point B is a function of:
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( )
( )

( )

V x
Z x

I x
=

The general expression of impedance at x is:
( )

( )
( )

V x
Z x

I x
=

Remembering that: ( ) j x j x

F B
V x V e V eβ β−= +

( ) j x j x

F B
I x I e I e

β β−= +

0

F
F

V
I

Z
=

0

B
B

V
I

Z
= −

Then:

0 0

j x j x

F B

j x j xF B

V e V e

V V
e e

Z Z

β β

β β

−

−

+
=

−
0

j x j xB

F

j x j xB

F

V
e e

V
Z

V
e e

V

β β

β β

−

−

+

=

−
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Since, from (3.1a), (3.1b): 
0

0

LB
L

F L

Z ZV

V Z Z
ρ

−
= =

+

We get:

0
( )

j x j x

L

j x j x

L

e e
Z x Z

e e

β β

β β

ρ

ρ

−

−

+
=

−

Remembering that:

cos( ) sin( )

cos( ) sin( )

j x

j x

e x j x

e x j x

β

β

β β

β β

+

−

= +

= −

and cos(-x)=cos(x) sin(-x)=-sin(x)

0 0
0

0 0

( ) ( )

( ) ( )

j x j x

L L

j x j x

L L

Z Z e Z Z e
Z

Z Z e Z Z e

β β

β β

−

−

+ + −
=

+ − −
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( ) ( )
( ) ( )

0

0

0

cos sin
( )

cos sin

L

b

L

Z b jZ b
Z Z b Z

Z b jZ b

β β

β β

+
= − =

+

A quarter of a wavelength back from the load

Remembering that:
2π

β
λ

=
2

4 2
b

π λ π
β

λ
= =

We get
( )
( )

0

0

0

tan / 2

tan / 2

L

b

L

Z jZ
Z Z

Z jZ

π

π

+
=

+

(3.3)
( )
( )

0

0

0

tan
( )

tan

L

b

L

Z jZ b
Z Z b Z

Z jZ b

β

β

+
= − =

+

4
b

λ
=
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Since ( )tan / 2π = ∞

The impedance at point b = λ/4 is:

2

0
b

L

Z
Z

Z
= (3.4) 

This expression is important when we are trying to connect 

two lines with different impedances, and we do not want to 

have any reflections  

4
b

λ
=

This leads to the concept of quarter wave transformer
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I.3.7 Quarter wave transformer
Two lines are to be linked. The first has an impedance 

Z0Line1= 50 Ω, while the second has an impedance Z0Line2= 75 Ω

What should the impedance Z0 of a quarter wavelength section 

of line be, in order to eliminate reflections? 

Second line appears as ZL= Z0Line2=75Ω to the ¼ wave link
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Remembering that 

00
L L

Z Zρ = ⇒ =To have no reflections we need 

2

0
0 1Line b

L

Z
Z Z

Z
= =

0

0

LB
L

F L

Z ZV

V Z Z
ρ

−
= =

+

We want Z at b to equal 50Ω, the Z0 of line 1, so there is no 
reflection back along the line. Hence

2

050
75

Z
= Z0=61.2Ω
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The graph below shows how Z varies along the ¼ wavelength 

section.  Note: this solution is only valid for one frequency 
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|Z
b
| 
[Ω

]

βb

4 2
b b

λ π
β= ⇒ =

b=0b = λ/4
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Aims

Define E, B, D, H, recall basic maths and Maxwell’s equations 

Objectives

At the end of this section you should be able to describe 
the relation between E, B, D, H, understand the meaning of 
displacement current density and its role in Maxwell’s 
equations 

II.1 Electromagnetic Fields
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II.1.1  Definitions

q
V

E

+

-

A charge q placed in an electric field experiences a force F

which is dependent on the charge itself and on the electric field 

strength E

We define Electric Field, E , so that 

F qE=
For an electron: q=-1.602 10-19 C

Units [ ]
N V

E
C m

= =
89
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Magnetic Flux

q

A charge moving with velocity v in a magnetic field also 

experiences a force

We define Magnetic Flux Density, 

B

B , such that 

F qv B= × Lorentz Force 

For an electron: q=-1.602 10-19 C

Units [ ]   ( )
N s N

B T Tesla
C m mA

= = =
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Electric and magnetic fields are closely related.  One can give 

rise to the other, and vice versa

Electric fields are not only created by charges (such as the 

charge on the plates of a capacitor) 

but also by a changing magnetic field

Magnetic fields are created not only by moving charges, i.e. 

current in a coil or aligned spins in an atom (as in a permanent

magnet)

but also by changing electric fields
(Maxwell’s displacement current, as discussed later)

In addition to the above, we have to allow for charges and 

currents in materials. We thus define two new quantities:
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Electric Flux Density: D [D]=C/m2

Magnetic Field Intensity: H [H]=A/m

In linear materials, D and E; B and H, are directly related by the 

permittivity ε and permeability µ of such materials

D=εE B=µH
Permittivities and permeabilities are often expressed relative to 

those of free space: 

ε0= 8.854 x 10-12 F/mand µ0= 4π 10-7 H/m

ε=ε0εr , where ε0 is the permittivity of free space

µ=µ0µr , where µ0 is the permeabilitiy of free space
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Representation of Flux Density B

Strength of the field = Number of flux lines per unit area

Direction of the field = Direction of the flux lines 
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II.1.2 The laws of electromagnetism

II.1.2.0-Useful Maths

X

Y

Z

x
a

ya

z
a

Vector Notation 

x x y y z z
A A a A a A a= + +A =

AX

Ay

Az
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Curl A: A∇× =

( ) ( ) ( )y yx xz z
A AA AA A

x y zy z z x x y
a a a

∂ ∂∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
− + − + −

Divergence of A (div A)

yx z
AA A

A
x y z

∂∂ ∂
∇⋅ = + +

∂ ∂ ∂

. circulation integral
c

A dl =∫�

.
s

A d S flux=∫

dl

A

AdS
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Stokes Theorem

Divergence Theorem

. ( ).
c S

A dl A d S= ∇ ×∫ ∫�
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II.1.2.1  Maxwell’s Laws
Integral Form

Maxwell-Faraday: . .
c s

E dl B d S= −∫ ∫ ɺ�

Maxwell-Ampere: ( ). .
c s

H dl J D d S= +∫ ∫ ɺ
�

where B
B

t

∂
=

∂
ɺ

J Conduction current density [A/m2] 

D
D

t

∂
=

∂
ɺ Displacement current density [A/m2]
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Differential Form

E B∇ × = − ɺ

H J D∇ × = + ɺ

Differential form linked to integral form by Stokes theorem

. ( ).
S

c

E dl E d S= ∇×∫ ∫�

but . .
c s

E dl B d S= −∫ ∫ ɺ�

E B∇ × = − ɺ

Stokes

Maxwell Faraday
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The Maxwell-Faraday Law . .
c s

E dl B d S= −∫ ∫ ɺ�

a changing magnetic flux Bɺ has rings of field E

implies that

around it 

Bɺ

E

The Maxwell-Ampere Law ( ). .
c s

H dl J D d S= +∫ ∫ ɺ
�

implies that a steady current J or a changing electric flux Dɺ

have rings of H field around them

J

D
H .H

Dɺ

J 99
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II.1.2.2  Gauss’s Laws
Differential Form

0B∇ ⋅ =

D ρ∇ ⋅ = where ρ charge density [C/m3]

Integral Form

. 0
S
B d S =∫

.
S
D d S Q=∫ where Q total charge [C]

We can get the integral form from the differential one, by 

integrating over volume and applying the divergence theorem

For example
V S

BdV B d S∇ ⋅ = ⋅∫ ∫
But 0B∇ ⋅ = 0

S
B d S⋅ =∫

Q

Divergence
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The divergence ∇ gives a measure of the difference between 
the number of flux lines entering a volume and those leaving it:

 

X∇ ⋅ is positive 0X∇ ⋅ = X∇ ⋅ is negative

Hence, Gauss’ laws imply that:

1)The  B flux lines are continuous, i.e. they are never broken. A 

flux line exiting from the north pole of a magnet will return to that 

magnet at the south pole

2) The D flux lines are continuous except when broken by point 

charges ⇒ lines of D begin and end on point charges
 

+ - 

+
- 

+

+

-

-

BD
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II.1.2.3 Displacement current density
It is one of Maxwell’s key contributions and explains 

electromagnetic waves propagation 

In Ampere’s law the term Dɺ is missing. Thus: 

( ). .
c s

H dl J d S I= =∫ ∫�

Maxwell added the term Dɺ

as a wire with a break in it carrying an a.c. current 
to take into account situations such 

Consider a capacitor with an applied voltage V(t) 
102

This applies in a wire

The displacement current allows us to take into account the 

effect of the gap formed by the break
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d

S

A B

I

+ + + +
+ + + +

+ + + +

- - - -
- - - -
- - - -

When the voltage reverses

A B

I

+ + + +

+ + + +
+ + + +

- - - -
- - - -
- - - -

The charges on plate A move to B, 
thus creating a current I(t)

However, the charges of opposite 
sign on the two plates create a 
varying electric field E(t), thus a 

varying electric field density 

D(t)=ε0E(t)

( )E t
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D

t

∂
=

∂
0( )E

t

ε∂
=

∂
0 0( / )V d V

t d t

ε ε∂ ∂
=

∂ ∂

But, in a parallel plate capacitor 0SC
d

ε
=

V
I C

t

∂
=

∂

I(t) in the circuit=
0V V D

C S S
t d t t

ε∂ ∂ ∂
= =

∂ ∂ ∂

and

Hence: 
D

D I
J

t S

∂
= =

∂
Displacement current density 
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Aims

To derive the equations for wave propagation in free space,
as well as dielectric and conducting media 

Objectives

At the end of this section you should be able to describe 
the propagation of a plane wave, derive its velocity and 
intrinsic impedance in any medium

II.2 Electromagnetic Waves
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II.2.1 Derivation of Wave Equation
Consider an infinite plane z = 0 in which, at all points

( ),0,0
j t

xE E e
ω= and ( )0, ,0

j t

yB B e
ω=

x

y

z

Hence E and B are perpendicular and uniform 

y
B

x
E

zδ x
x

E
E z

z
δ

∂
+

∂

y

y

B
B z

z
δ

∂
+

∂

In the plane z zδ= , the fields will have varied by the rates of 
change of B and E with z 106
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We can use the diagram to evaluate Maxwell’s equations and 

derive the wave equation

. .
c s

E dl B d S= −∫ ∫ ɺ� Maxwell-Faraday 

x
x

E
E z x

z
δ δ

∂ 
+ + 

∂ 
0 ( )x

E xδ+ − +
2

y yB B
z z x

t z t
δ δ δ

 ∂ ∂
= − +  ∂ ∂ ∂ 

0

We ignore second order terms. Hence we have yB

t

∂

∂
and not 

2

yB

t z

∂

∂ ∂

yx
BE

z t

∂∂
⇒ = −

∂ ∂
Note that the differential form is: 

( ) ( ) ( )y yx xz z
E EE EE E

zx y z x x y y zy z z x x y

E B

a a a B a B a B a
∂ ∂∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∇× = −

 
− + − + − = − + + 

 

i

i i i

yx
y

BE
B

z t

∂∂
⇒ = − = −

∂ ∂

i
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y
B
i y

y

B
B z

z
δ

∂
+

∂

i

i

yδ

xδ

zδ

xE

x
x

E
E z

z
δ

∂
+

∂

dl

d S
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If we then repeat the calculation, but this time using Hand Dɺ

and taking the plane z yδ δ

From ( ). .
c s

H dl J D d S= +∫ ∫ ɺ
� (Maxwell-Ampere) 

y x
y y

H D
H z y H y z y

z t
δ δ δ δ δ

∂  ∂
⇒ − + + = 

∂ ∂ 

y x
H D

z t

∂ ∂
⇒ = −

∂ ∂

Note that the differential form is:

( ) ( ) ( ) ( )y yx xz z
H HH HH H

x y z x x y y z zy z z x x y

H J D

a a a D a D a D a
∂ ∂∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∇× = +

− + − + − = + +

ɺ

ɺ ɺ ɺ

No currents

y x
x

H D
D

z t

∂ ∂
⇒ − = =

∂ ∂
ɺ
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B and H are directly related by the permeability µ: B Hµ=

D and E are directly related by the permittivity ε: D Eε=

yδ

zδ

xδ

yH y

y

H
H z

z
δ

∂
+

∂

x
D
i x

x

D
D z

z
δ

∂
+

∂

i

i

dl

d S
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Summarising:

yx
BE

z t

∂∂
= −

∂ ∂

y x
H D

z t

∂ ∂
= −

∂ ∂

The next step is to eliminate B from the first equation and D 

from the second 

Since     B H D Eµ ε= =

We get the following equations in E and H:

yx
HE

z t
µ

∂∂
= −

∂ ∂

y x
H E

z t
ε

∂ ∂
= −

∂ ∂

(5.1) 

(5.2) 
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These are similar to the telegrapher’s equations:

V I
L

x t

∂ ∂
= −

∂ ∂

I V
C

x t

∂ ∂
= −

∂ ∂

(1.1) 

(1.2) 

Applying the same technique of differentiating eq. 5.1 and 5.2 

with respect to z, and substituting in from 5.2, we end up with 

the equations for electromagnetic waves in free space (or pure 

dielectric medium, with J=0)

2 2

2 2

x xyH

t z

E E

z t
εµ µ

∂ ∂
−  

∂ ∂ 

∂ ∂
= =

∂ ∂

2 2

2 2

y yx
E

t z

H H

z t
µεε

∂∂  
−  

∂ ∂ 

∂ ∂
= =

∂ ∂
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2 2

2 2

x xE E

z t
µε

∂ ∂
=

∂ ∂
2 2

2 2

y yH H

z t
µε

∂ ∂
=

∂ ∂
These have the same form as the equations for waves in 

transmission lines. Therefore they have similar solutions

Wave velocity is defined by: 

1
velocity

µε
= analogous to

1

LC
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In free space 
8

12 70 0

1 1
3 10

8.854 10  4 10  

m

sF H

m m

µ ε
π− −

= ≈ ⋅
   

⋅ ⋅ ⋅      

Remembering that [ ]
s

F =
Ω

and [ ]H s= Ω ⋅

8

0 0

1
3 10

m

sµ ε
≈ ⋅ speed of light

All the results obtained from the telegrapher’s equations can 
now be reused for electromagnetic waves:

( ){ }j z j z j t

x xF xBE e E e E e e
β β ω−= +R

( ){ }j z j z j t

y yF yBH e H e H e e
β β ω−= +R
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z

y

x
EX
Hy
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II.2.2 Intrinsic Impedance
For electromagnetic waves we define the quantity:

intrinsic impedanceη
This is a function of permeability and permittivity in the same way 

as Z0, the characteristic impedance, was a function of inductance 

and capacitance per unit length 

      (5.3)
µ

η
ε

=

0      (2.1)
L

Z
C

=
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η links E & H in the same way as Z0 linked V & I 

   xF xB

yF yB

E E

H H
η = = −

0Similar to F B

F B

V V
Z

I I
= = −

Note: The vectors E and H are orthogonal to one another, 

hence the subscripts x and y in our expression for η

In free space

0
0

0

7

12

4 10

8.85
= 377          

4 10

µ
η

π

ε

−

−

⋅
≈

⋅
= Ω
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II.2.3 Wave propagation in conducting media

So far we have considered EM waves propagation in air or 

in a pure dielectric medium: σ = conductivity = 0 

If 0≠σ then 0            J J Eσ≠ =

The Maxwell-Ampere law becomes:

( ) ( ). . .
c s s

H dl J D d S E E d Sσ ε= + = +∫ ∫ ∫ɺ ɺ
�

This changes the wave equation to:

2 2

2 2

x x xE E E

z t t
µσ µε

∂ ∂ ∂
= +

∂ ∂ ∂
Helmholtz equation 
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We then proceed in a similar fashion to what done in lossy

transmission lines

For simplicity we assume

( )
j t

xE f z e
ω=

( ) j tx
x

E
j f z e j E

t

ωω ω
∂

= =
∂

( )
2

2

2

x
x

E
j E

t
ω

∂
=

∂

( )
2

2

x
x

E
j j E

z
ωµ σ ωε

∂
= +

∂

2

xEγ=

( )( )j j jγ α β ωµ σ ωε= + = +

propagation constant

(5.4)
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( ) ( ){ }Re
j z j z j t

xF xBx
E E e E e e

β ωα α β− + + = + 
(5.5) 

( ) ( ){ }Re
j z j z j t

yF yByH H e H e e
β ωα α β− + + = + 

(5.6) 

Then

xF xB

yF yB

E E

H H
η= = −

Where 
j

j

ωµ
η

σ ωε
=

+
is a complex impedance 

(5.7) i
e

ηη ∠=
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ee--ααzz

Note that if 0σ = ( i.e. infinite resistivity) then 

j

j

µ
ε

ωµ
η

ωε
= =

Having a finite conductivity leads to a complex impedance. This,

in turn, leads to the E and H waves having a real decay term in 

the exponent. This signifies a wave with decaying amplitude as it 

travels into a conductive medium. The decay constant is α
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II.2.4 Example – Characteristic Impedance
A printed circuit board is one millimetre thick, has an earthing

plane on the bottom and εr = 2.5  & µr = 1

Estimate the characteristic impedance of a track 2 mm wide

d=1mm

l

'

0 0r r

Area Wl
C

d d
ε ε ε ε= =

W=2mm

Capacitance
'

0 44r

C W pF
C

l d m
ε ε= = ≈Capacitance per unit length 
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Wave velocity

60 0 0.63 10r r H
L

C m

ε ε µ µ −= ≈ ⋅

0 120
L

Z
C

= ≈ Ω

0 0

1 1

r rLC ε ε µ µ
=

Hence :

Then
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II.2.4 Example – Termination of a Coaxial Cable

BNC Connector

(Bayonet Neill Concelmann)

126
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The characteristic impedance is given by:

0

L
Z

C
=

0

0

L

L

L

Z Z

Z Z
ρ

−
=

+

The voltage reflection coefficient is: 

In order to avoid unwanted reflections, we need a ZL to 

terminate our coaxial cable with the same impedance as the 

characteristic impedance of the cable

0 L
Z Z=
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Capacitance per unit length2b

2a

     with q=    charge per unit lenght
q Q

C
V l

=
∆

.
S
D d S Q=∫ D Eε=

2E rl qlε π =

b outer radius 

a inner radius 
l

r
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2

q
E

rπ ε
=

But
dV

E
dr

= −

Then

a

b

V Edr∆ = − =∫ ln ln
2 2 2

a

b

q q a q b
dr

r b aπ ε πε πε

   
− = − =   

   
∫

2

ln

C
b

a

πε
=

 
 
 
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We can work out the inductance per unit length L of the cable 

from Ampere’s law:

J

D
H .

( ). .
C S

H dl J D dS= +∫ ∫ ɺ
�

Where S is any surface bounded by a closed curve C 

In the absence of a changing electric field Dɺ
we can simplify the equation to:

( ). .
C s

H dl J dS=∫ ∫�
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Since J is the current density then: 

.
S

J dS I=∫ for the surface shown below 

I

H

Surface (S) Closed curve (C)

r

Note: since the field strength comes from the total current 

flowing, this explains how coaxial cables shield fields  

The inner conductor carries current flowing in one direction. The 

outer in the opposite direction.  Hence, summing the currents for 

a surface which includes both inner and outer conductors gives a

total current of 0, thus a field strength of 0 131
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2a

HΦ

The field strength per unit length in the cable is then:

2

I
H

r
φ

π
=

The total magnetic flux per unit length, ψ, is derived by integrating
the field strength per unit length between inner and outer 

conductors 

ln
2

b

a

I b
H dr

a
φ

µ
ψ µ

π

 
= =∫  

 

Since L
I

ψ
=

the inductance per unit length L is : ln
2

b
L

a

µ

π
 

=  
  132
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Hence 

0

ln
2

2

ln

b

L a
Z

C

b

a

µ

π
πε

 
 
 = =

 
 
 

0

ln

2

b

a
Z

µ

π ε

 
 
 =

If we consider a typical b/a~3-3.5

And a typical εr~2      (e.g. Teflon, PTFE)

We get a typical value for Z0 ~50Ω

Thus, we can use a 50 Ω resistor to terminate our coax

133
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II.2.6 The Poynting vector and power in EM waves 

Let us consider a parallel plate transmission line:

V

I

d
Ex

H
y

w

I
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From the Maxwell-Ampere law:

( ). .
c s

H dl J D d S= +∫ ∫ ɺ
�

xE

zd S dxdya=

But Dɺ is in the same direction as  . Therefore it is orthogonal

to Thus:

0
s

D d S⋅ =∫ ɺ

. .
c s

H dl J d S=∫ ∫�
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V

I

d
Ex

H
y

w

dS=dxdyaz

I
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We consider W>>d and neglect fringe effects 

Solving for the top plate:

2
y

H W I=

Solving for the bottom plate

2
y

H W I=

Since the current is I on the top plate and –I on the bottom, the H 

fields sum inside the transmission line, while they cancel outside:

2 2

Inside

y

I I I
H

W W W
= + =

0
2 2

Outside

y

I I
H

W W
= − =
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yI H W=

The electric field and voltage are related by:

xE d V=

The transmission line average power is:

{ }*1
Re

2
AvP V I= { }*1

Re
2

x y
E H Wd=

Wd=Area of the line

The average power density of the electromagnetic wave is then 

{ } { }* *

2

1
R

1
Re =   

2
e

2
x y

AvP W
E H

Area m
E H


×=


  
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*1

2
S E H= × Complex Poynting Vector

This gives the direction of power flow, which is is perpendicular 

to both E and H

For a plane wave ( ),0,0
x

E E= and ( )0, ,0yH H=

Thus *1

2
x y z

S E H a=

Since   x

y

E

H
η =

2

Average Power=
2

x
E

η

x

y

z

yH

xE

Sz

2

02

FV

Z
C.f. in a transmission line=

J. H. Poynting 1884
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Ex

Hy
Sz

S E H= × Poynting vector points in the direction of propagation

Wavefront is locus of points having the same phase 

(note different definition with respect to Complex Poynting Vector)
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II.2.6.1 Example – Duck a la microwave

A duck with a cross-sectional area of 0.1m2 is heated in a 

microwave oven. If the electromagnetic wave is:

( ){ } ( ){ }1 1Re 750 , Re 2
j t z j t z

x yE e Vm H e Am
ω β ω β− −− −= =

What power is delivered to the duck ?

( )*1 1
Re (750 2) 0.1 75

2 2
AvP P Area E H Area W= ⋅ = × ⋅ = ⋅ ⋅ ≈
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