Graphene brings quantum effects to electronic circuits

Research by scientists attached to the EC’s Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little energy.

At the atomic and molecular scales, the world can be a very strange place, with everyday notions of temperature, energy and physical coherence thrown into disarray. With reality at the quantum level we must talk of statistical likelihood and probability rather than simple billiard ball cause and effect.

Take the concept of superfluidity, an ultra-cold state in which matter acts as a fluid with zero viscosity. You can think of superfluidity as a generalised thermodynamic analogue of the more commonly understood electrical superconductivity, whereby electrons move through materials without resistance and energy loss.

Superfluidity was first discovered in liquid helium, at temperatures of just a few degrees above absolute zero, but the phenomenon is evident at scales ranging from the atomic to the cosmic. It is related to the state of matter known as a Bose-Einstein condensate, in which a large fraction of the particles in bulk matter occupy the lowest quantum energy state. The particles, which at higher temperatures move around in a random, haphazard fashion, can in this way behave as a coherent or at least quasi-coherent whole, thus bringing quantum-mechanical effects into macroscopic visibility.

Fascinating if somewhat esoteric physics it may be, but there is a practical side to superfluidity and Bose-Einstein condensation. For one thing it has implications for the behaviour of electronic devices, albeit specialist ones operating at ultra-low temperatures. To this end a group of researchers associated with Europe’s Graphene Flagship have investigated the properties of electrons moving in two-dimensional structures formed from graphene and gallium arsenide.
Graphene is crystalline carbon arranged in transparent, single atom-thick layers, with the carbon atoms set in a honeycomb-like lattice. The best known of the hundreds of two-dimensional materials discovered to date, graphene has a number of unique electrical, mechanical and other properties that give it huge potential for applications ranging from electronics to super-strong structures.

Focusing on measurements of Coulomb drag – the frictional coupling between electric currents in spatially separated conductors – researchers from the Graphene Flagship, led by Marco Polini of the Nanoscience Institute of the National Research Council and Scuola Normale Superiore in Pisa, Italy, Vittorio Pellegrini, at the Graphene Labs of the Italian Institute of Technology in Genova, and Andrea Ferrari of the Cambridge Graphene Centre, have found that the drag resistivity increases markedly at temperatures of less than around 5 Kelvin (-268.15 Celsius). This is an unexpected result, departing as it does from the usual temperature dependence displayed in weakly-correlated Fermi liquids: a theoretical model which describes the behaviour of most electrically conductive materials at ultra-low temperatures.

In a paper published recently in the journal *Nature Communications*, the first author of which is Andrea Gamucci, the researchers report on a new class of compound electronic structures in which single or bi-layer graphene is set in close proximity to a quantum well made from gallium arsenide. A quantum well, formed from a semiconductor with discrete energy values, confines charged particle motion to a two-dimensional plane. Combining graphene with a quantum well results in a heterostructure formed from two different two-dimensional materials, and such a compound assembly may be used to investigate the interaction of electrons and electron holes. A hole is formed when an electron is excited into a higher energy state, leaving in its wake a quasi-particle which behaves as if it were a 'missing' electron, or an electron with positive rather than negative charge. Note that electron holes are not the same thing as the physically real anti-particles known as positrons.

In the case of the graphene-GaAs heterostructures reported in the *Nature Communications* paper, the Coulomb drag measurements are consistent with strong interactions between the material layers, with the attractive electrostatic force between electrons and holes in solid-state devices predicted to result in superfluidity and Bose-Einstein condensation. In other words, the strong interaction between material layers leads to quantum effects manifest in large ensembles of electrons and holes confined within micrometre-sized devices.

"We show that such effects may happen when electrons are confined in a thin well made of gallium arsenide, with holes confined in monolayer or bilayer graphene," says Polini. "Electrons and holes separated by a few tens of nanometres attract each other through one of the strongest forces exhibited in nature – the electrical force. At sufficiently low temperatures, our experiments reveal the possible emergence of a superfluid phase, in which opposite currents flow in the two separate two-dimensional systems." Pellegrini continues: "Such currents flow with minimal dissipation, and may make possible a number of coherent electronic devices which dissipate little energy." Ferrari adds: "This is another example of cutting edge results enabled by the deterministic assembly of graphene and other two-dimensional structures, which is precisely the overall target of the Graphene Flagship."

Superfluidity and Bose-Einstein condensation are ultra-low temperature phenomena, so the effects described here in graphene-gallium arsenide heterostructures will not apply to everyday electronic devices. Still, there are many applications which require the use of cryogenically-cooled electronics, and these could exploit anomalous low-temperature Coulomb drag in bulk two-dimensional materials.

Examples of such applications include high-performance and quantum computing, spectroscopy, magnetic and infrared sensing, and analogue-to-digital conversion. The discovery of the Graphene Flagship researchers outlined here could benefit these technology areas and more.

Explore further: [Fractional quantum Hall effect: Experimental progress and quantum computing applications](http://phys.org/news/2015-01-graphene-quantum-effects-electronic-circ...)

Journal reference: [Nature Communications](http://doi.org/10.1038/ncomms6824)

Provided by: Graphene Flagship

In theory, the Milky Way could be a ‘galactic transport system’
Jan 21, 2015 32

Peer-reviewed pocket-calculator climate model exposes serious errors in complex computer models
21 hours ago 62

Atoms can be in two places at the same time
Jan 20, 2015 38

Laser-generated surface structures create extremely water-repellent metals
Jan 20, 2015 4

Scientists tame Schrodinger’s cat for a new type of quantum computer
Jan 19, 2015 21

Phx.org on facebook

Like Sandro Mignuzzi, Pasquale Pq Cilibrio and 894,006 others like this.

Relevant PhysicsForums posts

Process in which catalytic Agent provides -OH or -O (Epoxy)?
1 hour ago

why so much o2 left after So2 to so3 conversion
Jan 21, 2015
Stability of SU-8 Pillars

Jan 20, 2015

Composite ply layup notation

Jan 19, 2015

What happened to the photoresist (S1818) after RIE?

Jan 18, 2015

Equilibrium modelling in kraft mills

Jan 16, 2015

More from Materials and Chemical Engineering

Related Stories

Fractional quantum Hall effect: Experimental progress and quantum computing applications

Jan 06, 2015

The Hall effect, discovered in 1879, is observable when a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although the Hall effect was discovered in a sheet ...

Graphene plasmons go ballistic

Jan 12, 2015

Squeezing light into tiny circuits and controlling its flow electrically is a holy grail that has become a realistic scenario thanks to the discovery of graphene. This tantalizing achievement is realized ...

Graphene multiplies the power of light

Jan 19, 2015

Could graphene turn light to electricity? Scientists have shown that graphene can convert a single photon into multiple electrons, showing much promise for future photovoltaic devices.

The importance of building small things

User comments

40 minutes ago

Please log in to add a comment. Registration is free, and takes less than a minute. Read more

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Making them stronger and lighter could help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists. ...

Transparent artificial nacre: A brick wall at the nanoscale

Graphene enables all-electrical control of energy flow from light emitters

2 hours ago
At the heart of lasers, displays and other light-emitting devices lies the emission of photons. Electrically controlled modulation of this emission is of great importance in applications such as optical communication, ...
As charter schools continue to expand, new research indicates liberal opponents are failing to make effective arguments aimed at curbing the education reform movement.
Graphene brings quantum effects to electronic circuits