'Revolutionary' Nanotube Growth Method Devised

CAMBRIDGE, England, Aug. 21, 2006 -- A new method of growing carbon nanotubes is predicted to revolutionize the implementation of nanotechnology and the future of electronics. Researchers at the University of Cambridge have successfully grown carbon nanotubes at a temperature that permits their full integration into present CMOS technology (350 °C).

Carbon nanotubes are the driving force for current advances in nanotechnology. They have excellent mechanical and electronic properties, which make them extremely attractive for next-generation electronics. Increasing efficiency through smaller components is key for the miniaturization of technology. The use of carbon nanotubes could find uses from sophisticated, niche applications to everyday electronics, such as mobile phones and computers.

Until now, the growth of nanotubes has been carried out at very high temperatures, and growth below 500 °C was believed impossible -- making the direct implementation of nanotubes into electronic devices unthinkable. Trying to integrate nanotubes above 400–450 °C would in fact damage the intermetal dielectrics commonly employed in CMOS device fabrication.

A group of researchers at the University of Cambridge's engineering department, led by Mirco Cantoro, Stephan Hofmann, Andrea Ferrari and John Robertson, in collaboration with colleagues at the Cambridge Hitachi Laboratory and the Department of Materials Science, University of Cambridge, succeeded in growing single-wall carbon nanotubes at temperatures as low as 350 °C. These nanotubes, grown by thermal chemical vapor deposition (a chemical process often used in the semiconductor industry), are promising candidates for integration into existing nanoelectronic devices.

This result also sheds new light on the possible mechanisms that occur during carbon nanotube growth. Previously, the assumption that the catalyst has to be liquid often dominated carbon nanotube growth model considerations; but at these lower temperatures, evidence has been found of a solid catalyst. The findings extend to the catalytic growth of other nanostructures in general.

For more information, visit: www.cam.ac.uk

Start a discussion on this article or any photonics topic in the Photonics.com Community Forum

More News and Features
Mass Marketed OLEDs Could Power Lighting Revolution
Kodak Selling Unit to Rohm and Haas
MiniBooNE Data Clarifies Neutrino Behavior
Combined Imaging Techniques Promise Insights into MS
324-GHz Waves Reported

Related Searches
University of Cambridge
carbon nanotubes
metal-oxide semiconductor
CMOS

Sydor
Providing custom precision, flat-surfaced, parallel & wedged optics for 40 years. Prototype to high quantity OEM production volumes available.
Call 585-271-7500 or email us at sales@sydor.com

http://www.photonics.com/content/news/2006/August/21/84005.aspx
Most Active Topics

to all friends
DESIGNING OF LED SOFTWARE
Research
NIR reflectance using a digital camera?
Force of light to set fluid in motion

Photonics Spectra | April 2007

Copper Film Enables Accurate Optical Humidity Sensing
NIR Spectroscopy Determines Healthiest Seeds
LIGO and Virgo Form Alliance
Strong Growth Forecast for Filter Modules
Nanonics Imaging Selects Representatives

The Photonics Handbook is a unique collection of technical design and applications articles, as well as technology primers presenting the basics of the photonics technology.

Nd:YAG Lasers
Standing the Test of Time
Materials for Optical Coating Deposition
A Wide Selection Is Available

Vibration Control
Dealing with Workplace Problems

The Photonics Handbook is now available online for registered users.

Most Emailed Articles

Laser Technique Detects Anthrax in Real Time
SD-OCT Could Help Nip Cancer in the Bud
Wavelength Monitors for Optical Sensing Applications
Digitizing a Century of Astronomical Images
Barloworld: Melles Griot Sale Being Finalized