ENGINEERING TRIPOS PART IIA

ELECTRICAL AND INFORMATION SCIENCES TRIPOS PART I

Friday 12 May 2000 9 to 12

Paper E6
COMPUTING SYSTEMS

Answer not more than five questions.
All questions carry the same number of marks.

The approzimate number of marks allocated to each part of a question is

indicated in the right margin.

(TURN OVER

1 (a) Consider the following extract of MIPS assembler code.

Jg

L1: 1w $2,0($9) # $2 loaded with data at address $9+0
add $9,%2,%3 # $9 loaded with $2+$3
bne $2,$0,L1 # Jump back 2 instructions if $2#$0
L2: # Next instruction

Assume that the loop executes n times before falling through to the next instruction
at L2. The instructions are executed on a pipelined datapath with the following five

stages:

Stage 1 Instruction fetch

Stage 2 Instruction decode and register fetch

Stage 3 Execution and effective address calculation
Stage 4 Memory access and branch resolution

Stage 5 Write back data to registers

The datapath has a data forwarding facility: any hazards which cannot be mitigated
by data forwarding are resolved by stalling the pipeline. How many clock cycles (as
a function of n) does the code segment take to execute? Illustrate your answer with

a diagram showing clearly any data forwarding operations. 5]

(b) Repeat (a) for the following extract of MIPS assembler code.

L3: 1w $2,0(39) # $2 loaded with data at address $9+0
add $9,%$2,$3 # $9 loaded with $2+83
bne $9,%$0,L3 # Jump back 2 instructions if $9#$0
L4 # Next instruction

Again, assume that the loop executes n times before falling through to the next

instruction at L4. [4]

(cont.

(c) Now assume that the instruction set includes a delayed branch instruc-

tion with a single delay slot:

branch instruction
next instruction

branch to target if branch is taken

Show how a compiler might take advantage of the delayed branch to improve the
execution time of the code segment in (a). Explain why a similar improvement is

not possible with the code segment in (b). 5]

(d) The MIPS R4000 architecture includes a branch likely instruction. This
is similar to a delayed branch, except that the instruction in the delay slot is flushed
from the pipeline (before it can update the contents of any register or memory
location) should the branch not be taken. Show how a compiler might take advantage

of the branch likely instruction to improve the execution time of the code segment
in (b). [6]

(TURN OVER

2 (a) Explain what is meant by the terms SIMD and MIMD in the context of
parallel processing. Discuss why it is that MIMD has emerged as the most popular
general-purpose parallel computing architecture. Suggest one common, specialised

application of SIMD architectures.

(b) Machine A in Fig. 1 employs a MIMD architecture with bus snooping
to enforce cache-coherency. Explain why a write invalidate coherency protocol is

usually preferred to a write update protocol.

(c) In uniprocessor architectures, it is often the case that increasing the
cache block size reduces the cache miss-rate. Explain why this is not necessarily so

for MIMD architectures like Machine A in Fig. 1.

(d) In Machine B in Fig. 1, the individual processors can receive messages
over the network in two ways: they can either poll the network interface, or else
they can accept interrupts from the network interface. The time required for a single
polling operation is 1.6 ps, while the interrupt overhead is 19 us. Messages tend to
arrive in bursts, with long intervals between bursts. The time between successive
messages in a single burst is 10 ps. Discuss how a processor might use the two

schemes to receive messages with optimal efficiency.

(cont.

Processor Processor | - Processor
Cache Cache | o Cache
Single bus

Shared memory
Machine A
Processor Processor | e Processor
Cache Cache | . Cache
Memory Memory | oo Memory
Network
Machine B
Fig. 1

(TURN OVER

3 You have been called in as a consultant to advise on a system that seems to
be exhibiting strange behaviour. An entertainment complex is installing a building-
wide CD jukebox system. In any room, a user can select a track from a list and the
track is played at their location (there are speakers in all rooms and music can be

routed to any room).

In a central location are 5 CD multi-changer units, each loaded with copies of
the same 100 disks. The CD units are managed by a CD server. The CD server
has been implemented as a multi-threaded process. When a user request comes in
to the CD server, if any of the 5 CD players is not currently playing a track then it
can start playing the user request right away. If all players are busy then the user

request is queued until a player becomes free.

Within the CD server, the 5 CD units are represented as an array of cd_changer
objects. An array of integers is used to flag whether a CD unit is busy or not (1=

busy, 0 = free).

cd_changer cd[NUM_CHANGERS];
int in_use[NUM_CHANGERS];

When a play request is made, a new thread is created within the CD server to run

the code in Fig. 2.

(a) Why does a multi-threaded CD server offer better concurrency than a

single-threaded version?

(b) Under what circumstances can a race condition occur in the
request_play_cd function? What unexpected system behaviour would the race

condition cause?
(c) How would you use a semaphore to address the race condition?

(d) Explain why the request_play_cd function is unnecessarily wasteful of
processor time. Using another semaphore, show how it is possible to send to sleep
any threads waiting for a CD unit to become free, and to wake them when a unit

becomes free.

(cont.

void request_play_cd(Track t, Location 1) {
int n=0;
while (TRUE) {
if (tin_use[n]) {
in_use[n] = TRUE;
cd[n].play(t,1);
in_use[n] = FALSE;
return;
}
else {
n=n+1;

if (n == NUM_CHANGERS) n=0;

Fig. 2

(TURN OVER

4 You are working as part of a team charged with the development of a traffic
pollution monitoring system for Cambridge. The city is divided into a number of
zones. In each zone, pollution sensors collect information. The pollution sensors
periodically send their readings to a central pollution information collector. The
pollution information collector can output the pollution level in a particular zone,

as well as the maximum, minimum and average pollution levels across all zones.

(a) Design an interface for the pollution information collector. Encode this
as a C+-+ object class, ensuring all the specified functionality is represented. You
need only show the class interface; you do not need to show how the operations on

the class are implemented.

(b) What is information hiding? Describe how the use of information hiding

in your class definition improves the robustness of the system design.

(c) Under certain usage circumstances the pollution information collector
will signal errors, for example if it is sent a reading from an unknown zone. How
could exceptions be added to your design to implement error signalling and in what

ways would the design be improved?

(d) Using C++ language statements, show briefly how a pollution informa-
tion collector object can be instantiated and invoked. Ensure in your invocation

that exceptions are properly caught and handled.

S

5 (a) A d-dimensional two-class pattern recognition problem has prior proba-

bilities P, and P,. The class conditional density functions are Gaussians with means

p, and p, and covariance matrices X; and X.

(i) Using Bayes’ Rule, define the minimum error rate classifier for this

problem. 2]

(ii) Show that the decision boundary, x, is determined from a quadratic

of the form
xXAx+b'x+¢c=0

where A is a d x d matrix, b is a d-dimensional vector, c is scalar and

b is the transpose of vector b. (6]

(b) The class-conditional density functions in a pattern recognition problem
with d-dimensional data are to be modelled either by a Gaussian distribution with
a full covariance matrix or by a Gaussian mixture distribution, each of the mixture

components having a diagonal covariance matrix.

Discuss, including reference to the modelling capability and the number of

parameters, the advantages and disadvantages of each approach. 5]

(c) Instead of using Gaussians for the class conditional density functions a
two-component Gaussian mixture model is to be used. The models are to be trained

on N 1-dimensional data samples, z, ..., Zy, using maximum likelihood estimation.

(i) Write down the log-likelihood function that must be optimised. 2]

(ii) Differentiate the log-likelihood function with respect to the means and
variances, expressing the results in terms of the mixture component
posterior probabilities. Deduce gradient descent update rules for the
means and variances to provide maximum likelihood solutions. Com-

ment on any problems that may be encountered using this approach. [5]

(TURN OVER

10

6 In a pattern recognition system it is proposed to perform dimensionality re-
duction by applying either principal component analysis or using the Fisher linear

discriminant.

(a) Initially principal component analysis is to be used.

(i) Explain what the principal components are, and list the potential ad-
vantages of using this approach in feature analysis for pattern recog-

nition. 3]

(i) For two Gaussian distributions, having equal prior probabilities, with

covariance matrices ¥; = X; = [; i} and means p; = {g}

0 .
and p, = [9], compute the principal components based on the
average within-class covariance matrix and show them on a sketch of

the Gaussian distributions. (5]

(b) What is meant by the Fisher linear discriminant? 3]
For the Gaussian distributions in part (a):

(i) Compute the Fisher linear discriminant. 3]
(i) Show how a discrimination rule between the classes can be generated. (3]

(iii) Compare the Fisher linear discriminant vector to the first principal

component generated in part (a) and comment on this result. (3]

11

7 (a) Describe and compare the depth-first, breadth-first, and best-first algo-

rithms for conducting state-space search. 8]

(b) The 8-puzzle consists of a 3 by 3 square frame of 8 numbered tiles and
a space. The tiles are rearranged by sliding tiles into a space. In a particular game,

the initial and desired goal states are shown in Fig. 3.

218 112
1 4 8 4
716 716
Start Goal
Fig. 3

(i) Consider a successor function which attempts to move the space in
the order up, right, down, left, when such moves are legitimate, and
an evaluation function for each state f(n) = g(n) + h(n) where g(n)
is the number of moves to reach state n, and h(n) is the number of
misplaced tiles (i.e. not in goal position). Describe in detail how the
goal is reached with A* search. Generate the state-space search tree
in the order it is explored. Label clearly the order in which the nodes
are expanded or terminated and the value of the evaluation function

for each state. 8]

(ii) Explain why the heuristic used, h(n), is an admissible heuristic. How
can the efficiency of different heuristics be compared? Propose a more

efficient admissible heuristic. [4]

(TURN OVER

12

8 (a) What is meant by a sound rule of inference? List the rules that are

commonly used in making inferences in propositional logic.

(b) State the abduction inference rule and show, by constructing a truth

table or otherwise, that abduction is not a sound rule of inference.
(c) Consider the following statements:

Anyone passing this exam is happy.
Anyone who studied or is lucky will pass this exam.

John did not study but is lucky.

(i) Use simple predicates (pass, happy, study and lucky) to express the

above knowledge in first-order logic.
(ii) Convert the clauses into conjunctive normal form.

(iii) Describe the resolution theorem proving algorithm for proving theo-

rems.

(iv) Use resolution theorem proving to answer the question:

“Is John happy?”

END OF PAPER

Answers

Question 1
(a) Tn+ 4, (b) Tn +4, (c) 6n +4, (d) 2+ 5n + 4.

:
:
£

Question 5

(a) ()
argmiax{lnP,- —1/2In |3 — 1/2(x — ;) 7 (x — /,Li)}
(a)(ii)

! o — ! —_ t —_ P Z 1 I
X (37 = 2% — 2(BT - B3)x + 210 }% 1’2—3 ST — B, =0
(c)(it)

oL
it +1] = plt] = A 5~
il
Rl+ 1=t +1] - A %
95 0218

where A is the step size.

Question 6
(a)(u))\1 = 6, U1 = (1, 1) and)\2 == 2,U2 = (1, -*1) (b)(l) (1, —‘1)

SN

