Engineering Part IIA and EIST Part I 1999

Paper E6 (Computing Systems) Solutions

- 320 -

Eb R
Solutions to E6 computer architecture questions

1. Carry-lookahead and carry-select adders

(a) [Bookwork] Carry lookahead can be used to determine the carry inputs to each
full adder without using ripple carry. For each bit i of the adder, we define two signals,
generate gi and propagate pi. Bit i generates a carry if the two bits it’s adding are
both 1, and propagates a carry if either of the two bits it’s adding are 1:

gi = ai.bi pi = ai + bi

cl, the carry into bit 1, will be 1 if either bit 0 generates a carry or c0 is 1 and bit 0 .
propagates a carry:

cl = g0 + p0.cO
Likewise for ¢2 and c3:

c2 =gl + pl.g0 + pl.p0.cO
€3 = g2 + p2.gl + p2.pl.g0 + p2.p1.p0.cO

These expressions show how the carry-in signals can be obtained without waiting
for them to ripple through a 4-bit adder. Unfortunately, the expressions get more
and more complex for larger adders, requiring gates with large fan-ins which are
not feasible in practical hardware implementations. For this reason, the design of
a carry-lookahead adder is usually hierarchical. At the bottom of the hierarchy, we
may choose to use 4-bit adders with carry-lookahead as above. Four of these 4-bit
adders can be connected together using a higher level of carry-lookahead, producing
a 16-bit adder. Similarly, four of these 16-bit adders can be connected together using
an even higher level of carry-lookahead, producing a 64-bit adder.

For an n-bit adder, if we use carry-lookahead to predict m carry-in signals at each level
of the hierarchy(m = 4 in the above example), then we will need log,, n levels and
gates with a fan-in of m. Since each level takes a constant amount of time to operate,
the asymptotic time requirement is O(log,, n). In any reasonably straightforward
silicon layout, the asymptotic space requirement is O(nlog,, n).

The choice of the optimal value for m will depend on the particular implementation
technology. The asymptotic complexities suggest that the larger the value of m,
the fewer the number of levels and hence the faster the adder. However, this will
require higher fan-ins to gates, which may be infeasible in certain technologies and
will certainly result in longer propagation delays and hence slower operation.

(Key points: clear understanding of generate and propagate signals, hierarchy re-
quired because of impractical gate fan-ins, asymptotic time and space requirements,
optimal number of levels depends on the particular implementation technology.)

i

-3\ -

(b) (i) For optimal operation, each block should complete its summing just as the
carry-out of the previous stage is available. Starting from the right of the carry-select
adder, the first 4-bit block will produce its carry-out signal after 4 time units, which
is just in time to select between the two sums produced by the next 4-bit block. The
carry-in to the next block will be available one time unit later, after a total of 5 time
units. This is just when the next (5-bit) block has completed its parallel additions.
The carry-in to the next block will be available one time unit later, after a total
of 6 time units. This is just when the next (6-bit) block has completed its parallel
additions. Continuing this line of argument, it becomes clear that each block should
be one bit longer than the next, except for the first two blocks, which should be the
same size.

The optimal design of a 16-bit carry-select adder would look like this:

(ii) For an n-bit adder, the left hand block will need to be of size m, where m + (m —
)+ (m—-2)+...+3+2+1+1>n. Noting that

we obtain
m(m + 1)

2
Solving for the equality, we obtain

_ —1/14+8(n—1)

m= 2

+1>n <« m2+m——2n+220

As n — oo, the positive solution approaches v/2y/n, so m > v/2y/n. Since the
adder will take m time units to operate, its asymptotic time requirement is therefore
O(y/n). The asymptotic space requirement is clearly O(n).

(c) Knowing the asymptotic behaviour of adders is a useful design tool, but should
not be relied on too much, since asymptotic behaviour is only really important when
n becomes large. For smaller n, the constant of proportionality might make an
O(n) adder faster than an O(4/n) one. Real adders in real CPU’s deal with 64-bit
numbers at most, so asymptotic behaviour should not be relied on too much as a
design criterion.

-3aa-

2. Caches and locality of reference

(a) The two properties are:

Temporal locality of reference: if an item is referenced, it tends to be referenced
again soon (loops, local variables).

Spatial locality of reference: if an item is referenced, items with nearby addresses
will tend to be referenced soon (instructions, data in arrays)

(b) The cache holds 128 KBytes of data, which is 32K words, 8K blocks or 1K sets.
Since 1K= 2% this means that 10 bits of the physical address will act as the cache
index. The least significant two bits of the physical address are the byte offset, the
next two the block offset. The division of the physical address is therefore:

Byte address
Word address
Block address
31 Tag 14|13 Index 4/3 2|1 0, Byte
; offset

Ve

Block offset

The index is used to locate a particular set of 8 blocks in the cache. Each of these
blocks is checked to see if the strored tag matches the tag field in the physical address.
If it does, then the requested word is in the cache, and the block offset is used to
extract the appropriate word from the matching block.

(c) The miss rate can be reduced by:

Increasing the block size: this takes better advantage of spatial locality of refer-
ence, thus reducing the miss rate. However, there is a corresponding increase in
the miss penalty, so the computer will not necessarily go faster.

Increasing the degree of associativity: this allows more flexibility about which
block to replace on a miss: sensible block replacement strategies like LRU reduce
the miss rate. However, there is a corresponding increase in the hit time and
the miss penalty, so the computer will not necessarily go faster.

(d) (i) The cache can store 1024/4 = 256 real numbers. Since the matrix elements
are all Real numbers, it follows that the cache can store 256 matrix elements at a
time.

(ii) The code segment in Fig. 3 has very poor temporal locality of reference. Even
though the elements of b and ¢ are each referenced 1000 times, successive references
to the same element are not close together. The inner loop in k references 1000

-3a3 -

distinct elements of b and 1000 distinct elements of ¢ before there are any repeat
references. These 2000 references will fill and refill the LRU cache approximately 8
times over, with no cache hits. It follows that every reference to a matrix element
in Fig. 3 will miss. Since there are 10° references to elements of b and ¢, and 10°
references to elements of a, there will be approximately 2 x 10° cache misses.

(iii) The code segment in Fig. 4 has much better temporal locality of reference. The
inner loops in j and k reference 100 elements of ¢ and 10 elements each of a and
b. All these elements will comfortably fit in the cache. The next iteration of the i
loop references the same 100 elements of ¢ and 10 new elements each of a and b.
Since the 100 elements of ¢ are already in the cache, and they are all used each time
round the i loop, there will be no further cache misses for ¢ until the next iteration
of the kk loop. So, for the inner three loops (in i, j and k) there will be a total of
100 + 2 % 10 x 1000 = 20100 cache misses. The three inner loops are enclosed in two
nested loops in kk and jj, each of which iterates 100 times. So the total number of
cache misses will be 100 x 100 x 20100 ~ 2 x 108, an improvement by a factor of 10
over the code in Fig. 3.

<

Answer, <
(a) The 2 features that could cause erroneous program behaviour are:

(i) A lack of concurrency management that can lead to a race condition. This can
occur as the program is running as a multi-threaded server process. A debit
operation on an account can be preempted at any time and at any point in the
operation. If this preemption occurs whilst part-way through debiting an
account and an operation is started to debit the same account (another account
holder is also involved in a transaction) then both operations might have read
the same account value into memory which they will then operate on. The
operation that finishes last will write back an erroneous value. If the server is
run on a parallel machine then true multi-processing is possible, leading to the
same problem. An example scenario is:

Debit Account A (£50)

Read balance A = £200 ------ preempt thread------ - Debit Account A (£30)
< Read balance A = £200

Balance = £200-£50

Store balance A (£150)

End

Balance = £200-£30
Store balance A (£170)

(NB: the preemption here is caused by operating system threads blocking due to I/O
operations)

The final value is £170 rather than £130. This is a loss of £50 for the bank. One
consequence is thus financial loss. Another scenario is that the account holders can
withdraw more money than is actually in the account by two or more concurrent
transactions totalling more than the currrent balance experiencing a race condition as
described above.

(i) A year 2000 problem (Y2K). This is due to two factors. Firstly only the
trailing two digits of the year are stored and processed by the system (e.g. 98
instead of 1998) — as illustrated in the card_account record by field
expiry_year. Secondly, the statement that checks if the card has expired or
not does not take into account the millenium. It uses a straight less than
comparison, which can cause erroneous behaviour if the card’s expiry year is
in the next millenium (00 onwards) and the current year is still in the current
millenium. So for example, if the expiry year is 2001 and the current year is
1998 then the comparison (98 < 01) will fail to validate the card. The
consequences for the bank are that customers with new debit cards will be
refused transactions, leading to their embarrassment and potential loss of
custom for the bank.

- 3xsS -

(b)

(i) The debit operation should be implemented as an atomic action over a
particular account, i.e. make it a single unit of concurrency as opposed to a
sequence of steps that can be preempted and later resumed at any point. A
good way in this case is the use of database locking — so that just the account
in question is locked, thus providing maximum concurrency (debit operations
on other accounts can proceed). Even more advanced is to propose the use of a
transaction processing system, which would most likely use simple locking in
this case since only one object/table is operated on. However, full marks will
also be awarded here for a solution proposing any working in-memory
solution, e.g. semaphores.

PROCEDURE debit

WAIT(Semaphore) LOCK((account) Start Transaction
Read account value

Date comparison

Balance Comparison

Deduct Amount

Write account value

SIGNAL(Semaphore) UNLOCK((account) End Transaction

The semaphore is initialised to 1 (a binary semaphore) thus only allowing one thread
to be within this zone of mutual exclusion. Other approaches are fine, e.g. machine
level instructions to implement atomic actions, monitors, Ada rendezvous etc.

(i) Use full 4 character year representations. This would solve the problem of
comparison since (1998 < 2000) is true, for example.

(©) The debit operation should have been tested as an independent component using
test data to provide coverage of a key range of inputs.

Equivalence partitioning techniques should have been used to examine the ranges
of input values (in this case the values in the relevant account fields as well as

card number and amount to debit). In the case of years, the range over time would
be {startyear..99, 00..99} and values of particular interest would be 98, 99, 00, O1.

Dummy accounts could be set up in the database with values in the middle of and
at the edges of partitioned ranges. Alternatively, if the database system was not
yet developed and tested, test stubs could be written to simulate the database
operations and return predetermined test values. A stub to simulate the
get_current_date procedure could have been used to test date scenarios in the
future.

-3 -

Vi

Answer :

(a) A hard real-time is a system whose operation is incorrect if it does not behave
within the parameters of its timing specification. The system must respond to
events, e.g. from sensors, within a specific period of time, usually because of
some safety-critical requirement, e.g. a nuclear reactor will blow up if not. f

ot ’ ¢
Of the lis&_:d systems, the nuclear reactor monitor and the fly-by-wire control
system are'real-time. These must respond to hard deadlines, e.g. movement of
joystick means the plane must go up by the specified amount within a specified
hard deadline. Although the ambulance incident system must be designed for
efficiency of operation, it does not have any specific hard deadlines.

(b) It is unlikely that a prototyping approach would be used for requirements capture
of most hard real-time systems. Prototyping is used when a software system has to
achieve a desired result but it is unclear of the specification of a system to achieve
this result. An operational prototype is developed and then experimented with to
refine the system requirements. This approach is typically used for interactive
systems, for example designing a user interface for air traffic control. In contrast,
hard real-time systems are usually well-defined problems. There are a set of
events to handle, a set of actions to initiate in response and a set of deadlines that
must be met.

Additionally, building an untested prototype of a hard real-time system can be
dangerous. Many such systems control safety-critical equipment, e.g. nuclear
reactors (in which system errors can be disasterous (a simulation of the system
may be used for testing)).

Often real-time systems are tightly coupled to user interfaces, e.g. fly-by-wire
aircraft systems. A prototyping approach can be useful for requirements capture to
design the user interface, although this is not strictly part of the real-time system
itself. (Also many user interfaces are based on the analogue equivalents).

(c) A requirements specification gives a precise description of the software system’s
functionality and constraints on its operation. It should be unambiguous to avoid
misunderstandings between the customer and the developer. A spec is often used
as the basis of a contract between these parties.

Many procurers of hard real-time systems (e.g. the UK MoD, US DoD) insist on
formal specs because they are mathematical entities, allowing proofs of
consistency and possibly ensuring an implementation conforms to its spec
(verification). Formal specs also provide an accurate guide for the software tester.
Generally, they avoid ambiguity and increase confidence in systems where safety,
reliability and security are paramount.

~3a3-

(d) Multi-purpose operating systems are not suitable for hard real-time systems
because their scheduling algorithms are not appropriate. Hard real-time systems
require events to be handled within specific deadlines. Priority levels can be
specified in mainstream OS but hard schedules cannot be guaranteed. Usually
real-time systems are statically analysed to determine events and deadlines. An
appropriate scheduling algorithm is then devised, e.g. earlist deadline first. A
fixed number of processes are deployed, and it is ensured that the system load
under all conditions is within safe parameters.

-3’ -

Ar\swors QS(@) (L) Poﬂ’aﬁor» Yro))ad)]‘thaj ysing &ajg 5 ?m,\w\a:
Ploslz] = b (x]wy) P(w)
2 plelw) ? ()

L

— whaere i)riw j)rokmb;\\hw F(_U)J) (f’ class W, 1lolb w fhe

faoywncj ¢ occuen(e q— :L Gach ClC\JJ BEFORE e
ave soon Pa CLO\E(L . (ASuc-\\j donved fﬁ—um }\If’\\u—\wo\
k’\w)@djp c\l:ou,k ‘H\O rmb\ﬂ,m

— {_)_ (2&./%\) is ha rmbc.b}l\".,) Aerj fi,\ch'o,\ 4 ke ?mjwu
ve ckor 3¢ Cowra Ta\d;f:jh class («)'J . We con model

'H\i.; 1" %:rww{\m?'mm (aj. gou.w;c«n bzlou) ond aJ}Sma’G, B
parantocs fon daka labaled w05

— Pl]x]un poslarprbilry 4 e dofe . bologig b

Cla.s.y ""J'- -K{s it uLed = go\:’p:' cision Fule g

(LL) Colcu.‘ol“e C Foﬂwﬁw ?m\oabi\{\'igs : 4
F[w,\:_g] , P[wz\ﬂi_} ______) F[Wc z_c]
and Fit\d MG MM ¢ frore ond Ow;jn x +o Comufandiy ole,

29. in 2" clan })mbbzm d\gdc\g%}ww‘ -\F P[W‘ ‘2&] > ?[bn"—‘.]

Wa otherwiseo.

i

1
..2_{03 (o.«.%q
el
' |
- G] >
o303
C(o.n"homdurj

@ Plw)=0-4 Plwn)-0y

Of!h'ma', decsion rule)Cowum(r\q equal cosks o}' oy) 1Lb

MmifimiSe Hv; {)mbq' MI:CIM«I{mHOA eror- lS X

g PLule] > Plesfu] xew

B- ke,
T e) > p e Pl

Pt) pledfb) el gl Pl

&Si:\m H.v. dsnoninatr i gove & borh 05;‘){0/1;0'\! ond ‘]T\ij \031 f bcH\ sdoy .

loa P(L]wl) t 103 P(N,) >)og P(ZL”)WJ t }cj P(ug

-4 Em) (zmm) > -k (e (x-m)

oq P(L2)
) + lﬂ N
+ 2 lo:, (O'Lr/o. (;)

= flx=m|® > -|[z-n

- 330 —

(50 et

DQUCJ»‘or\ rule : i_i
Clas 1 }P d, < dy "’llhj Ol%.b
Cla.u l GHorwis:z,

2

where CJ,‘ “ l‘:‘f_‘?_;”

A

\ audkidoon dishone —o?wod b cvean &c\q,

u) Cla»w‘)ow((.Lu J[’Q"(l\) josu eloser To m, . C(w;—bo\mlaj TR line
(!)’\3 G Minitaom distne daai'?‘lxr)

C) ROC Curvs s uu?vl b b ot C?' d’ﬁ”"’\k +3])°’ "F QoS con C‘L‘“‘j’z’ ot
Ho diva ¢ win ¢ clamifior. Obinti b M co i madicel dingnashs
blgwr, f"' pxop\.rlg , Wt fe wior might puant 1O -Lﬂ,’ o
Phro,hold o shie o bl bohusn TRUE POSITIVE ond FRLSE PONTVVES .

Far wa];\n A o}wuh‘m Wee °

d' < dz_“‘@ "%c(an{
a5 a deusin rule ond ckoay@ ko ja{' o ROC aurve

- 23\~

Qé{a) _h:q aH’orn c‘wif\'caﬁoa ru\olm\ ccnhe ‘}TQQ‘*’QCI &S o
in Forp ola Hon roblsm b '!\c(mj « chon

[>T)
ﬁ(?&.) Fhat \Sa;‘UFwJ Ji, = 5(}_1,)]QW e +m.'r\if\j daka

hew hg o\.r'j I"Qai ‘}-afjg,j Vb fw ec<h ciau/:

og. fi-t] o 2 oe
i e oz W

d
Fw L‘M.om in ;”orro’al";on) j(?_t_\)z Wet+ Z (AJJJC)
J=l

ﬁ(es) = We + W

(})) L)Q. Mninitnize he in‘)‘orrolajrion error
N 2 b
E = LZ‘_(% =9 (3»)) F Z(Fi~wo“2{'5;\

L=t

bith WJI)(C-E b He wknouns Weo ond }_J_ . L\JQ con ‘}{nak We ond W

Ul\ct"'m'\l) 1wl sme nolehon Lj o\a_f\‘lunj
ﬁ% - {%—\‘l ond a = [ﬂ.] [d‘H dl'hwfo'\cl vo«}w;)

No

CE=g ey k)

é‘*"‘ d)/u&&c(rbkc «?—w«‘w\ c{' w\VJ\Ow\S.

| Y& ’“’&f,\ U e 1 N x (dﬂ) madri ¢

T
Wt rous 8L

&
L, "= vecker ¢ ‘}'&r obs !l‘—.
¢ = I

- 233

é(},) cont
-h:o solwKon (;?. o \em}-.se,moz ecm)) k\j o\iﬁ?omka\is. ond ,ook.u\j et Mg

.0 « 0-2Y"(va-b)

&

gt = [YTY]) YT b_ ("Q— oo inverso 4 Y)

L (c\ An altemakivois b cdonats VT) Ko dsdvehvo ¢ = wh

'Qisllwhl'l c‘~ QA ond J}'arkr\j me & rondom \jwz.s_y
q' [JH'QmYJz *‘vawdj Mo Jol,ukon:

)w; ko

&(k-ﬂ) = i(k) — /D vj(&k) (,kah Iﬂ {3 o.smc.u jcu‘m.

For HQ limw md;i E Is qu.wlm{?'m LuH\ @ Jinj‘a jlo\)al Mhma SO
jm\dk.enk Search Ll Cowa:j{_. +!o He covrac.".,Jotv\.“‘fon.

¥ an orh knj Cons “‘m’t} ‘)'O‘b Jmdl raoy Umwsﬂm@ v ‘}'Do J1°\.J')
ﬁ f }oo lovyz bods b OJdHcJ—?onJ.

Cwo\{'vm (Second dorua 'z) con bo tused o dosand #wi’u .
Col\uwguu wh iy deformied b}j % Mjhxo‘awf c?(’YTY] .

(d,) {)orur)‘mn a‘J anthm clbﬂ.;/\l' minimi@ O 1 *‘orfolo\\?o" anror l{\d\’gcl/
ot Onj sl’mgo hThe itorutive QSHMC-‘HU\) O'\() Q)(W"\T\LJ
H\c\}» o M;JCJQ/,;V\‘&J CO'\"\\LUJ’R ‘;‘b He cerrlc'h‘oﬂ,

(“"k‘i ety P'WR»\ ?V‘ Ihc‘)clm:-?";ﬂJ egam’:h/ u)iwar .

5

-333 -

é(cn EXOM \95 whkere in'hzr oloJ‘\'on armr fouls ond H’\ orceprun
sijcls m*’j"l' be f 700“ r “f

A

I Classl C(O\NZ-

Clag|

O C‘G.UZ

G

- 33w -

Q7 (a\ [}\Q soluton ¢ Ma:j rnbkm\.; CW\\LQ dwsenbed I)D F\'I\Au\j
a .S.ojlumuzzf‘ ac.‘-iw Fhak U&.tibb & deiroble \joal

{’\ a (J-n"-ﬂ(ﬂ{\'md fmb\nm :

{MkoJ shake S

(ool shnta G

O Fﬂm\‘w Or JSwienor ‘T‘mc kb‘\ f

-]'vr eoch shite X, 5(1) re}*um A of
q' JH‘IS feachobls f‘&)h\ x Wit ono ac‘koﬂ

[r\ shato - space search we swheehcally e>coming ol sfates
P Y
reoc hobla {Zﬁw\ iniWel shahe J % OM) Jec}w\w 4’ a»c,ktm ‘}\
%ﬂ\d « raH\ .
.S\'m\‘a's‘:a&
=

ro~H~ cosk

joo-\ ‘\".Q.St .

,)
]I\%/m@d anel i a]Lcmwcl MH\L ':}S)

'S

-33S -

Q?—(},) A* soarch o.\jor{thnI

1. FOT'mo..

Q , ¢ porkal pahe
Lok Q m [

bo Zorp - uu”‘ 'Z,be‘J)'.ef fad"\ Fﬂm root h houwhote -

2\ UI\,H)‘(J él\ﬁfb or \joa[has bhesr reachad
~ remoe %u\" Fol—k fim Q

f‘m\‘f\t\mw meu ; Q’(h\d\j
T add rew Po."k: o Q
sork bj sum ¢ costs +

Fem diain

Py o9 Jh)o

lown, Low__ci eshimate 4* cosh

“— 1 o tmove fo.Hu cu\\'w'« ®& CGwnon l\oJ_q. SOva.{”o

0~“ b\.})\(Pc.H\ Huet readss)\t Cotnpmar f\odo U‘H\ lowﬂll'
Cost .

OLO?\'F* ?‘WJ\' = oxtond Amtw.d’ node ?‘w‘t

O(b " MM O(bd " an) Lomr\oj‘a Lul’ not
OPhMo»l No duorm-g\a\‘:n —l-J'A”‘w fﬁ,h wbelenad ’v_q_g_s.

— expond shallowest nodo f’\rs‘\':
})reo.a\Hw ?\rx\' - O(l))hw and memg

— Complshe bt i or’nmt

A*’ — Or‘hmd ond COI\nP,gh’. N\IMnj+ RMJ G\nP\dr oy .Q?f’\\(f.&\cj °F
O\/“l.b»ﬁ-{\‘o-\ f’LN\CHW‘ (L\Ow do&l +\ +ﬂw u-l‘ 1 OJ];N-CJ’P
9""-&2!\4.'“,'{7 co:t‘)_

6

- 336~

Qe .
(:) CO'\ Fijwaj‘im .rrauz forrwh}'a %oa \w C{‘dmb\jﬂ. l'\r\a\: Or\\’md fad—h
will consisk ¢ moves b wible vorke, i Jhmjh¥—);(\g s,

Pmb\h it well- o\n?u‘mc\' od hay afimrau SRS OV x‘wckh ond o
saska bmmknj f’au:+0r.

(k) depth-]p-(m)f ull Pm&wu.
S = N-B-(-D-E-F-H- (&a,,n\),
erc!l-\v\ »F‘\‘Nl‘ -S - k’j‘ (’T ((oa} = L)

A*Jaomk Al ?mo\uu.) ‘S“‘E—-‘Fﬁ’ f- 9’ ((ul’: Bq)

[U\SQ jocrw'h'\c c\l-f"m‘& ivr Dv:,\\;ﬂo\'\'\'c'\ #ﬂm»%b\)

(m) 'lf' refation is allowed M CME*J%FM Jr“‘f wil 13‘2 m .
Ro,c}zmj‘o vorky, are verRw in 3D _;Tagg)

S)\W""Y Y(,.H\ i l)o \S" F' —'j WIR F, b redl VO“}'OX MWW}‘
rockonga

-333 -

gp‘)l‘}Lo iCu o Formal lm waoe ‘h reprasot ‘HTOPQW » chet
Q }/J\;?VLM\SQ " E Co t:?ra.'l.j"]‘rud'mbir?—m'\ . :

\\’ b (eawee ovody m\L\iu\ib) conkext h\wr"‘ivL) pxrrauNL/

ond eﬂ'@c}w& %‘u‘ mk&a in~orenced

Prbro.rﬂ_'on -iJ(\'\bO\J aw wred o roprosant TLC ;(zi}knr e ov gv\w)

Each ijbc] con hacn What Ve ok b o ks .

Pmro;‘ﬁ-u ot (ON\L 'IMA WIH\ \bj{cc.\ (Mc\‘\vu ‘}’D wo .wJ'Nu
kﬂH'\ Mave (OMl)\DY Nauh\?; . (V\.Om:f\j T ot 1 rgT_ l)j 'h\kﬂ""hb\n.(

lnparmw are MO Pmrv\}\t wound nalss ¢ .‘r\%umd_ (Fm«* ’fbm:)\ .

{u) k!\owbdga dotabase) KB ¢ clavses o cxome
‘?mk& ‘}‘Louroom P Bj addic\j 1P + dofubae -+ ?\m\ G C0A)vwl.b.‘\'of)-

AN
co\c(“,;@,

F f_ T T T T v =T

F I F T F T F~>T

F T 7 T T T \/ 7 TT
TePF o F T F

FF T F T T i

rTF T I I v, B o=

T T_ T T /]

Hw rr‘am:u: ars 4‘&;\; y Lon\c\»«s;m o dso ‘f»ﬂ)\Q,
§

-33%-

8 «) (). .
\}xgsvz’ [son (1) 3) v dow:r]kk\f Cz)j)] /\ [don(z,j) V daughle (’-,y)]

> 6ib]fnj 1_,3) A \SSUic\j(,X\)

;;) ! Ss r\(xl, dl) v 7.:01\ (Zl) 3) \ Jtumj (xl 31))
Son (2], y) v dm._:,ki\r (22)32) v .rlb)«\j (xz, jz) (2)
Y daug (3, 9) v dwstie (23,49) v sbing (33,99 ¢ 3)
q

Siblig (x4, §4) v siling (gl xt) «)

Son (Edwed, Honny) S)
imuski:\;" (Elimb\rk > Hong) (L)
Clcw.gﬂg (o“"")] ['\Mrv) ' C ’7/
dow.sw_& (Eweasn, Mot) <)

son ([Edesin, Chador) A

uu.) mez u 6:“((\3 (Elisabolk 5 uﬂ ?

Add Tau sithag (Elischbh yu) = 7 sibling (Evabotn , 85) snr
(10)
U-J-Q V'?Ic(.uh‘o\ mroﬂht&n&\l{l O/\A Wf\‘wkoxh %I\A [N (0\"}“\&3&\'{« wd \\D\Q

p«m G) ond OD) uw,-:),,j ac.S/Eux.baFk o S /32
‘deﬁk“‘ar(Eld}k L‘)V daujﬁ (0,5 "]) (l()

lie (W od (1)) by 42/ Heny

7 c(aujkpsr (U\S) Hmn‘)) (}Z)
COAMIJ\Q wik (7’) us-= Mauf\’. ﬁ\

