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. MIMD parallel processors

(2)

(a) A MIMD parallel architecture comprises a number of processors, each of which
fetches its own instructions and operates on its own data. The processors are often

off-the-shelf microprocessors. MIMD stands for multiple instruction streams, multiple
data streams.

(b) A small number of processors can be connected together as in Machine A. Since
each processor has its own cache, the single bus and memory system can serve the

needs of all the processors, as long as there are not too many of them (up to a few
tens of processors).

With more processors, the single bus and memory system becomes a bottleneck, and
the need for a physically longer bus also reduces the bus’ bandwidth and increases its
latency. So architectures like Machine B tend to be used for larger MIMD machines.
The memory is distributed amongst the nodes, so local processor-memory traffic can
proceed at a high rate, independent of the number of processors. Inter-processor
communication, however, is over a network and slower than in a single bus design.

(c) Machine B can use either shared memory or message passing. Just because the
memory is distributed doesn't mean it cannot be shared: the physically separate
memories can be addressed as one unified address space. Alternatively, each pro-
cessor’s memory can be completely private and inaccessible to remote processors: the
processors will then have to communicate by message passing.

(d) In a shared memory MIMD machine. multiple caches can simultaneously hold
copies of the same data. It is important to ensure that the multiple copies are con-

sistent, or, in other words, that the caches are coherent. This is the essence of cache
coherency.

Bus snooping caches monitor the bus and react to reads and writes on other caches.
Coherency can be enforced in two ways:

Write-invalidate: a writing processor broadcasts an invalidate signal to all other
caches. If they have a copy of the same block, they invalidate it immediately.

Write-update: a writing processor broadcasts the new data over the bus. If other
caches have a copy of the same block, they update it immediately.

() This is a straightforward application of Amdahl’s Law. We are enhancing a
fraction of the computation (the part that will run in parallel mode): this fraction of
the application will now go 10 times faster. Amdahl’s Law says:

tnew = told ((1 - fra:ctionenhanced) +

fractionenhanced )
Speedupenhanced

told 1
i Speedupprogram = -

tnew (1 - fraCtiOnenha.nced) +

fraCtionenhan ced
Speedupenhanced
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Substituting speedup, ogram = 8 and speeduPephanced = 10 gives

1
8 = . fraction
(1 — fractionenhanced) + Lcahanced
0125 = (1 — fractioneshanced) + 0.1 X fractionenhanced
& 0.9 x fractioNephanced = 0.875
&> fractionephancea = 0.972

So less than 2.8% of the computation can be serial. The chance of achieving this
depends on the nature of the application itself. It would be near impossible to take
a typical, serial application and convert it into a parallel processing program with
97.2% parallelism. On the other hand, if our application involved running 10 or more
independent processes, then we could achieve this sort of parallelism.

(f) We can only expect a 10 times speed up if each of the processors runs as fast in
the MIMD machine as it did in the uniprocessor machine, without increased stalling.
Unfortunately this is not likely to be the case. The coherence protocol will signi-
ficantly increase the cache miss penalty, resulting in more CPU stall cycles. Also,
the MIMD machine’s processor-memory bus is likely to have an increased latency,
since it has more potential bus masters (the processors) requiring more arbitration.
The processors will need to stall while waiting for control of the bus. Another factor
we have not considered is I/O: if the 10 processes require significant 1/O activity,

they may saturate the I/O channels when running in parallel, limiting any potential
speedup.



- 30—

&} Z. Virtual memory

(a) There are two main requirements that motivate the adoption of a virtual memory
system. The first is the desire to be able to write programs without having to worry
about the amount of physical memory installed in the computer. The second is the
need for the CPU to execute multiple processes separately: each process should be
unaware of, and protected from, the others.

(Key points: multiple processes and process protection, ability to write programs
without regard for physical memory size.)

(b) A virtual memory system satisfies these requirements by allowing programs to

use virtual memory addresses. These are then translated into physical addresses at
run time.

Virtual memory and main memory are both divided into chunks called pages: the
translation is between a virtual page number and a physical page number. The
translations are stored in a structure called a page table, which is indexed by the
virtual page number and contains the physical page number.

If a program accesses more virtual memory than can be fitted into the computer’s
physical memory, then the excess pages are stored on disk. When these pages are
required they are fetched into main memory, overwriting another page which is stored
back on disk. Hence a program can be designed and implemented without regard for
the amount of physical memory in the machine.

Separate processes running simultaneously on the same CPU will have separate page
tables. These are managed by the operating system to ensure that independent virtual
pages map to disjoint physical pages. Since a user process is not allowed to modify
its own page table, it follows that one process cannot access another process’ data:
this is the essence of process protection.

(Key points: division of memory into pages, virtual page numbers translated into
physical page numbers, translations stored in page table, disk acts as backing store
for pages that won’t fit into main memory, one page table per process, OS manages
page tables, user process not allowed to modify page tables.)

(c) The need to look up address translations in the page table (which is large and
therefore stored in main memory) undermines the existence of the cache. So the CPU
typically contains a small, fast cache called the translation lookaside buffer which
caches recently used page table entries. Locality of reference to the page table means
that the TLB miss rate is very low.

(Key points: page table lookup undermines cache, TLB caches page table entries,
TLB lookup is very fast.)
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(d) The cost of a disk access is enormous (typically millions of clock cycles). The vir-
tual memory system is designed to minimize page faults by allowing fully associative
placement of pages in main memory, with a Jeast recently used (LRU) replacement
strategy (implemented in software as part of the operating system). In addition, write
back is used to replace a page on disk, and the page table includes a “dirty” bit which
is set the first time the page is modified in main memory. If a page is not marked
“dirty” then it does not have to be written back to disk when it is replaced.

(Key points: enormous cost of disk access, fully associative page placement, LRU
replacement strategy implemented in software, write back, “dirty” bit prevents un-
necessary write backs.)

(e) A large page size results in (i) a smaller page table, (ii) more efficient use of
disk transfers, since most of the disk transfer time is overhead (seek time, rotational
latency, controller overhead), so a 32K page can be fetched from disk in much less
than twice the time it takes to fetch a 16K page, and (iii) fewer TLB misses, since
more memory is mapped through a fixed number of TLB entries. All these factors
motivate the selection of a large page size.

(Key points: smaller page tables, more efficient disk transfers, fewer TLB misses.)

, One factor which suggests a smaller page size is internal fragmentation. This is
the term given to the wasted memory which is an inevitable consequence of a fixed
page size. Since a process is forced to monopolise an integral number of pages, on
average half a page will not be needed by the process and therefore wasted!.

(Key points: amount of wasted memory increases with page size.)

'éf When the CPU switches from executing process A to executing process B, the
TLB will contain some of A’s page table entries. To maintain process protection, B
must not be allowed to use these translations. There are two ways to handle this.
The first is to reset all the TLB’s valid bits on a process switch, so that all entries are
invalidated. The second is to extend the TLB entries with a unique process identifier.
The first scheme is the easier to implement, though the second will result in better
overall performance. To see this, consider two processes running concurrently on a
CPU. If the processes are sufficiently small, the TLB could hold simultaneously all
the translations required by both process A and process B. However, the invalidating
strategy will flush the TLB every process switch, and the translations will have to be

re-fetched from the page table in main memory. This cost will not be incurred by the
second scheme.

(Key points: invalidate all TLB entries on process switch, extend TLB with process
identifier, first scheme simpler, second more efficient since it prevents unnecessary
re-fetching of translations from the page tables.)

11n fact, processes typically use three separate memory segments, the text, heap and stack. The average

amount of wasted memory is therefore 1.5 pages per process. This detail is included here for completeness:
candidates are not expected to know this.
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Question 3

a)

b)

An abstract datatype exhibits abstraction in the sense that only those parts of the
datatype which need to be visible to the rest of the software system are visible;
detail which need not be visible is hidden. In most cases the visible interface is
provided via a set of procedures, functions and datatypes whose definition is visible
but whose detailed implementation is hidden. The major benefit of this is that
changes to the detailed implementation can be made without affecting the rest of the
system.

This decomposition of a large system into small self-contained manageable
components with a clearly defined interface specification is valuable throughout the
software lifecycle. The initial specification of a system can frequently be in terms of
a few top level abstract datatypes. The use of a common representation in the
specification, design and implementation removes the need for translation and
consequently the amount of work and risk of errors. The more detailed design and
implementation can be based on stepwise refinement of the top level datatypes. The
existence of rigorous interface specifications for the datatypes ensures that the
individual components can be integrated.

The high level of isolation between abstract datatypes aids the splitting of the task
between a team of software engineers throughout the design, implementation and
testing. It is also helpful in reducing the impact of changes once the system is
running and hence of maintenance costs.

Pascal Module Illustration
MODULE cardpack;
EXPORT

PROCEDURE initialise;

FUNCTION put_card (c : card) : boolean;
FUNCTION get_card (VAR c : card) : boolean;
PROCEDURE shuffle;

IMPLEMENT

TYPE pack = RECORD
cards : ARRAY [1..52] OF card;
num : integer;
END;
VAR thepack : pack;

PROCEDURE initialise;
BEGIN
VAR i:integer;
S : suit;
v : value;

i=1;
FOR s := spade TO club DO
FOR v := two TO ace DO BEGIN
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thepack.cards[i].s = s;
ghepack.cards[i] V=V

i=1+1
END
thepack.num = 52;
END;

FUNCTION put_card (c : card) : boolean;
BEGIN
IF thepack.num < 52 THEN BEGIN
thepack.cards[thepack.num] := c;
thepack.num := thepack.num + 1;
put_card := true
END
ELSE put_card := false
END;

FUNCTION get_card (VAR c: card) boolean;
BEGIN
VAR i:integer;
IF thepack.num > 0 THEN BEGIN
¢ := thepack.cards[1};
thepack.num := thepack.num - 1;
FOR i := 1 TO thepack.num DO
thepack.cards[i] := thepack.cards[i+1]
get_card := true
END
ELSE get_card := false
END;

PROCEDURE shuffle;
BEGIN
VAR i: integer;
j : integer;
c: card;

FOR i := 1 TO thepack.num DO BEGIN
j = (random MOD thepack.num) + 1;
¢ := thepack.cards[i];
thepack.cards][i] := thepack.cards(j];
thepack.cards[j] :=¢
ND

END;
END.

In general, object oriented methods provide a better basis for abstract datatypes than
that provided by modules. Much of the improvement stems from there being a
package per data item rather than for the type as a whole. This is perhaps most
obviously valuable in the case of automatic initialisation: a module can only provide
this once for the type as a whole; an object oriented scheme can provide it per
object. Additionally, object oriented languages usually provide inheritance
mechanisms allowing a base type to be customised to a derived type which shares
the data structure (possibly with additional members) and can redefine the methods
(the procedures and functions). Since a derived type can be compiled separately
from the base type, this further helps modularisation and later modification of a
system.
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In this example, the module supports only a single pack. More packs could be
supported by including the pack as an argument to each procedure and function and
making the existence (though not the structure) of the datatype visible. However,
any subsequent changes to the data structure would then require recompilation of
other modules declaring objects of this type (to account for changes in the storage
required).

Partial packs for games requiring fewer than 52 cards could be implemented using
the module by suitable calls to get_card (and put card to return those not to be
removed). This is however messy and does not help the clarity of the program. The
use of a derived type in which the initialisation routine is redefined would provide a
cleaner clearer solution.

Similarly alternative shuffling strategies could be supported using put_card and
get_card but redefinition of the method in a derived type is a much better solution.

Another problem exhibited in the above is that of error handling in put_card and
get_card. The solution used, that of returning false in the case of an error, tends to
lead to poor program structure. Most object oriented languages (and some others)
also provide an exception mechanism which allows the error to be communicated
back immmediately to the part of the program which can handle it.
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Question 4

a) If more than one process concurrently attempts to modify the same data, the result
may not reflect what is intended unless it can be guaranteed that the operation for
one completes before the other starts. As an example of what can go wrong,
consider the case of two processes A and B both trying to increment an integer
variable i stored in memory. Given the following sequence:

Areadsi
Breadsi
A increments its in-CPU copy of i
B increments its in-CPU copy of i
A stores i
B stores i

the result is that i is incremented by one not two.

Correct operation can be ensured by making the critical operation (eg incrementing
i) indivisible (ie once started it completes before anything else can start). Special
mechanisms like semaphores and monitors can be placed around critical sections of
code to ensure this. For reliable operation they must ensure:

« Mutual exclusion - ie only one process at a time can execute the code in the
critical region.

« No deadlock - If one or more processes is trying to enter the critical region, at
least one must succeed.

+ No starvation - each process trying to enter the critical region must eventually
succeed.

+ In the absence of contention, the single process must succeed, ideally with
minimal delay .

« Immunity to failure - the failure of one process outside the critical region should
not jeopardise the others.

Mechanisms like semaphores and monitors interact with the scheduler in the
operating system since a process should be suspended while waiting to enter the
critical region. The state of the critical region (whether or not in use) must be
indicated by a variable which can be tested and set in a single, indivisible in
hardware terms, operation.

b) putinlist and getfromlist will not operate reliably if two processes access the same
list concurrently since all four pointers must be updated before the list is again in a
consistent state.

For example, consider putinlist and two concurrent processes A and B attempting to
insert itemA and itemB respectively. If process A executes itemM.next :=
head”.prevA.next and then B executes the same statement before A executes the
next statement, both itemA and itemB will appear to be followed by the same next
item in the list. Similarly problems occur if the other statements are interleaved
between A and B.

To avoid this a semaphore (preferably per queue to avoid unecessary exclusion
between processes accessing different lists) must be added. This would most
naturally be added to the listhead type, eg

TYPE listhead = RECORD
p : listptr;
sem : semaphore;
END;
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and the routines become

PROCEDURE putinlist(head:listhead; item:listptr);
BEGIN
P(head.sem);
item/.next := head.p”.prev/A.next;
head.pA.prev/A.next ;= item;
itemA.prev := head.p/.prev;
head.pprev := item;

V(head.sem)
END;
FUNCTION getfromlist(head:listhead) : listptr;
BEGIN
VAR p:listptr;
P(head.sem);
IF listempty(head) THEN
p:=NIL
ELSE BEGIN
p := head.p®.next;
head.pA.next := head.p”.next.next;
head.p”.nextA.prev := p/.prev;
pM.next = NIL; pA.prev = NIL
END;
V(head.sem);
getfromlist :=p
END;

Note that the in getfromlist, the mutual exclusion must include the test for the list
being empty to avoid the possibility of two processes both trying to extract the last
item.

Monitors and semaphores perform a very similar function, the main difference
being that monitors provide mutual exclusion within a program element much like a
module and thus avoid the possibility of programming errors causing unmatched P
and V operations. In this case there is little to be gained from doing this as the code
using the semaphores is simple and written once. It would be hard to provide
monitor condition variables (the equivalent of the semaphore variable) on a per list
basis so some functionality would probably be lost.

There are a number of other problems with the code as it stands:

a) Unless the data from the IO devices is always ready, there is a serious risk of
deadlock with procl waiting for lis2 to fill and proc2 waiting for listl.
Conversely if data is always available from the devices, the lists will never be
emptied. A more sophisticated mechanism for waiting for data from the list OR
the device is required - somthing along the lines of the SELECT mechanism
used with interprocess communication channels would be suitable.

b) It is possible that procl will try to use list2 before proc2 has initialised it (or
proc2 use procl). The obvious solution here is for the initialisations to be done
before either process is started.

¢) No attempt is made to limit the amount of data stored in either list. In a practical
system, this could result in there being insufficient memory.
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Question 7

a) This is a slightly open-ended question and credit should be given for plausible or
insightful answers.

b)

c)

d)

From the course, three ways in which people solve problems are:

i)

i)

Search.
Analogy.

iii) Knowledge gained from past experience.

i)
if)

See the figure.

The computer uses the describe and match method to solve the analogy
problem. Firstly, a semantic net is constructed that describes the features and
their relationships. Secondly, rules are developed to show how A becomes B
etc. Thirdly, a match is performed between these rules and those between C and
the answers.

In the example, the items are related in the following way: X ->a, y -> b,z ->c.
The A to B and C to 1 rules have more elements in common than the C to 2
rules. Hence the computer picks answer 1. The difference between what the
person and computer may be explained by realising that a person concludes that
A relates to B and C to 2 due to the swapping of the square and the star. The
computer has probably not developed the idea of swapping. People have greater
knowledge of the behaviour of shapes and can bring this to bear on the
problem.

The problem is an example of problem solving by analogy and, as with many Al
problems, the key to its successful solution lies in the choice of a pertinent
representation of the key problem features. The question has focused only on the
reasoning stage and not the earlier, but very important feature extraction phase
where the various shapes, their orientation and relationships are ascertained.

The fully automatic extraction of features can require sophisticated methods
* involving vision and spatial reasoning algorithms - which are often a more difficult
problem than the rule-based comparison mechanism shown here. Practically
speaking the two issues of speed and discrimination determine how the features are
used in particular situations.
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Question 8

a)

b)

d)

The four criteria are:

i) Completeness: is the strategy guaranteed to find a solution?
i) Time complexity: how long does finding a solution take?
iii) Space complexity: how much memory is required?

iv) Optimality: will the best solution be found?

Give credit for plausible similar criteria.

The attached figure shows the network in the question re-written as a search tree. The
line shows one way of undertaking depth-first exhaustive search.

Other (e.g. right-to-left) forms of depth-first search are also acceptable.

The tree above shows that, for this simple network, 17 nodes have to be searched. If
each node involves 0.1 seconds calculation time, then a complete route calculation takes
1.7 seconds.

Given that even the longest route takes only 320 milliseconds to transmit a 1KB

‘message, a better solution would simply be to send the message down any route and

not waste time calculating the optimal route - this is not a good way to solve this
problem!

What would need to change to make this method useful are, for example:

i) Each node would need a much higher store-and-forward time due, possibly, to
a significantly increased packet size.
i) The calculation time would need to decrease significantly.

Give credit for other plausible points - for example, suggesting the use of another more
efficient search strategy or discussions about how varying traffic conditions would
affect transit times.

A* is a combination of branch and bound with dynamic programming and a heuristic
cost function.

This technique will, like the exhaustive search earlier, probably find the optimal path
but will do so without exhaustively searching every path.

The search algorithm proceeds as follows:

i) The algorithm starts with a usual blind search manner and identifies the cost of
reaching the first few nodes in the tree.

i) When two identical nodes are identified, the one with the higher path cost is,
together with its sub-tree, removed from the process (pruned) and no longer
considered. This is because it is pointless to get to a node via a path when the
same node can be reached by a cheaper route.

In the diagram produced earlier, the two nodes corresponding to ‘d’ are reached
and the path costs determined. The one with the higher path cost of 80 is
pruned. The one with the path cost of 70 is left to have its sub-tree considered
further. The advantage is that the need to consider four sub-nodes, with the
corresponding computational overhead, is removed.
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iii) The heuristic part of the A* algorithm works by making an estimate of the
remaining path cost between the current node and the goal node. The existence
of the information sent back after successful transmission would have the
advantage of allowing the routing algorithm to develop knowledge of the state
of the network. This knowledge can be used to estimate the likely path cost of
sending a packet down a particular route.

The evaluation function for A* is: f*(n) = g*(n) + h*(n) where:

g*(n) is the estimate of the minimum cost of a path from the start node to a node
n

h’,"(n) is the estimate of the minimum cost of a path from node n to a goal node,
and

f*(n) is the estimate of a path passing through node n.

Inevitably, the knowledge about the network is always out of date, and for best
functioning of A*, the estimate should be equal to or less than the real value (the
admissibility criteria).
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This d node and its sub tree
next to it (of cost 7).



