— ADS -

Solutions to E6 computer architecture questions - Question 1

Pipelining

(a) [Bookwork] The term “hazard” is used to describe dependencies between
instructions which can disrupt the operation of a pipelined datapath. “Data haz-
ards” occur when an instruction requires data before a previous instruction has
written it to the register file (or memory). “Branch hazards” occur when the ad-
dress of the next instruction is required (for instruction fetching) before an earlier

conditional branch instruction has been evaluated.

(b) There are data hazards between the 1w and add instructions, and
between the add and sw instructions. If there is no data forwarding, the pipeline
must stall for three clock cycles between these instructions, since data is read from

the register file at pipe stage 2 but written at pipe stage 5.

There is a branch hazard associated with the bne instruction. If there is
no pipeline flushing, the pipeline must stall for three clock cycles after the bne
instruction is fetched, since the address of the next instruction is not known until
pipe stage 4.

There are therefore 9 stalls in total, and 5 instructions, so the code segment

takes 14n clock cycles to execute.

(c) Data forwarding can be used to pass values from the pipe registers to
the ALU inputs. Only four stalls are required with data forwarding: one after the
1w instruction, and three after the bne instruction. The code now takes 9n clock

cycles to execute.

Time in clock cycles

cci cce ces cc4 ccs cce ccy ccs
S LW s 0GY IF D EX MEM , WB
g \
2 \
(¢}
B stall \$8
[1/]
H
\
S | Lud 38,58,510 IF iD \ EX \ MEM W8
N\
- \\SS
sw $8,0(59) IF ID N Ex MEM WB

- A -
(d) The unrolled code is shown below (comments are included for explana-

tion — candidates would not be expected to comment every line of code).

$8 loaded with data at address $9+0
$8 loaded with $8+$10

Loop: 1w $8,0($9) #
add $8,$8,$10 #
sw $8,0(%$9) # $8 stored at address $9+0
1w $8,4(%$9) # $8 loaded with data at address $9+4
add $8,$8,$10 # $8 loaded with $8+8$10
sw $8,4($9) # $8 stored at address $9+4
addi $9,$9,8 #
#

bne $9,%$11,Loop

$9 loaded with $9+8
Jump back 7 instructions if $9#$11

The pipeline will stall once after each 1w instruction and three times after
the bne instruction. There are therefore 13 clock cycles for each of the n/2 loops,

so the code segment takes 13n/2 clock cycles to execute.

(e) The optimized code is shown below (again, comments are included for

explanation).
Loop: 1w $8,0($9) # $8 loaded with data at address $9+0
addi $9,$9,4 # $9 loaded with $9+4
add $8,%$8,$10 # $8 loaded with $8+$10
sw $8,-4($9) - # $8 stored at address $9-4
bne $9,$11,Loop # Jump back 4 instructions if $9#$11

The data hazard between the 1w and add instructions has been removed by
scheduling the addi instruction between them. The pipeline will stall three times

after the bne instruction, so the code segment takes 8n clock cycles to execute.

(f) Unrolling loops appears to give faster execution but produces longer, less
compact machine code. We have assumed that the CPU does not have to stall for
cache misses as it executes the code segments. The code in (d) is less “instruction
cache friendly” than the code in (e), so might execute slower on a machine with a

small instruction cache.

(g) With delayed branches, m instructions following the branch are ex-

ecuted, whether the branch is taken or not. This reduces the number of hardware

— a3 -

stalls by m. The compiler must find appropriate instructions to schedule in the
delay slots (using nop’s as a last resort). In practice, all machines with delayed
branch employ a single instruction delay (m = 1). With a single instruction delayed

branch, the code could be optimized as follows:

Loop: 1w $8,0(%$9) # $8 loaded with data at address $9+0
addi $9,$9,4 # $9 loaded with $9+4
add $8,$8,$10 # $8 loaded with $8+$10
bne $9,$11,Loop # Delayed branch
sw $8,-4($9) # $8 stored at address $9-4

This reduces the number of stalls to two, so the code executes in Tn clock cycles.

~an'-

Solutions to E6 computer architecture questions - Question 2

Carry lookahead adders and processor-memory buses

(a) [Bookwork] Carry lookahead can be used to determine the carry inputs
to each full adder without using ripple carry. For each bit i of the adder, we define
two signals, generate gi and propagate pi. Bit i generates a carry if the two bits it’s

adding are both 1, and propagates a carry if either of the two bits it’s adding are 1:
gi = ai.bi pi = ai + bi

cl, the carry into bit 1, will be 1 if either bit 0 generates a carry or c0 is 1 and bit

0 propagates a carry:
cl = g0 + p0.c0
Likewise for ¢2 and ¢3:

c2 =gl + pl.g0 + pl.p0.cO
c3 =g2 + p2.gl + p2.p1.g0 + p2.p1.p0.c0

It takes time T to evaluate the gi and pi signals, 2T to evaluate the sum-of-products
expressions for the ci signals, and a further 2T to calculate the sums, so the 4-bit

add takes 5T

e

For the alternative design, we define the term PO, which is true if the first 2-
bit adder propagates a carry. This will occur if each of its constituent bits propagate

a carry:
PO = p0.pl

We also define the term GO, which is true if the first 2-bit adder generates a carry.
Either its MSB generates a carry, or its LSB generates a carry and its MSB propag-

ates it:
GO0 =gl + pl.gl

The carry-in signal to the second 2-bit adder is therefore

-3~

C1 = GO0 + P0.cO

The 4-bit add proceeds by evaluating pi and gi, then PO and GO, then C1, then ci
and finally the sums. The total time is therefore T' + 2T + 2T + 2T + 2T = 9T

Even though the single-level adder appears to be faster, it requires logic
gates with a fan-in of 4. Compared with 2-input gates, these may be relatively slow
and difficult to implement. On the other hand, the two-level adder requires only
2-input gates. The relative propagation delays through the 2- and 4-input gates will
depend on the particular implementation technology, but the two-level adder will

be faster if the 4-input gates are especially slow.

(b) [Bookwork] Synchronous buses can support fast communication proto-
cols (no handshaking is required). However, they have two major disadvantages.
First,r evefy device on the bus must run at the W@. Second, because of
SW problems, synchronous buses cannot be long if they are fast. Processor-
memory buses are often synchronous because the devices communicating are close,
small in number and prepared to run at high clock rates. 1/O buses are often asyn-
chronous because they have to be long and accommodate a wide variety of devices

running at different speeds.

(i) Memories invariably utilize error correcting codes to improve reliability. These
codes have to be reset after memory writes, which consequently take longer

than memory reads.

(ii) When a cache miss requires a write-back, the cache block is written to memory,
then the new block is read from memory, taking a total of 26 clock cycles.
Cache misses which do not require write-back take 12 clock cycles. The number

of cycles per instruction spent handling cache misses is therefore (0.4 x 26 +
0.6 x 12) x 0.05 = 0.88 cycles.

(iii) The important point is that it does not take twice as long to read or write a
16-word block than it does an 8-word block. A significant part of the memory
transfer time is overhead. A conservative estimate would be that it takes one
clock cycle to transfer each word between processor and memory, with the
remaining cycles representing a constant overhead. It would therefore take

14 4+ 8 = 22 cycles to write a 16-word block and 12 4+ 8 = 20 cycles to read

a 16-word block. The number of cycles per instruction spent handling cache

misses is now (0.4 x 42 + 0.6 x 20) x 0.025 = 0.72 cycles.

-2AR O~

Solutions to - Question 3

The main problems with the code shown in Fig. 3 are:

(1) The lack of proper type information associated with the returned data none

of which is logically a single byte.

(2) The need to modify various parts of the module (the type sensortype and the

case statement) each time a new type of sensor is added to the 10 network

(3) The need for read_sensor to return a boolean value to indicate success /failure,
a value which may have to be passed back up through several levels of function

call to a much higher level coordinating procedure.

(4) The large number of goto statements (albeit all to the same place) do not

clarify the semantics.

(1)(2), can be improved by the use of exceptions. These are similar to the Pascal
non-local goto except that the point in the program to which control is returned is
determined dynamically at run time rather than statically at compile time. Excep-

tions require

(i) storage in which to record what should be done when the exception is raised,

e.g.
VAR thisexception: EXCEPTION;

(ii) a means to specific where in the program to return to and what to do, e.g.
WHEN thisexception DO < statement >;

and then continue exeution with the statement following

(i) a means to trigger the exception, e.g.

RAISE thisexception;

Note that exception actions are automatically stacked by the compiler so that when a
procedure that has executed a WHEN returns, the previous action for the exception

is reinstated.

(3)(4) can be improved by the use of object oriented features, specifically the inclu-
sion of methods as part of an object (so that the method belongs to the individual

- A%\~

object) and inheritance whereby base class can be defined and variants of this defined
derived from it. In the case of the code in Fig. 3 , the base type would represent
a sensor and the derived types the different specific type of sensor. All that the
read_sensor functionality needs to know about is base type, leaving it to the meth-
ods in the individual derived types to handle the sensor specific details. Derived
types can be added (in separate modules if required) at any stage without affecting

the code already written.

Note that in the definition of a method, a field name given without the object name

refers to the object whose method is being called.

[the above implementations of exceptions and objects follow the syntax and se-

mantics described in lectures |

Putting this into practice:

{Definitions imported from byteio module as before but with addition of
VAR byteio_error:EXCEPTION;

and send byte and read byte become procedures as the error handling is
done by the exception

}

TYPE sensor = 0BJECT
PUBLIC id:byte;
PUBLIC onerror:EXCEPTION;
PUBLIC PROCEDURE read;
PROCEDURE request;
PROCEDURE dodata;
END;
switch _sensor = 0OBJECT
INHERIT sensor;
PUBLIC val:boolean;
PROCEDURE dodata;
END;
xy.sensor = (OBJECT
INHERIT sensor;
PUBLIC x,y:position;
PROCEDURE dodata;
END;
temperature_sensor = OBJECT
INHERIT sensor;
PUBLIC val:temperature;
PROCEDURE dodata;
END;

- AL~

VAR sensor_err:EXCEPTION; {for errors at this level}

PROCEDURE sensor.read;
BEGIN
WHEN err DO BEGIN
reset byte_io;
RAISE onerror
END;
byteio_error:= sensor err;
request; {same for all current sensors}
processreply; {different for each sensor type}
END;

PROCEDURE sensor.request;
VAR tmp:byte;
BEGIN
send byte(OP_READ) ;
send byte(s.id);
read byte(tmp);
IF tmp <> OP_OK THEN RAISE sensor_err;
read byte (tmp);
IF tmp <> s.id THEN RAISE sensor._err;
END;

PROCEDURE sensor.dodata;
BEGIN

RAISE sensor_err; {or alternatively do nothing}
END;

PROCEDURE switch_sensor.dodata;
VAR tmp:byte;
BEGIN
read byte (tmp);
val:= tmp <> O
END;

PROCEDURE xy._sensor.dodata;
VAR tmp:byte;
BEGIN
read byte(tmp); x:=tmp;
read byte(tmp) ; x:=x+(tmp*256);
read byte(tmp); y:=tmp;
read byte(tmp); y:=y+(tmp*256);
END;

A

PROCEDURE temperature sensor.dodata;
VAR tmp:byte;
BEGIN

read byte(tmp) ;val:=tmp;

read byte(tmp) ;val:=val+(tmp*256) ;
END;

This code as it stands will not run properly in a multi-process environment because
there is nothing to stop several processes trying to address different sensors sim-
ultaneously thus breaking the protocol (send 2 byte request, receive 2 byte header
plus data) defined above. We need to ensure that only one such request-+response
operation can take place at a time. A simple solution would be to use semaphores
with a binary semaphore (ionet_access) to protect access to the 10 network. This
would be used in sensor.read (and any other procedures providing access to the 10

network.

PROCEDURE sensor.read;
BEGIN
P(ionet_access);
WHEN err DO BEGIN
reset_byte_io;
RAISE onerror
END;
byteio_error:= sensor_err;
request; {same for all current sensors}
processreply; {different for each sensor type}
V(ionet_access)
END;

—Q®L

Solutions to - Question 4

(a) The software lifecycle provides a framework for describing the progression of

piece of software from an initial concept to completed project. This can be split

into the following stages:

(1)

(2)

(3)

Requirements Definition: Initial specification of what the system is intended
to do (rather than how it is to do it). This is produced by the software
engineering team and the customer in discussion. Since the (generally non-
specialist) customer is involved, the notations used tend to be biased towards

easy readability rather than formal precision.

The requirements definition can be split down into the main functional re-
quirements plus the constraints placed on the system (or non-functional re-
quirements) and a set of qualitative guidelines (or Goals). In time terms, a
typical sequence is : feasibility study; outline definition; preliminary design

study; full definition.

Design: At this stage the software engineering team (now without further dir-
ect input from the customer) specify how the system is to perform its task.
Again the process is one of gradual refinement, typically starting with an over-
all structure specification, then producing specifications for each component
of this and finally the detailed component design. The overall decomposition
can either be procedural (do A in terms of B and C, do B in terms of D, E and
F, etc) or object oriented (in which the primary decomposition is based on the
data in the system and then the operations or methods for each datatype are

defined).

The notations used can now be more specialised ranging from: graphical
(sturcture diagrams and dataflow diagrams); to informal mixtures of free-form
description and programming language (program description languages); to
very formal interface specifications and operational specifications which can

be used in formal program verification.

Implementation: This stage involves the production of the actual program. It
is done by the software engineering team and uses one or more programming
languages. Typically members of the team will be responsible for different

components (idenified and with interfaces defined at the design stage). As well

—ARS -

as being split up on the basis of procedures and/or objects, a large system may
also involve the use of several interacting processes. Typically, the components
will, once written, then be individually tested before being assembled into a

complete system ready for system testing.

(4) System Testing: The complete system needs to be tested before being put
into operation. The nature and duration of this will depend on the amount
of testing done in earlier stages (e.g. formal design and program verification,
component testing) but will at least in part require empirical testing involving

the customer and its use in a real environment.

(5) Operation and Maintenance: Once testing is complete, the system can be used
and should (but rarely does!) operate perfectly! Even if there are no flaws
in the program itself, it is likely that it will affect the environment in which
it runs to such an extent that the customer’s long-term requirements change

and some modification is required.

All the above stages interact and there is feedback from the later stages into earlier
decisions. The aim is to minimise the amount of feedback requried because major
changes to the requirements late in the lifecycle will be costly. In order to minimise
this risk, prototype systems are often produced at the requirement definition and
initial design stages to allow the customer to gain an impression of the eventual
system and to allow its interaction with pre-existing systems and components to be

tested.

(b) [see attached]

(c)

(i) A convenient way to use a dataflow diagram for procedural design is first to
transform it into a Structure Chart. This represents the procedural hierarchy
of the system graphically with rectangles representing the procedureal units.
The lines joining them denote the procedural relationship and alongside these

is shown the flow of data.

[see attached]

-A% e —

A Structural Chart is derived from a dataflow diagram by first identifying
the central transformation in the system in which “input” is converted into

“output”. Here this is the database lookup.
[see attached]

Each part of the chart (input region, transform, output region) can then be suc-
cessively refined using a similar structure (preprocess, main transform, post-

process).

The dataflow diagram by its nature identifies data items and the transforma-
tions performed on these. Data items become objects and these objects include

as their methods the transformations performed on them.

- AV T

b} Dataflow Diagram

TN
| Phone E-mail
! Database ! Database

L J L J

name Phone

free-format name &
/\ name Convert nare name Lookup

{ List of names i to o Phone Lookup
Phone e-mail

form

entry *

* onentry comprises name, phone number, ¢-mail address

Sort by
name

List

Add formal
info

w

C) Basic Form of Structure Chart

- %% ~

Co-ordinate
L
I ’1 I O’
Input
' Transform
Processing
[
Input

Output
Processing

Output

C) Structure Chart (Top Level) For Problem in (b)

Phone & E-mail
Directory System
W Ntry
name entry
Standardise Lookup Phone & Sort and
Name E-mail add format
free-format formatted
name list
List of Latex
Output

names

- A0~

SOLUTION - Question 5

Bookwork answer to Bayes’ minimum error rate classifier. Should show Bayes’rule
to compute posterior probabilities of class membership, e.g. Bayes’rule is
M|X)P(X)

P(M)

P(X|M) = il

P(X) is the prior probability of event X

P(M|X) is the likelihood (conditional probability) of the model M given event X
P(M) is the evidence (prior) that model M is correct

P(X|M) is the posterior (conditional) probability of event given model M

(4 marks)
Wy @ Adverse
Wpg : Benign
P(X|Wa) ~ N(1,1); P(X|Ws) ~ N(0,1)
N(p,0) = == exp {—igﬂ—}

Posterior probability of adverse outcome

P[W4].P(X|W4)

P(Wy|X) = P[WA].P(X|W,) + P[Wg].P(X|Wg)

assume the prior probabilities are equal substitute the Gaussian densities

P = (xic)2 | (@mua)?
1+ exp {" 2a2B + 55 }
B 1
B 1+ exp {gﬁ‘—%%@l z + 5%%23—}
1

of the foorm =
1+ exp {wo+ wiz}

1
1+ exp{: — =}

in fact

X2 terms cancel out

(5 marks)

- AN\~

A P(WLIX)

True Positive

False alarm

(5 marks)
Cumulative probabilities tabulated in maths data book.

Bayes optimal value for 8 is 0.5 due to symmetry because we have assumed equal

prior probabilities.

0 F.P. T.P.
0.2 1-0.5793 0.7881

= 42.1% = 78.8%
0.5 1-0.6915 0.6915

= 30.8% = 69.2%

(6 marks)

R W

SOLUTION - Question 6

SR

A

T~
-3 -2 -1 1

—)

B(X) =W+ W X
> Class 1

> Class 2

? denotes targets to interpolate

<

data matrix y =

[N W

o~

.

[= T T =
S—
"

1
wetghts g = (wl) target t = 1
() 1

—1)

least squares solution given by the pseudo inverse

a = (Y'Y)'Y't

—0)

- AR -~

oy

|
il
=
et | ot
<N
T—
|
-
(-
«w
\‘—-/
P N
—
-3
W

wy = —0.36

&(x)=0.7-0.36x

T

approximate
slope ‘

(10 marks)

Total squared error

N ‘
Z{tn — (wo + wi2,)}?

- AN T

gradient
08 i {t + H~1
dwp | 2= CUm (wo + wy ,)}(—1)
oE N
o 2 2{t, — (wo + wy o)} (—zx)
Start from some random guess of ¢ = kwl) we apply
Wo

" = oM —n VE

(6 marks)

We see that the least squares solution doesn’t produce a suitable classifier. Example

at = = 2 is classified wrongly.

This is because examples far away from the class boundary in this case some value

of x between 2 and 3.

Perception learning rule will find a solution that classifies this problem correctly

because it is an error correction procedure. (4 marks)

- 2SS

Solutions to - Question 7

(a)(i) The term combinatorial explosion refers to the situation where the time re-
quired to search through a space of possibilities grows very rapidly (often
exponentially) as the search-space (tree) increases. In practice, this phenom-
ena occurs in all but the most trivial AI problems and limits the application

of exhaustive search techniques.

(ii) A blind search is one that proceeds simply by searching the tree until a solution
path is found. No knowledge of the problem domain is applied. A heuristically
informed search is one that does possess knowledge, in the form of ‘heuristics’,
of the problem domain. By using this prior knowledge, it can search more effi-
ciently, avoiding obvious fruitless paths and therefore, sometimes dramatically,

may alleviate the explosive nature of the effort required in blind search.

d
(iii) For a tree of depth n, there are b” nodes so the total numberis: 3 " = Qd—g—lﬂ
n=0

(b)(i) See attached diagram.
(i)) BOCNRSLSRCNLSOCNRLRCLON
b)BOSCSORNRRCCLSLCLNRONNL

(other sequences may be correct depending on how the candidate has drawn

their tree)

(iii) The answer is simply N.

(¢) The question allows some room for individual interpretation but the key point
is that f* (n) allows the incorporation of heuristic knowledge about the problem to
be incorporated into the evaluation function. This means that the search need not
rely exclusively upon the existence of a sophisticated mathematical algorithm but

can embody ‘experience’ or ‘good guesses’ about the situation.

(i) The system will find the optimal path.

(ii) The system will find a successful path. The degree of apparent randomness

may however increase if h* is much less than the true distance.

— 26 -

(iii) The A* algorithm will not function properly. Again, the search behaviour may

appear random.

Give extra credit if the student mentions the ‘admissibility’ condition.

Again , some latitude for individual student insight but the main point is
that the ‘cost’ of calculating (or executing) f = (n) must not be too high in terms of
computational resource or time. Also, the heuristic component of the equation must,
for the function to be useful, actually be a fair estimate of what the real situation
actually is. The design of a good evaluation function can make a very significant

difference to the performance of the search.

- 2N T

&
Q\V;

£
N

Diagram for answer to Q7

- A% -

Solutions to - Question 8

(a) The student’s diagram should contain the components of: knowledge
base, inference engine and user interface. Sensible looking additional items are

permissible.

Knowledge base: Contains the knowledge (possibly in the form of rules), facts and

other information pertinent to the problem area.

Inference engine: Contains the mechanism wherby the problem solving knowledge
(e.g. rules) contained in the knowledge base is applied to the problem in hand.

Typically, this mechanism would employ ‘forward-’ and /or ‘backward-’ chaining.

User interface: Translates the user’s queries into machine readable instructions and

vice-versa. May assist in explaining how the computer has reached its decisions.

(b)
(i) Expressing the knowledge given in first-order predicate logic.

- VaVy[Harder(z,y) => Cuts(z,y)]
- VaVyVz[Cuts(z,y)&Cuts(y, z) => Cuts(z, z)]
- Harder(Diamond, Steel)

- Harder(Steel,Copper)

(i) Converting the clauses into normal form.

~Harder(n,m)VCuts(n,m) — = —(1)
~Cuts(z,y)V-Cuts(y, 2)VCuts(z, z) ———(2)
- Harder(Diamond, Steel) ———(3)
- Harder(Steel, Copper) —— —(4)

(iii) For resolution, one tries to prove the negation of the expression to be
proved. If this leads to a clear contradiction, then obviously the negation is false.

Hence the original assertion must be true.

(a) Negating the assertion to be proved gives:
~Cuts(Diamond, Copper) — — —(5)
(b) From (2), we specialise x to Diamond, z to Copper.
—~Cuts(Diamond, y) V—-Cuts(y, Copper) VCuts(Diamond, Copper)— — —(2a)

- 22 -

(c) Resolving (2a) and (5) gives:

~Cuts(Diamond, y)V-Cuts(y, Copper) — — —(6)
(d) In (1) we both replace n with y and specialise m to C'opper.

~Harder(y, Copper)V Cuts(y, Copper) — — —(la)
(e) Resolving (1la) with (6) gives:

—Harder(y, Copper)V-Cuts(Diamond, y) - ——(7)
(f) From (1), we both specialise n to Diamond and replace m by y

-~ Harder(Diamond, y)V Cuts(Diamond,y) — — —(1b)
(g) Resolving (1b) and (7)

~Harder(Diamond, y)V - Harder(y, Copper) - ——(8)
(h) In (8), we specialise y to Steel.

—Harder(Diamond, Steel)V—Harder(steel, Copper) — — —(8a)
(i) Resolving (3) and (8)

—Harder(Steel, Copper) ———(9)
(i) Resolving (4) and (9)

Harder(Steel, Copper) - ——(4)

- Harder(Steel, Copper) - ——(9)

Nil ———(10)

This indicates a contradiction. This indicates that the negation of the original

theorem is false, hence the original theorem is proven to be true.

(c)

Some latitude here for answers but the point of this question is to see how well
the student appreciates the practicality of this technique for ‘real world’ (i.e. large)
problems. In a real materials selection problem, properties of materials (such as
hardness) do not take on discrete values for given families of material but occupy
‘regions’. A particular type of steel, for example, might even be less hard than some
coppers. The logical expressions above are rather too dogmatic or limiting in their
manner of knowledge representation. Some other form of logic, such as fuzzy logic,
might be more appropriate. Also, with large material databases, the time taken for

the computer to find or resolve a proposition may be unrealistically high.

