1

Engineering Part ITA and EIST Part I 1996
Paper E6 (Computing Systems) Crib

Question 1

(a) The hazards are between the and and 1w instructions (and needs $2 before 1w has written

(b)

()

to it) and the sub and and instructions (sub needs $12 before and has written to it),

Without dataforwarding, the register file is written at pipe stage 5 and read at pipe
stage 2, so the pipeline has to be stalled for 3 cycles between dependent instructions.
The time taken to complete three instructions is therefore 542 = 7 clock cycles running
and 3+ 3 = 6 clock cycles stalled, a total of 13 clock cycles.

With datz‘forwarding the result of the and can be forwarded from the EX/MEM pipe
register to the ALU input, so the sub can follow directly, without a stall. The result of
the 1w can be forwarded from the MEM/WB pipe register to the ALU input, so the and
can follow after only one stall. The time taken to complete the three instructions is

therefore 5+ 2 = 7 clock cycles running and 1 clock cycle stalled, a total of 8 clock
cycles.

(i) Polling
Advantages: Simplest way to handle I/O. No special hardware required.

Disadvantages: Requires constant attention from CPU, even when device is
idle.

Used for: Low bandwidth device like mice. Or battery checking.

(ii) Interupt driven I/O

Advantages: No burden on CPU when idle, no special hardware required.

Disadvantages: Would still overlaod the CPU for high bandwidth devices (when
not idle).

Used for: many low/medium bandwidth devices like printers, kevboards, floppy
disks.

(iii) DMA
Advantages: Relieves CPU of I/O burden for high bandwidth devices.

Disadvantages: Requires special controller. Cache coherency complications in
memory system.

Used for: High bandwidth devices. like hard disks.

In the first iteration, the partial sums are sent from processors 9-16 to processors 1-8.
All the traffic has to travel through the links between processors 53-8 and 9-12, creating a
bottleneck. The network performs poorly, running nearer its bisection bandwidth fAan

Jks totel network bandiidth.

The Program will probably have to stall while the receiving processors wait for the partial
sums to arrive.

A better program would send the partial sums between neighbouring processors. There
would then be no bottleneck and the program could proceed with fewer stalls. One
possible scheme would accumulate the sums like this:

\yl \112 \L3 l4 1 2 3 4 1 2 3 4 1 2 3 4
5 Y6 V7 w8 56 T7&8 5 67 8 5 6 7 8
9 A0 all 12 9510 1lle12 9 10211 12 9 10 11 12
13 ‘14 V15 '16 13 14 15 16 13 14 15 16 13 14 15 16

Iteration 1 Iteration 2 [teration 3 Iteration 4

2 Question 2

(a) A cache is a small, fast store which holds duplicate copies of some of the data in the
slower main store.
(i) There is a cache between the CPU and main memory.
(ii) In a VM hierarchy, main memory acts as a cache to disk.
(ili) The TLB is used to cache part of the page table.
(b) Spatial locality of reference: If one word is accessed, it’s quite likely neighbouring

words will be needed soon (sequential instructions, arrays of data etc.) The miss penalty
increases, since more words have to be replaced on a cache miss.

(c)

Cache A: 16 1-word blocks. Block address is word address. Index is block address ’
module 16 -

Cache B: 4 4-word blocks. Block address is L—’ﬂﬂ"—d-%d—diﬁﬂ Tadex is block 4([(],-(55

T 5 madulo &,
Word address | Block address Index H/M | Block address Index H/M
0 0 0 M 0 0 M
4 4 4 M 1 1 M
8 8 8 M 2 2 M
5 5) M 1 1 H
4 4 4 H 1 1 H
0 0 0 H 0 0 H
8 8 8 H 2 2 H
20 20 4 M 5 1 M
6 6 6 M 1 1 M
14 14 14 M 3 3 M
Final contents: 14, 6, 20, 8,0, 5 12-15, 4-7, 8-11, 0-3

(d) Let n be miss penalty for cache B. B has 6 misses, A has 7. So6n < 7x 8 < n <9,
rounding to nearest integer. Since B has to load 4 words to A’s one on every cache miss,
one would expect the miss penalty for B to be at least 3 clock cycles more than A ie,
at least 11 clock cycles. So it is not really reasonable to expect B to out-perform A for
this particular string of memory references.

(e) Cache C: 4 4-word blocks grouped into two sets of two blocks. Block address is
| ore address| ndex is block address modulo 2.

Word add. Block add. Set index H/M
0 0 0 M
4 1 1 M
8 2 0 M
5 1 1 H
4 1 1 H
0 0 0 H
8 2 0 H
20 5 1 M
6 1 1 H
14 3 1 M

Final contents: set 0 0-3 8-11
set 1 12-15 4-7

(f) In general, increased associativity reduces the miss rate but increases the miss penalty
(since the block replacement strategy takes time). For caching scenarios where the miss
penalty is enormous anyhow, it’s of paramount importance to reduce the miss rate as
much as possible. Hence VM systems use fully associative placement of pages, since
a miss entails a very slow disk access. For main memory caches a lower degree of
associativity gives better performance.

3 Question 3

In a true abstract datatype the interface to the rest of the software system is provided by a
set of operations (or methods) which may be performed on the tvpe. The structure of the
data and the implementation of the operations is hidden, either within the module or the
object, from the rest of the system.

Simple modules as provided by most versions of Pascal lack some features which are
required to make the types they implement truly abstract, eg:

+ The data must be visible to allow other modules to declare items of this type whereas
all that is really required is the size of the object.

+ Standard operators (eg + and -) cannot be used with the tvpe nor can standard proce-
dures like read and write.

+ It is not possible to define constants of the type

Relatively minor additions to the language (eg private types. overloading of operator and
procedure names) can resolve these problems. It is hard however without explicit program-
ming to ensure that objects are properly initialised before use or disposed of after use, this
is a particular problem where the object has a limited lifetime implied by the context of its

declaration, eg local to a procedure in Pascal. Since the procedures implementing the oper-
ations are part of the module rather than of each object, they cannot conveniently contain
local data whose value is retained between calls.

True objected oriented langauges like C++ solve both these problems and also add the
very powerful concept of inheritance. Inheritance is implemented by allowing one type to be
derived from another type (a base class). Methods defined in the base class may be redefined
in derived classes. A program manipulating the object need only know about the base class,
the method appropriate to the actual derived class is automatically selected by the code
produced by the compiler. This provides excellent information hiding since one part of the
system need only "know” about just as much of the rest as it actually needs to.

The use of object oriented techniques can influence the software lifecycle as a whole.
Firstly it encourages a data centred view of the problem, ie first identify the data objects,
then think about the operations to be performed on these. By contrast, more conventional
top down successive refinement techniques split the problem into sub-problems and then split
these and so on. The concept of inheritance can also be very valuable since it provides a
convenient mechanism for specifying components of the system which are similar but not
quite identical; it avoids replication of detail which may subsequently be altered in some but
not all contexts.

Using the notation developed in lectures (ie OBJECT declarations, INHERITance, CRE-
ATE methods, and operator definitions)

TYPE impedance = complex;
frequency = real;

voltage = OBJECT
mag : complex;
freq : frequency;
PUBLIC OPERATOR + (v2 : voltage) : voltage;
PUBLIC OPERATOR - (v2 : voltage) : voltage;

PUBLIC OPERATOR / (z : component) : current
END;

current = OBJECT
mag : complex;
freq : frequency;
PUBLIC OPERATOR + (i2 : current) : current;
PUBLIC OPERATOR - (i2 : current) : current;

PUBLIC OPERATOR * (z : component) : voltage
END;

compenent = 0BJECT
magnitude : complex;

PUBLIC FUNCTION val (f : frequency) : impedance
END;

resistor = (UBJECT
INHERIT component

END;

capacitor = OBJECT

INHERIT component

PUBLIC FUNCTION val (f : frequency)
END;

inductor = OBJECT

INHERIT component;

PUBLIC FUNCTION val (f : frequency)
END;

voltage.+ (v2 : voltage) : voltage;
BEGIN

+ = mag + v2.mag
END;

voltage.- (v2 : voltage) : voltage;
BEGIN

= = mag - v2.mag
END;

voltage./ (z : component) : current;
BEGIN

/ := mag / z.val(freq)
END;

Similarly current.+ and current.-

current.* (z : component) : voltage;
BEGIN

* := mag * z.val(freq)
END;

component.val (f : frequency) : impedance;
BEGIN

: impedance

: impedance

val.real := mag; { for things like resistors }
val.imag := 0O
END

capacitor.val (f : frequency) : impedance;
BEGIN
val.real :
val.imag :
END

0;
-1/ (mag * f)

inductor.val (f : frequency) : impedance;

BEGIN

val.real := 0;
val.imag := mag * £
END
Note:

1) The use of a base class, component, to avoid having to deal with each component type
when calculating voltages and currents.
2) The redefinition of operators as implied by the wording of the question.

This design can easily be extended to support the drawing of schematics. component is
extended

component = OBJECT
magnitude : complex;
PUBLIC FUNCTION val (f : frequency) : impedance;
PROCEDURE draw (...)

END;

and the base class version of draw draws the typical rectangular symbol for an impedance
with the complex value alongside it. Some positional information might be required as an ar-
gument. Particular components can redefine the draw method if a specific symbol is required.

4 Question 4

[First part is bookwork - taken largely from the notes]

Languages like Ada use a client-server model in which the client calls an entry point in the
server and thus obtains the service provided by this. Communications are via synchronous
duplex channels.

An entry point is the server process end of a channel and is the message equivalent of a
procedural interface point in a module. It is thus a useful abstraction for the implemention
of Remote Procedure Calls.

An entry point could be declared as:
ENTRY entry_name(inmsg : intype) : outtype;

The parameter inmsg is omitted if there is no input message and the returned type
outtype is omitted if there is no response message.

The calling process initiates the process by calling entry_name exactly like a procedure
or function. This reduces the changes required to the client code if a module is instead
implemented as a separate, possibly distributed. process.

The server process accepts and responds to the message using

ACCEPT entry_name(inmsg) DO statement;

SELECT provides a mechanism whereby communication through a channel will only be
attempted if the rendezvous will complete immediately. It takes the form:

SELECT

WHEN condl ACCEPT entryl DO statementl
WHEN cond2 ACCEPT entry2 DO statement?2

END

In the guard 'WHEN cond’, if the boolean condition cond is false the rest of the entry is
ignored. A missing guard is equivalent to WHEN true. Clauses for which the guard is true are
said to be open.

If any of the ACCEPTs in the open clauses can complete immediately it is used and the
following statement(s) executed. If more than one can, one is selected at random.

If there are no open clauses which can complete, the process suspends until there is one.
The guards are not reevaluated during this.
The special clause

ACCEPTWAIT timeval DO statementT

limits the time for which the process will suspend. If after timeval there are still no usable
accepts, the process resumes and executes statementT.
If timeval is zero, the process will not be suspended.

Calls from the client to the entry point or ACCEPTSs in the server cause the process
to suspend if the rendezvous cannot complete, ie the other end isn’t yet ready. Similarly
processes are suspended by clauses in SELECT statements as described above. Processes
are restarted when the condition causing them to be suspended is resolved. Suspension and
resumption of processes is handled by the scheduler. In languages like Ada which provide
direct support for processes, this scheduling must be provided as part of the language’s run
time support, ie as part of the overall executable program produced by the compiler.

PROCESS receive_proc;
EXPORT

ENTRY receive_data : user_data;
IMPLEMENT

VAR packet : pkt;
seqno : sequence_number; { next data packet wanted }

BEGIN
seqno := 0;
WHILE true DO ACCEPT link_receive DO BEGIN
pkt := link_receive;

IF pkt.type = data THEN BEGIN
IF pkt.seqno = seqno THEN BEGIN
ACCEPT receive_data DO

-1

receive_data := pkt.payload;
seqno := (seqno + 1) MOD 1024
END;
pkt.type := ack;
IF pkt.seqno > seqno THEN

pkt.seqno := seqno; { best we can do }
link_send(pkt)
END
{ else some error we can’t handle }
END

END.
PROCESS send_proc;
EXPORT

ENTRY receive_data : user_data;

IMPLEMENT

VAR packet : pkt;
seqno : sequence_number; { of current data packet }

BEGIN
seqno := 0;
WHILE true DO
ACCEPT send_data(pkt.payload) DO BEGIN

pkt.type := data;
pkt.seqno := seqno;
sent := false;
link_send(pkt);
WHILE NOT sent DO

SELECT
ACCEPT link_receive DO BEGIN
ackpkt := link_receive;
IF ackpkt.type = ack AND ackpkt.seqno = seqno THEN BEGIN
sent := true;
seqno := (seqno + 1) MOD 1024
END
ELSE
link_send(pkt) {may as well try again}
END;

ACCEPTWAIT T DQ

link_send(pkt); {try again}
END {select}
END {sent this data}

END.

Key points are:
1) Servicing of entry points
2) use of select including timeout

The solution given takes advantage of the spec to be as simple as possible but does
implement the protocol. In practice the assumption that receive_data will rendezvous

immediately probably isn’t valid but to get round this would require a flow control mechanism
to be added to the protocol.

5 Question 5

Bookwork part should contian:

p[_:_v_,‘wj] i§ the probability density function of the features; we calculate this as a parametric
den§sty (e.g. Gaussian) or nonparamtertic (e.g. Kernel densities).

Pj are prior probabilities. These are estimated either from some higher level knowledge

of the problem (e.g. frequecny of characters in a language for a character recognition
problem) or from the given data as -\71—1_\{}1\—,; etc.

P[wllg:;] is the posterior probability; the conditional error probability is related to this. Hence
we can design a minimum error rate classifier, etc.

Class boundary required is
Plwi|z] = Plwy|]

P1=P2

The demominators are the same: 27 cancells

1 -1 1 -1
oF &XP <§(;.1:(£ -) (z - H;.‘) = G7exp (:2“(‘7‘4‘(.12 —) (z - léz))

(1 = p11)? + (22 — py2)? (T = pon)® 4 (g = pig2)? o (02>2
20 203 8

See figure overleaf.

i \ \ — ! 2 f
\ . F‘! /‘ \ | . i / . {: BC[[l
~—" _ . clos bonndare,
S ETTT , 193
\ = XZ'

gy = 02
(21— p11)? + (22 — p12)? = (21 — p21)? + (€2 — pgg)?

further reduces to a linear class boundary. Also, these two expressions are the same as
computing

!l“_’{"ﬂ_ﬂ”
and
|z = pall

i.e. Bayes’ optimal classifier is a distance to mean classifier.

6 Question 6

Paramtric vector
Data Class 1:

Class 2:

i) The inequality constraints

ay; >0 for class 1
a’ ; <0 for class 2
can be written as
aYn >0

for all examples by replacing all class 2 examples by =y; [i.e. change the signs]

ii) Dimesionality expanded to dimension 2 by appending a | to all z,; this is a convenient
way of dealing with the constant term wy. See diagram overleaf.

11

Percepron performance criterion

J=2 -y
the summation taken over the set of misclassified examples.

Gradient

V= > (-y

At misdassified ExamPeES

Taking a randomly chosen example a ‘noisy’ estimate of the true gradient leads to the
perceptron correction algorithm.

8 j..z o 3 1
@ = 0 I 0 2 =, 4@ =<)

_.___Y_—-——__:

Limitations of perceptron AS cotrechion
~ linear classifier

- algorithm converges only {f training data is separable.

7 Question 7

a) i) Depth-first and bredth-first search for any root-goal path. They use no information -
uninformed search.

ii) Depth first expands deepest node first (i.e. children of first element in queue). For
depth d and branching factor b.
v complete
X time efficency O(b%)
v/ memory efficiency O(bd)
X not optimal

iii) Breadth-first expands shallowest node first (i.e. looks at all children and not just
the first).

v complete
X time efficency O(b%)
X memory efficiency O(b?)
X not optimal
iv) For lare b, time and memory requirements dominate and make algorithms impracti-
cal. Use “heuristics” to define an evaluation function to guide search and to decide

which node to expand. (i.e. knowledge in queuing function)., e.g. hill-climbing,
beam search, best-first search.

13

acc.h,uclx"; g- (Z %-j pes

T IR
Y e
[4 —
N amw \V/ ;LL,. 3

208 — |,

OI\([a iSi
4 b are wisible (zg. oc bonb malj;i:)‘

X J

. COM ore *’0 }Tl.ﬂ (LD‘DH’\ C‘g 5) GG e L""‘L“.”} ?ud" =S

4 noda/}\!rf),m O SS). l’\ c.b ova u\‘() 10 node, nxr)mr‘..

8 Question 8

a) An inference rule is sound if the conclusion is true when the premises are true.

The resolution inference rule:

“If (AVvB) and (—-BVC) then AVC follows”

premises AVB
--Bv C
conclusion AvC

premises conclusions
A|B|C|AvB|=-BvC AvC

1|F|F|F F T F
2/F|F|T F T T
3|F|T|F T F F

4/ F|T|T

S|T|F|F T T

6| T|F|T T T

T|T|T|F %‘/% T
s|T|T|T T)

Both premises are true in rows 4, 5, 6, 8. Conclusion is also true and hence rule is a
sound rule of inference.

b) In first-order predicate calculus:

i) :
VzVyVz [son (z,y) A[son (y,z) V daughter (y,z)] = grandson (z, z)]

Convert to C.N.F. (clause form) and add to 6 existing clauses.

=son(zl, yl)V —son(yl, z1) V grandson(z1, z1) (7
—son(z2, y2) V ~daughter(yZ, z2) V grandson(z2, z2) (8)

rove
il) We mustP ov the following theorem:
Ju grandson (u, George)?
Proof by resolution proceeds by

(1) clauses in CNF

17

(2) add negation of theorem to set of clauses

(3) use resolution/unification of variables to find a contradiction in clauses
(4) if conflict assume conclusion true.

therefore Add —3u grandson (u, George)

Yu - grandson (u, George)
—grandson (z3, George)

o

Son (John, Elizabeth)

daughter (Anne, Elizabeth)

son (William, George)

son (Edward, George)

daughter (Elizabeth, George)

daughter (Mary, William)

= son (z1,yl) v- son (yl,z1) v grandson (z1, z1)

= son (z2,y2) v - daughter (y2, 22) v grandson (z2, 22)
- grandson (3, George).

© PN U WY

Resolve (9) and (8), unitfy z2 \ George. z3\ x2.
{
- son (z2,y2) v— daug}}ﬁer (y2, George) (10)
Resolve (10) and (5), unify y2 \ Elizabeth

(._.

- son (z2, Elizabeth) (11)

—

Resolve (11) and (1), unify z2 \ John.
i
Nil

grandson (z3, George) is true for z3 = John
therefore : grandson (John. George)

18

