
Std_DevelopersKit
User’s Manual

Version 2.2

Copyright Mentor Graphics Corporation 1996-1997. All rights reserved.
This document contains information that is proprietary to Mentor Graphics Corporation and may be

duplicated in whole or in part by the original recipient for internal business purposes only, provided that this
entire notice appears in all copies. In accepting this document, the recipient agrees to make every

reasonable effort to prevent the unauthorized use of this information.

The software programs described in this document are confidential and proprietary products of Mentor
Graphics Corporation (Mentor Graphics) or its licensors. No part of this document may be photocopied,
reproduced or translated, or transferred, disclosed or otherwise provided to third parties, without the
prior written consent of Mentor Graphics.

The document is for informational and instructional purposes. Mentor Graphics reserves the right to
make changes in specifications and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Mentor Graphics to determine whether any changes have
been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
the written contracts between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in the subdivision (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

A complete list of trademark names appears in a separate “Trademark Information” document.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

...xv

.....xv

.....xvi

.. 1-1

... 1-1
.... 1-1
... 1-1
... 1-2
... 1-2
.. 1-2
.. 1-3
.. 1-4
... 1-5
... 1-7
.. 1-8
.. 1-9
. 1-11
. 1-12
. 1-13
. 1-15
1-17
1-19
1-21

. 1-23
. 1-25
. 1-27
. 1-29
. 1-34
1-37

. 1-40
1-44

. 1-47

TABLE OF CONTENTS
About This Manual ..

Introduction..
Contents ..

Chapter 1
Std_IOpak ..

Using Std_IOpak ...
Command Summary ...

String Conversion..
String Functions ..
File I/O and Text Processing...
String Definition...
ASCII_TEXT ...

Function Dictionary ..
From_String ..
From_String (boolean) ...
From_String (bit) ..
From_String (severity_level) ..
From_String (character) ...
From_String (integer)...
From_String (real)..
From_String (time)...
From_String (std_ulogic) ..
From_String (std_ulogic_vector) ..
From_String (std_logic_vector) ..
From_BinString...
From_OctString...
From_HexString..
To_String...
To_String (boolean) ...
To_String (bit)...
To_String (character) ...
To_String (severity_level) ..
To_String (integer)...
Std_DevelopersKit User’s Manual, V2.2 iii

TABLE OF CONTENTS [continued]

Table of Contents

. 1-50
. 1-53
1-56
1-60
1-62
1-65
. 1-68
. 1-69
. 1-70
. 1-71
.. 1-72
1-73
1-74
1-75
1-76
.. 1-77
. 1-78
. 1-80
. 1-81
. 1-83
. 1-86
. 1-89
. 1-92
-93
1-94
-95
1-99
-103
107
-112
-117

-122
-123
-124
-126
To_String (real) ..
To_String (time)...
To_String (bit_vector)...
To_String (std_ulogic) ..
To_String (std_logic_vector) ...
To_String (std_ulogic_vector) ..
Is_Alpha ..
Is_Upper..
Is_Lower ...
Is_Digit..
Is_Space ...
To_Upper (one ASCII char)..
To_Upper (all ASCII chars)..
To_Lower (one ASCII char) ...
To_Lower (all ASCII chars) ...
StrCat..
StrNCat..
StrCpy ...
StrNCpy...
StrCmp ..
StrNCmp ...
StrNcCmp..
StrLen..
Copyfile (ASCII_TEXT) .. 1
Copyfile (TEXT)...
fprint (to ASCII_TEXT file) ... 1
fprint (to TEXT file)..
fprint (to string_buf).. 1
fscan (from ASCII_TEXT file) ... 1-
fscan (from TEXT file) .. 1
fscan (from string_buf) ... 1
fgetc (ASCII_TEXT) .. 1
fgetc (TEXT)... 1
fgets (ASCII_TEXT)... 1
fgets (TEXT) ... 1
Std_DevelopersKit User’s Manual, V2.2iv

TABLE OF CONTENTS [continued]

Table of Contents

-128
-130
-132
-133
-134
-135
1-136
1-137

.. 2-1

... 2-1
.... 2-2
... 2-2
... 2-2
... 2-3
.. 2-3
.. 2-3
... 2-3
... 2-4
.. 2-5
. 2-6
.. 2-6
... 2-6
.... 2-7
.. 2-8
.. 2-10
2-11
. 2-13
2-14
2-16

2-18
. 2-21
. 2-22
. 2-23
fgetline (ASCII_TEXT) .. 1
fgetline (TEXT)... 1
fputc (ASCII_TEXT) .. 1
fputc (TEXT)... 1
fputs (ASCII_TEXT) .. 1
fputs (TEXT)... 1
Find_Char...
Sub_Char..

Chapter 2
Std_Mempak..

Using Std_Mempak ...
Referencing the Std_Mempak Package ...

Known Discrepancies ..
Introduction..

Memory Access...
X-Handling...
File Programmability ...
Globally Defined Constants ..

General Information...
Video RAM Support ..
Refreshing of DRAMs and VRAMs...
Dynamic Allocation ...
Row and Column Organization...
Subroutines...
X-Handling...

ROMs..
ROM_Initialize ..

Static RAMs...
SRAM_Initialize ..

Dynamic RAMs..
DRAM_Initialize..
Mem_Wake_Up ..
Mem_Refresh..
Mem_Row_Refresh ..
Std_DevelopersKit User’s Manual, V2.2 v

TABLE OF CONTENTS [continued]

Table of Contents

.. 2-25

. 2-29

. 2-29
2-37
. 2-41
2-43
2-48
. 2-52
. 2-57
2-63
2-65
. 2-67
2-72
2-78
2-80
. 2-82
.. 2-84
.. 2-86
2-88
.. 2-89
.. 2-91
. 2-95
2-100
2-103
2-105
-107

2-109
2-109
2-111
2-113
-113
-121
-131
Mem_Access ..
Video RAMs..

General Information ..
VRAM_Initialize..
Mem_Set_WPB_Mask..
Mem_Block_Write...
Mem_Row_Write...
Mem_RdTrans...
Mem_Split_RdTrans ...
Mem_RdSAM..
Mem_Split_RdSAM ..
Mem_WrtTrans ...
Mem_Split_WrtTrans ..
Mem_WrtSAM ..
Mem_Split_WrtSAM...
Mem_Get_SPtr..
Mem_Set_SPtr ...
To_Segment ...
Mem_Active_SAM_Half ...

Common Procedures...
Mem_Read ...
Mem_Write ...
Mem_Reset ..
Mem_Load ...
Mem_Dump ...
Mem_Valid .. 2

Memory Files..
File Format ...
Sample Memory File..

Memory Models..
Intel 21010-06 Dynamic RAM with Page Mode ... 2
INTEL 51256S/L-07 Static RAM.. 2
INTEL 2716 EPROM .. 2
Std_DevelopersKit User’s Manual, V2.2vi

TABLE OF CONTENTS [continued]

Table of Contents

.. 3-1

.... 3-1
..... 3-2
... 3-2
.. 3-2
.. 3-3
... 3-4
... 3-4
... 3-4
.. 3-5
... 3-5
.... 3-6
.. 3-7
... 3-7
.. 3-11
.. 3-13
. 3-16
. 3-19
. 3-22
.. 3-25
.. 3-29
.. 3-33
. 3-37
.. 3-39
. 3-43
.. 3-47
. 3-51
.. 3-55
. 3-59
. 3-63
.. 3-65
.. 3-67
. 3-69
Chapter 3
Std_Regpak..

Using Std_Regpak ..
Referencing the Std_Regpak Package ..

Introduction..
Overloaded Built-In Functions...
Arithmetic and Logical Functions..
Conversion Functions..
Globally Defined Constants ..
Selecting the Arithmetic Data Representation ..
Selecting the Level of Error Checking...
Setting the System’s Integer Length ...
Vector Parameters ..

Function Dictionary ..
Function Summary ..
abs ..
+..
- (Unary Operator)...
- (binary operator) ..
*...
/...
mod...
rem..
**...
=..
/= ...
>..
>= ..
<..
<= ..
ConvertMode...
RegAbs...
SRegAbs...
RegAdd ...
Std_DevelopersKit User’s Manual, V2.2 vii

TABLE OF CONTENTS [continued]

Table of Contents

.. 3-72
.. 3-75
. 3-77
. 3-81
.. 3-85
.. 3-91
.. 3-93
. 3-95
.. 3-97
3-102
3-107
3-109
3-114
3-119
3-123
3-127
3-130
3-133
3-135
3-140
3-144
3-148
3-152
3-156
3-159
3-162
-165
3-167
3-169
3-171
-173
-175

3-177
3-179
SRegAdd ..
RegDec...
RegDiv ..
SRegDiv ..
RegEqual ..
RegExp...
SRegExp...
RegFill...
RegGreaterThan ...
RegGreaterThanOrEqual..
RegInc ..
RegLessThan..
RegLessThanOrEqual ..
RegMod..
SRegMod..
RegMult..
SRegMult ...
RegNegate ..
RegNotEqual ..
RegRem..
SRegRem..
RegShift..
SRegShift ...
RegSub ...
SRegSub...
SignExtend ...
To_BitVector.. 3
To_Integer ..
To_OnesComp ...
To_SignMag...
To_StdLogicVector.. 3
To_StdULogicVector... 3
To_TwosComp...
To_Unsign..
Std_DevelopersKit User’s Manual, V2.2viii

TABLE OF CONTENTS [continued]

Table of Contents

.. 4-1

... 4-1

... 4-1
4-3
. 4-5
.. 4-6
... 4-6
.. 4-7
.... 4-9
. 4-22
4-23
.. 4-24
. 4-24
. 4-26
-26
4-28
. 4-30
-32
3

. 4-34

. 4-36
4-38
. 4-43
.. 4-45
. 4-47
4-47
4-49
. 4-52
.. 4-54
4-56
. 4-58
4-60
4-67
Chapter 4
Std_Timing...

Introduction..
Model Organization ...

Passing Timing Information into a circuit of VHDL models
Referencing the Std_Timing and VITAL_Timing Package

Model Interface Specification...
General Philosophy ...
Model Entity Development Guidelines..
Generic Parameters ..
BaseIncrToTime..
BaseIncrToMinTypMaxTime ..

Hierarchical Pathname..
Port Declarations...

Interconnect Modeling...
Simple Unidirectional Single Driver-Multiple Receiver Topology............... 4
VitalPropagateWireDelay ..
AssignPathDelay ...
Multiple Driver-Multiple Receiver .. 4
Multiple Bidirectional Driver-Multiple Bidirectional Receiver 4-3

Back-Annotation..
Mechanism for passing timing data ..
Derating of Timing Values...
DeratingFactor...
DerateOutput ..

Architecture Development...
Architecture Topology ...
Timing Violation Section...
SetupViolation...
SetupCheck ..
HoldViolation...
HoldCheck...
VitalTimingCheck..
VitalSetupHoldCheck ..
Std_DevelopersKit User’s Manual, V2.2 ix

TABLE OF CONTENTS [continued]

Table of Contents

4-71
4-73
4-75
. 4-78
. 4-82
.. 4-85
. 4-87
.. 4-89
.. 4-92
.. 4-93
.. 4-94
.. 4-96
4-97
. 4-99
4-103
-104
-105
-107
4-109
112
-113
-114
4-114
VitalReportSetupHoldViolation...
VitalReportRlseRmvlViolation..
TimingViolation...
TimingCheck...
ReleaseViolation ...
ReleaseCheck ...
VitalPeriodCheck ..
PeriodCheck ...
PulseCheck...
SpikeCheck ..
SkewCheck...
Path Delay Section ...
VitalCalcDelay...
CalcDelay..
Drive...
VitalExtendToFillDelay... 4
VitalGlitchOnEvent.. 4
VitalGlitchOnDetect .. 4
VitalPropagatePathDelay ...
MAXIMUM ... 4-
MINIMUM... 4

Std_SimFlags - a “UserDefinedTimingDataPackage” 4
Std_SimFlags ...

Index
Std_DevelopersKit User’s Manual, V2.2x

Table of Contents

Std_DevelopersKit User’s Manual, V2.2xi

Figure 2-1. Three-stage Model Using Std_Mempak ... 2-1
Figure 2-2. ‘U’ and ‘X’ Handling of Input Data ... 2-8
Figure 2-3. ‘U’ and ‘X’ Handling of Addresses .. 2-9
Figure 2-4. VRAM Data Structure Diagram ... 2-30
Figure 2-5. A SAM and Associated Pointers... 2-31
Figure 2-6. Primary Memory Transfer Function Mapping.............................. 2-35
Figure 2-7. Dynamic Allocation of Std_Mempak ... 2-89
Figure 2-8. Mem Load and Mem Dump Procedures....................................... 2-89
Figure 2-9. Intel 21010-06 Pin Configuration ... 2-113
Figure 2-10. Model Intel 21010-06 Using Std_Mempak Subroutines 2-116
Figure 2-11. READ CYCLE 2... 2-123
Figure 2-12. READ CYCLE 3... 2-123
Figure 2-13. Write Cycle 1 .. 2-124
Figure 2-14. Write Cycle 2 .. 2-124
Figure 2-15. Model of INTEL 51256S/L-07 Static RAM Using Std_Mempak
Subroutines ... 2-125
Figure 2-16. Model of INTEL 2716 Using Std_Mempak Subroutines 2-132
Figure 3-1. Three-stage Model and Applicable Packages 3-1
Figure 3-2. RegShift Left and Right Shift ... 3-149
Figure 3-3. RegShift N>M Shift .. 3-150
Figure 3-4. SRegShift Where DstReg < SrcReg ... 3-153
Figure 3-5. SRegShift .. 3-154
Figure 4-1. ... 4-27
Figure 4-2. ... 4-33
Figure 4-3. ... 4-35
Figure 4-4. ... 4-54
Figure 4-5. ... 4-56
Figure 4-6. ... 4-58

LIST OF FIGURES

Table of Contents

1-32
. 1-43
.. 2-4
2-33
2-59
2-60
2-75
2-75
.. 2-87
-112

-121
2-122
2-131
... 3-7
.. 3-11
3-13
3-16

. 3-17
3-19
3-22
3-25
3-29
3-33

3-37
3-39

. 3-42
3-43

. 3-46
3-47

. 3-50
3-51

. 3-54
3-55

. 3-58
3-59

LIST OF FIGURES
Table 1-1. Default Format String Values ..
Table 1-2. To_String(c) Resultant Output ..
Table 2-1. Std_MemPak Globally Defined Constants
Table 2-2. Std_Mempak Procedures for VRAMs ...
Table 2-3. row_segment & sam_segment for Full Size RAM
Table 2-4. row_segment & sam_segment for Half Size SAM
Table 2-5. Full Size SAM ..
Table 2-6. Half Size SAM ...
Table 2-7. To_Segment Values and segment_type
Table 2-8. Bit Patterns Loaded Into Memory .. 2
Table 2-9. Control Line Settings for 51256-07 Static RAM 2
Table 2-10. Read Cycle Data ...
Table 2-11. Read Cycle Data ...
Table 3-1. Std_Regpak Function Summary ..
Table 3-2. abs Valid Parameter Types ...
Table 3-3. ‘+’ Overloaded Subroutine Valid Parameters
Table 3-4. ‘-’ Valid Parameters ...
Table 3-5. Examples of std_logic_vectors in Register Modes
Table 3-6. ‘-’ (binary) Valid Parameter Types ..
Table 3-7. ‘*’ Valid Parameter Types ...
Table 3-8. ‘/’ Valid Parameter Types ..
Table 3-9. ‘mod’ Valid Parameter Types ..
Table 3-10. ‘rem’ Valid Parameter Types ...
Table 3-11. ‘**’ Valid Parameter Types ...
Table 3-12. ‘=’ Valid Parameter Types ...
Table 3-13. ‘=’ Comparison Results ...
Table 3-14. ‘/=’ Valid Parameter Types ..
Table 3-15. ‘/=’ Sample Inputs and Results ...
Table 3-16. ‘>’ Valid Parameter Types ...
Table 3-17. ‘>’ Sample Inputs and Results ..
Table 3-18. ‘>=’ Valid Parameter Types ...
Table 3-19. ‘>=’ Sample Inputs and Results ..
Table 3-20. ‘<‘ Valid Parameter Types ...
Table 3-21. ‘<‘ Sample Inputs and Results ..
Table 3-22. ‘<=’ Valid Parameter Types ...
Std_DevelopersKit User’s Manual, V2.2 xii

LIST OF TABLES [continued]

Table of Contents

. 3-62
.. 3-90
3-101
3-106
3-113
3-118
-134
3-139
4-97
4-101
Table 3-23. ‘<=’ Sample Inputs and Results ..
Table 3-24. RegEqual Sample Inputs and Results ...
Table 3-25. RegGreaterThan Sample Inputs and Results
Table 3-26. RegGreaterThanOrEqual Inputs and Results
Table 3-27. RegLessThan Sample Inputs and Results
Table 3-28. RegLessThanOrEqual Inputs and Results
Table 3-29. std_logic_vectors in Various Register Modes 3
Table 3-30. RegNotEqual Sample Inputs and Results
Table 4-1. VitalCalcDelay Assignment of Delay ..
Table 4-2. CalcDelay Delay Assignments ...
Std_DevelopersKit User’s Manual, V2.2 xiii

LIST OF TABLES [continued]

Table of Contents
Std_DevelopersKit User’s Manual, V2.2xiv

DL
f
sKit:

asy
only

r to
for
, you

 that
ted,

ls for
About This Manual

Introduction
This document describes the Std_DevelopersKit product for use with QuickH
and QuickHDL Lite. The Std_DevelopersKit product supports development o
VHDL designs. The following packages are included with the Std_Developer

• Std_IOpak (covered in Chapter 1)

Std_IOpak provides the user with a mechanism for converting VHDL’s
built-in data types as well as the Std_logic_1164 types into strings for e
use in file I/O and assertion statements. In addition, a number of comm
used C language string handling functions and file I/O functions are
available to VHDL developers.

• Std_Mempak (covered in Chapter 2)

Std_Mempak provides a common interface for VHDL memory model
development. In addition, the package allows the VHDL model designe
build a model which uses the least amount of memory space required
the active address spaces of the memory. Using the routines provided
can simulate megabytes of memory system designs while using only a
fraction of the actual space on a given simulation run.

• Std_Regpak (covered in Chapter 3)

Std_Regpak consists of various arithmetic and conversion subroutines
are designed to provide you with a wide variety of commonly implemen
mathematical functions. This collection of procedures, functions, and
overloaded operators eliminates the need to create and verify the mode
these basic functions.
Std_DevelopersKit User’s Manual, V2.2 xv

Contents About This Manual

lags

with
• Std_Timing (covered in Chapter 4)

Helps provide accurate pin-to-pin and distributed delay within VHDL
models. In this V2.2 release of the Std_Timing package, the Std_SimF
package is incorporated within the Std_Timing package.

Contents
The source for VHDL packages, subroutines and functions that are shipped
this product are contained in the directory:

<drive>:\QHDLlite\vhdl_src\sdk_src\

This source directory contains the following objects:

• iopakb.vhd--iopakp.vhd VHDL functions to support theStd_IOpak
development tools

• synthreg.vhd VHDL funtions written for design synthesis

• mempakb.vhd--mempakp,vhd VHDL routines to aid in development of
DRAMs and VRAMs

• regpakb.vhd--regpakp.vhd Arithmetic and conversion subroutines for
register development

• timingb.vhd--timingp.vhd Package for VITAL pin-to-pin and distributed
delays

• simflagb.vhd--simflagp.vhd Package defines flags to set operating
conditions for design
Std_DevelopersKit User’s Manual, V2.2xvi

ak
ry

L’s
se in

L

re-
in
sion
 are
 for
Chapter 1
Std_IOpak

Using Std_IOpak
Std_IOpak can be applied in a number of areas of a model, making Std_IOp
very versatile. You easily reference the Std_IOpak package by making Libra
and Use clause declarations.

Command Summary
Std_IOpak provides the user with a consistent mechanism for converting VHD
built-in data types as well as the Std_logic_1164 types into strings for easy u
file I/O and assertion statements. In addition, a number of commonly used C
language string handling functions and file I/O functions are available to VHD
developers.

String Conversion

Std_IOpak provides a number of easy to use functions to convert all of the p
defined VHDL types defined in package STANDARD to string types for use
assertion messages or ASCII file I/O. In addition, Std_IOpak provides conver
routines for the types defined in Std_logic_1164. Also provided by Std_IOpak
functions to convert strings to these types. The following is a list of the types
which formatted type conversion functions are provided.

1. Boolean
2. Bit
3. Character
4. Severity_level
5. Integer
Std_DevelopersKit User’s Manual, V2.2 1-1

Command Summary Std_IOpak

se
s

ions

anced
se

use of
 time
DL
er is
base
wer
s. To
ed
 of

, this

f the

r

6. Real
7. Time
8. Std_ulogic
9. Std_ulogic_vector

10. Std_logic_vector
11. Bit_vector

String Functions

Also provided by this package are various string manipulation functions. The
are similar in nature to the most commonly used string manipulation function
provided in the C language run time libraries. These functions provide case
conversion capabilities and comparison capabilities. Also provided are funct
for string concatenation and string copying.

File I/O and Text Processing

Perhaps the most important capabilities provided by this package are its enh
file I/O procedures. File I/O is one of the most poorly defined and difficult to u
aspects of VHDL. Here functions and procedures are provided that ease the
file I/O. Once again, procedures similar to those found in the C language run
libraries are provided. These subroutines handle all of the “nitty-gritty” of VH
file I/O and allow the user to concentrate on more important matters. The us
provided with the ability to do formatted reads from and writes to files whose
types are characters. For those users who need to handle I/O at a slightly lo
level, routines are provided to read and write individual characters and string
allow for compatibility with the TEXTIO package, all of the subroutines provid
are overloaded to operate both on files of characters (ASCII_TEXT) and files
TEXT.

String Definition

VHDL defines a string as an array of characters with a positive range. Alone
definition makes the use of strings somewhat clumsy. By overcoming this
limitation, this package allows strings to be used in a manner similar to that o
C language. If the number of characters that the user intends to fill a string
variable with is smaller than the length of the variable itself then the characte
Std_DevelopersKit User’s Manual, V2.21-2

Std_IOpak Command Summary

 for

or a
b, or a

-
ndle
 a
n
e

t use
to

d in
ence
he
e

ble is

lable

ts
se
string is terminated with a NUL character. Any future printing operations only
print the string up to the NUL character. This facilitates the use of one buffer
strings of multiple sizes.

This package defines a new line character to be a carriage return character
line feed character. A white space character is defined as either a space, a ta
new line character.

ASCII_TEXT

In addition to subroutines which handle files of type TEXT (a type that is pre
defined in the package TEXTIO), overloaded subroutines are provided to ha
the file type ASCII_TEXT. This is a type that is defined in this package to be
file of characters. These routines can read in files that were previously writte
using the TEXTIO procedures (see Known Discrepancies) but provide a mor
robust way of performing file I/O. (Specifically, they avoid the need for the
additional “line_ptr” parameter that is associated with Std_IOpak routines tha
TEXT files. Also, for some simulators that support interactive I/O, that is I/O
the screen/keyboard, ASCII_TEXT is more suited for interactive I/O than is
TEXT.)

TEXT Procedures

When using the Std_IOpak routines for TEXT files, the variable that is passe
as the line_ptr parameter (the parameter of type LINE) must be kept in exist
for the duration of the access to the specified file. If this is not the case and t
variable is local to a function or a procedure, when the procedure is exited th
result could be a loss of data and/or a memory leak. A memory leak occurs
because the memory pointed to by the access variable is lost when the varia
destroyed (as a result of the procedure being exited) before the memory is
explicitly deallocated. This memory leak shows up as a decrease in the avai
swap space.

Globally Defined Constants

Two globally defined deferred constants, MAX_STRING_LEN and
END_OF_LINE_MARKER, are associated with this package. These constan
are defined once (at compile time) in the Std_IOpak package. Whenever the
Std_DevelopersKit User’s Manual, V2.2 1-3

Function Dictionary Std_IOpak

ages

d

this
ading

tion

d

is

s at
constants are changed Std_IOpak must be recompiled followed by any pack
that were developed using Std_IOpak.

• MAX_STRING_LEN defines the maximum length of the strings handle
by the routines in Std_IOpak. The value of this constant at the time the
package was shipped was 256.

• END_OF_LINE_MARKER defines the character(s) that the routines in
package use to determine if the end of a line has been reached when re
information from an ASCII_TEXT file and it also determines what
character(s) they use to indicate the end of a line when writing informa
to an ASCII_TEXT file. This only affects routines that access
ASCII_TEXT files or that write to string buffers. This constant is define
as follows:

CONSTANT END_OF_LINE_MARKER : STRING(1 TO 2) := LF & ' ';

This means that the end of line marker is a line feed character (the space is
ignored). Other valid setting are:

CR & ' ' or CR & LF

The value of this constant at the time the package was shipped is LF & ' '. It
usually unnecessary to assign it a different value.

Function Dictionary
The following functions are listed in alpha-numeric order. Each function begin
the top of a new page.
Std_DevelopersKit User’s Manual, V2.21-4

Std_IOpak From_String

ring
to the
 until
From_String
From_String is a function which converts a string to the given return type.

GENERAL DESCRIPTION:

There are 13 forms of this function which include conversion to:

1. Boolean
2. Bit
3. Severity_Level
4. Character
5. Integer
6. Real
7. Time
8. Std_ulogic
9. Std_ulogic_vector

10. Std_logic_vector
11. binary string to bit_vector
12. octal string to bit_vector
13. hexadecimal string to bit_vector

When a user calls From_String, the VHDL compiler chooses the appropriate
overloaded form of the function dependent upon the context of its use. For
example, if you write:

bool_value := From_string("FALSE");

and bool_value is declared as a boolean then the compiler invokes the first
function which is designed to accommodate boolean return types.

The function starts at the left most index of the string when converting the st
to the appropriate value. It then searches for the characters to be converted
specified type skipping over any white spaces. The function reads characters
it reaches the end of the string, the first white space following all necessary
characters, or a NUL character.
Std_DevelopersKit User’s Manual, V2.2 1-5

From_String Std_IOpak

e
 are

ent
r to

o the
found
turn
ere

. If r is
RESULT:

The function returns a type dependent on context. For vector return types, th
length of the returned vector is determined by the number of characters that
converted. The returned vector is always descending and the right most elem
has an index of 0. This does not preclude the user from assigning this vecto
another vector of the same type and length but of a different range.

If an invalid character is encountered in the process of converting the string t
specified type or if too few characters are found, or too many characters are
an error assertion is issued and the value T’left is returned where T is the re
type. For vectors an error results in the entire vector being filled with T’left wh
T is the base type of the vector.

EXAMPLES:

Given that the variable i is an integer then

i := From_String(" bb32bb33");

sets i equal to 32 since conversion stops at the third blank space in the string
a real number then

r := From_String("-354.56");

returns the real number -354.56;
Std_DevelopersKit User’s Manual, V2.21-6

Std_IOpak From_String (boolean)

he
ters to
n

nce
ces

to a
 or

alue
From_String (boolean)
To convert from a string to a boolean.

OVERLOADED DECLARATION:
Function From_String (

str : IN string -- string to be converted
) return boolean;

DESCRIPTION:

This overloaded function From_String converts a string to a boolean value. T
function starts at the left most index of the string and searches for the charac
be converted to a boolean value skipping over any white spaces. The functio
reads characters until it reaches the end of the string, the first white space
following all necessary characters, or a NUL character. The character seque
following the leading white spaces must be one of the two character sequen
“FALSE” or “TRUE” for the conversion to succeed. Case is ignored.

RESULT:

This function returns a boolean value.

BUILT IN ERROR TRAPS:

If an invalid character is encountered in the process of converting the string
boolean or if too few characters (including a string of zero length) are found,
too many characters are found an error assertion is issued and the value
BOOLEAN’left (FALSE) is returned.

EXAMPLES:

Given that bool is a boolean variable, then the following line sets bool to the v
TRUE:

bool := From_String(" bbTruE" & NUL & "FALSE");

The following two lines set bool to FALSE and issue an error assertion:
bool := From_String ("T");
bool := From_String(" bbfindTRUEinhere");
Std_DevelopersKit User’s Manual, V2.2 1-7

From_String (bit) Std_IOpak

ters to
s the

to a

on-
rtion

’ or a
ed.

lue

on to
From_String (bit)
To convert from a string to a bit.

OVERLOADED DECLARATION:
Function From_String (

str:IN string -- string to be converted
) return bit;

DESCRIPTION:

This overloaded function From_String converts a string to a bit value. The
function starts at the left most index of the string and searches for the charac
be converted to a bit value skipping over any white spaces. The function read
first character after the white spaces and, if it is either a ‘0’ or a ‘1’, convert it
bit value.

RESULT:

This function returns a bit value.

BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space character to the left of a NUL character then an error asse
is issued and the value BIT’left (‘0’) is returned.

2. If the first non-white space character that is encountered is neither a ‘0
‘1’ then an error assertion is issued and the value BIT’left (‘0’) is return

EXAMPLES:

Given that bit_val is a bit variable, then the following line sets bit_val to the va
‘1’:

bit_val:= From_String(" b100");

The following line sets bit_val to the value ‘0’:
bit_val := From_String ("0");

The following line sets bit_val to the value ‘0’ but also causes an error asserti
be issued.

bit_val := From_String (" bbbbb " & NUL & "1101");
Std_DevelopersKit User’s Manual, V2.21-8

Std_IOpak From_String (severity_level)

The
ces.
hite

to a

 value
From_String (severity_level)
To convert from a string to a Severity_Level.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return Severity_Level;

DESCRIPTION:

This overloaded function From_String converts a string to a Severity_Level.
function starts at the left most index of the string, skipping over any white spa
The function reads characters until it reaches the end of the string, the first w
space following all necessary characters, or a NUL character. The character
sequence following the leading white spaces must be one of the character
sequences: “NOTE”, “WARNING”, “ERROR”, or “FAILURE” for the
conversion to succeed. Case is ignored.

RESULT:

This function returns a Severity_Level.

BUILT IN ERROR TRAPS:

If an invalid character is encountered in the process of converting the string
Severity_Level or if too few characters (including a string of zero length) are
found, or too many characters are found an error assertion is issued and the
Severity_Level’left (NOTE) is returned.
Std_DevelopersKit User’s Manual, V2.2 1-9

From_String (severity_level) Std_IOpak

e

v is
ses
EXAMPLES:

Given that severity is a variable of type Severity_Level, then the following lin
sets severity to the value NOTE:

severity := From_String("NOTE" & NUL);

The following line sets severity to the value ERROR:

severity:=From_String(" bbERROR" & NUL & "NOTE");

Given the following code segment:

variable str12 : string(1 to 12);
variable sev : Severity_Level;
str11 := "WARNINGERROR";
sev := From_String(sev);

The invocation of From_String causes an error assertion to be made and se
assigned the value NOTE. The following invocation of From_String also cau
an error assertion.

severity := From_String(" bbbFAILUREtest");
Std_DevelopersKit User’s Manual, V2.21-10

Std_IOpak From_String (character)

ing.

n

nd
From_String (character)
To convert from a string to a character.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return character;

DESCRIPTION:

This overloaded function From_String returns the left most character of a str

RESULT:

This function returns a character.

BUILT IN ERROR TRAPS:

If the string is of zero length or if the first character is a NUL character then a
error assertion is made and a NUL character is returned.

EXAMPLES:

Given that c is a character variable then the line:

c := From_String("This is a test");

sets c equal to ‘T’. The following two lines set c equal to the NUL character a
cause an error assertion to be made:

c := From_String(NUl & "This is a test");
c := From_String("");
Std_DevelopersKit User’s Manual, V2.2 1-11

From_String (integer) Std_IOpak

ters to
ds
g all
ded by

to an
r too
From_String (integer)
To convert from a string to an Integer.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return Integer;

DESCRIPTION:

This overloaded function From_String converts a string to an integer. The
function starts at the left most index of the string and searches for the charac
be converted to an integer skipping over any white spaces. The function rea
characters until it reaches the end of the string, the first white space followin
necessary characters, or a NUL character. The digit sequence may be prece
a plus or a minus sign and may have leading zeros.

RESULT:

This function returns an integer.

BUILT IN ERROR TRAPS:

If an invalid character is encountered in the process of converting the string
integer or if too few characters (including a string of zero length) are found, o
many characters are found an error assertion is issued and the value
INTEGER’left is returned.

EXAMPLES:

Given that n is an integer then the following sequence sets n equal to 32:

n := From_String("32 bb56");

The following line sets n equal to -347:

n := From_String("-347 bbbhello");
Std_DevelopersKit User’s Manual, V2.21-12

Std_IOpak From_String (real)

n
e
acters
ary
t have

al
sented
r is

to a
o
t is
From_String (real)
To convert from a string to a real.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return real;

DESCRIPTION:

This overloaded function From_String converts a string to a real. The functio
starts at the left most index of the string and searches for the characters to b
converted to a real skipping over any white spaces. The function reads char
until it reaches the end of the string, the first white space following all necess
characters, or a NUL character. The string representing the real number mus
the following format:

<real> ::= [<sign>]nnnn[.mmmm]
<sign> ::= + | -

The digit strings nnnn and mmmm may have any length provided that the re
number represented does not have a magnitude that is too large to be repre
by a real number on the machine on which the VHDL compiler and simulato
being run. Also, leading zeros are acceptable in the string.

RESULT:

This function returns a real.

BUILT IN ERROR TRAPS:

If an invalid character is encountered in the process of converting the string
real or if too few characters (including a string of zero length) are found, or to
many characters are found an error assertion is issued and the value real’lef
returned.
Std_DevelopersKit User’s Manual, V2.2 1-13

From_String (real) Std_IOpak

to -
EXAMPLE:

Given that r is a real number then the following line causes r to be set equal
354.78:

r := From_String(" b-354.78");

The following line causes r to be set equal to -35.687:

r := From_String("-00035.687000");
Std_DevelopersKit User’s Manual, V2.21-14

Std_IOpak From_String (time)

ters to
ads

g all
value

e
nted by

tring
)
d and
From_String (time)
To convert from a string to a time.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return time;

DESCRIPTION:

This overloaded function From_String converts a string to a time value. The
function starts at the left most index of the string and searches for the charac
be converted to a time value skipping over any white spaces. The function re
characters until it reaches the end of the string, the first white space followin
necessary characters, or a NUL character. The string representing the time
must have the following format:

<time> ::= [<sign>]nnnn[.mmmm] b<t_unit>
<sign> ::= + | -
<t_unit> ::= fs | ps | ns | us | ms | sec | min | hr

The digit strings nnnn and mmmm may have any length provided that the tim
value represented does not have a magnitude that is too large to be represe
a real number on the machine on which the VHDL compiler and simulator is
being run. There should be a blank space between the real number and its
associated unit. The unit must be included for the conversion to succeed.

RESULT:

This function returns a time value.

BUILT IN ERROR TRAPS:

1. If an invalid character is encountered in the process of converting the s
to a time value or if too few characters (including a string of zero length
are found, or too many characters are found an error assertion is issue
the value time’left is returned.

2. If an invalid character sequence is specified for t_unit then an error
assertion is made and the value time’left is returned.
Std_DevelopersKit User’s Manual, V2.2 1-15

From_String (time) Std_IOpak

s:
EXAMPLE:

Given that t is a time variable then the following line sets t equal to 893.56 m

t := From_String(" bbb893.56 bmsbbgarbage");

The following line causes an error assertion to be made:

t := From_String("857.3 bpshello");
Std_DevelopersKit User’s Manual, V2.21-16

Std_IOpak From_String (std_ulogic)

 The
ters to
tion

on-
rtion

the
From_String (std_ulogic)
To convert from a string to a std_ulogic value.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return std_ulogic;

DESCRIPTION:

This overloaded function From_String converts a string to a std_ulogic value.
function starts at the left most index of the string and searches for the charac
be converted to a std_ulogic value skipping over any white spaces. The func
reads the first character after the white spaces and, if it is one of the valid
characters (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’), convert it to a std_ulogic
value. Case is ignored.

RESULT:

This function returns a std_ulogic value.

BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space character to the left of a NUL character then an error asse
is issued and the value std_ulogic’left (‘U’) is returned.

2. If the first non-white space character that is encountered is not one of
valid characters then an error assertion is issued and the value
std_ulogic’left (‘U’) is returned.
Std_DevelopersKit User’s Manual, V2.2 1-17

From_String (std_ulogic) Std_IOpak
EXAMPLES:

Given that ulogic_val is a std_ulogic variable, then the following line sets
ulogic_val to the value ‘1’:

ulogic_val:= From_String(" b100");

The following line sets ulogic_val to the value ‘Z’:
ulogic_val := From_String (" bbbZ01b");

The following line sets ulogic_val to the value ‘U’ but also causes an error
assertion to be issued.

ulogic_val:=From_String (" bbbbb "& NUL & "1101");
Std_DevelopersKit User’s Manual, V2.21-18

Std_IOpak From_String (std_ulogic_vector)

r
r the
aces.
first

r of

the
 but

on-
ertion

alid

e

From_String (std_ulogic_vector)
To convert a string to a std_ulogic_vector.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return std_ulogic_vector;

DESCRIPTION:

This overloaded function From_String converts a string to a std_ulogic_vecto
value. The function starts at the left most index of the string and searches fo
characters to be converted to a std_ulogic_vector skipping over any white sp
The function then reads characters until it reaches the end of the string, the
white space following a sequence of non-white space characters, or a NUL
character. The valid character set is ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, and ‘-’
and the case of the characters is ignored.

RESULT:

This function returns a std_ulogic_vector whose length is equal to the numbe
non-white space characters read by the function. The returned vector has a
descending range with the right most index being 0. This does not preclude
user from assigning this vector to another vector of the same type and length
of a different range.

BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space characters to the left of a NUL character then an error ass
is issued and a vector of zero length is returned.

2. If one of the non-white space characters read by the function is an inv
character than an error assertion is made and a vector filled with
std_ulogic’left (‘U’) with a length equal to the number of non-white spac
characters read by the function is returned.
Std_DevelopersKit User’s Manual, V2.2 1-19

From_String (std_ulogic_vector) Std_IOpak

 be set
EXAMPLES:

Given the following variable declaration:

variable u_vct: std_ulogic_vector (15 downto 8);

the following line sets u_vct equal to "0-ZU1010":

u_vct := From_String(" bbb0-ZU1010 bbb1010");

The following line causes an error assertion to be issued and cause u_vct to
equal to the vector "UUUUUUUU".

u_vct := From_String(" bbb0U11X1PPb");
Std_DevelopersKit User’s Manual, V2.21-20

Std_IOpak From_String (std_logic_vector)

r the
ces.

first

 of

the
 but

on-
ertion

alid
From_String (std_logic_vector)
To convert a string to a std_logic_vector.

OVERLOADED DECLARATION:

Function From_String (
str: IN string-- string to be converted
) return std_logic_vector;

DESCRIPTION:

This overloaded function From_String converts a string to a std_logic_vector
value. The function starts at the left most index of the string and searches fo
characters to be converted to a std_logic_vector skipping over any white spa
The function then reads characters until it reaches the end of the string, the
white space following a sequence of non-white space characters, or a NUL
character. The valid character set is ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, and ‘-’
and the case of the characters is ignored.

RESULT:

This function returns a std_logic_vector whose length is equal to the number
non-white space characters read by the function. The returned vector has a
descending range with the right most index being 0. This does not preclude
user from assigning this vector to another vector of the same type and length
of a different range.

BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space characters to the left of a NUL character then an error ass
is issued and a vector of zero length is returned.

2. If one of the non-white space characters read by the function is an inv
character than an error assertion is made and a vector filled with
std_logic’left (‘U’) with a length equal to the number of non-white space
characters read by the function is returned.
Std_DevelopersKit User’s Manual, V2.2 1-21

From_String (std_logic_vector) Std_IOpak

e set
EXAMPLES:

Given the following variable declaration:

variable vect : std_logic_vector (15 downto 8);

the following line sets vect equal to "0-ZU1010":

vect := From_String(" bbb0-ZU1010 bbb1010");

The following line causes an error assertion to be issued and cause vect to b
equal to the vector "UUUUUUUU".

vect := From_String(" bbb0U11X1PPb");
Std_DevelopersKit User’s Manual, V2.21-22

Std_IOpak From_BinString

ters to
en

e

-
ending

on-
ertion

alid
t
ead
From_BinString
To convert a binary string to a bit vector

DECLARATION:
Function From_BinString (
str: IN string-- string to be converted
) return bit_vector;

DESCRIPTION:

This function From_BinString converts a string to a bit_vector value. The
function starts at the left most index of the string and searches for the charac
be converted to a bit_vector skipping over any white spaces. The function th
reads characters until it reaches the end of the string, the first white space
following a sequence of non-white space characters, or a NUL character. Th
valid characters are ‘0’ and ‘1’.

RESULT:

This function returns a bit_vector whose length is equal to the number of non
white space characters read by the function. The returned vector has a desc
range with the right most index being 0. This does not preclude the user from
assigning this vector to another vector of the same type and length but of a
different range.

BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space characters to the left of a NUL character then an error ass
is issued and a vector of zero length is returned.

2. If one of the non-white space characters read by the function is an inv
character than an error assertion is made and a vector filled with bit’lef
(‘0’) with a length equal to the number of non-white space characters r
by the function is returned.
Std_DevelopersKit User’s Manual, V2.2 1-23

From_BinString Std_IOpak

e set
EXAMPLES:

Given the following variable declaration:

variable vect : bit_vector (15 downto 8);

the following line sets vect equal to "01101111":

vect := From_BinString(" bbb01101111 bbb1010");

The following line causes an error assertion to be issued and cause vect to b
equal to the vector "00000000".

vect := From_BinString(" bbb000000PPb");
Std_DevelopersKit User’s Manual, V2.21-24

Std_IOpak From_OctString

ters to
en

e

mber
 a
the
 but

on-
ertion

alid
t

From_OctString
To convert an octal string to a bit vector

DECLARATION:
Function From_OctString (
str: IN string-- string to be converted
) return bit_vector;

DESCRIPTION:

This function From_OctString converts a string to a bit_vector value. The
function starts at the left most index of the string and searches for the charac
be converted to a bit_vector skipping over any white spaces. The function th
reads characters until it reaches the end of the string, the first white space
following a sequence of non-white space characters, or a NUL character. Th
valid characters are ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, and ‘7’. Each valid character is
converted into its equivalent three digit long binary sequence.

RESULT:

This function returns a bit_vector whose length is equal to three times the nu
of non-white space characters read by the function. The returned vector has
descending range with the right most index being 0. This does not preclude
user from assigning this vector to another vector of the same type and length
of a different range.

BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space characters to the left of a NUL character then an error ass
is issued and a vector of zero length is returned.

2. If one of the non-white space characters read by the function is an inv
character than an error assertion is made and a vector filled with bit’lef
(‘0’) with a length equal to three times the number of non-white space
characters read by the function is returned.
Std_DevelopersKit User’s Manual, V2.2 1-25

From_OctString Std_IOpak

e set
EXAMPLES:

Given the following variable declaration:

variable vect : bit_vector (15 downto 4);

the following line sets vect equal to "001111011101":

vect := From_OctString(" bbb1735 bbb1010");

The following line causes an error assertion to be issued and cause vect to b
equal to the vector "000000000000".

vect := From_OctString(" bbb72PPb");
Std_DevelopersKit User’s Manual, V2.21-26

Std_IOpak From_HexString

ters to
en

e

ber
 a
the
 but
From_HexString
Convert a Hexadecimal String to a Bit_Vector

PURPOSE:

To convert a Hexadecimal string to a bit vector

DECLARATION:

Function From_HexString (
str: IN string-- string to be converted
) return bit_vector;

DESCRIPTION:

This function From_HexString converts a string to a bit_vector value. The
function starts at the left most index of the string and searches for the charac
be converted to a bit_vector skipping over any white spaces. The function th
reads characters until it reaches the end of the string, the first white space
following a sequence of non-white space characters, or a NUL character. Th
valid characters are ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘A’, ‘B’, ‘C’, ‘D’,
‘E’, and ‘F’ and the case of the characters is ignored. Each valid character is
converted into its equivalent four digit long binary sequence.

RESULT:

This function returns a bit_vector whose length is equal to four times the num
of non-white space characters read by the function. The returned vector has
descending range with the right most index being 0. This does not preclude
user from assigning this vector to another vector of the same type and length
of a different range.
Std_DevelopersKit User’s Manual, V2.2 1-27

From_HexString Std_IOpak

on-
ertion

alid
t

e set
BUILT IN ERROR TRAPS:

1. If the string has a length of zero, is filled with white spaces, or has no n
white space characters to the left of a NUL character then an error ass
is issued and a vector of zero length is returned.

2. If one of the non-white space characters read by the function is an inv
character than an error assertion is made and a vector filled with bit’lef
(‘0’) with a length equal to four times the number of non-white space
characters read by the function is returned.

EXAMPLES:

Given the following variable declaration:

variable vect : bit_vector (15 downto 4);

the following line sets vect equal to "001111011101":

vect := From_HexString(" bbb3DDbbb1010");

The following line causes an error assertion to be issued and cause vect to b
equal to the vector "000000000000".

vect := From_HexString(" bbb72Pb");
Std_DevelopersKit User’s Manual, V2.21-28

Std_IOpak To_String

 that
kage

the
e

:

L
rite...

al
een
mber
To_String
To_String is a function which converts expressions of any pre-declared type
was declared in the package STANDARD or of any type declared in the pac
STD_LOGIC_1164 to a string representation of its value.

GENERAL DESCRIPTION:

An optional format string provides the flexibility to control the appearance of
resulting string. Left and right justified formats, as well as a default format ar
accommodated.

There are ten overloaded forms of the function which include conversion from

1. Boolean
2. Bit
3. Severity_Level
4. Character
5. Integer
6. Real
7. Time
8. Bit_Vector
9. Std_ulogic

10. Std_logic_vector
11. Std_ulogic_vector

When a user calls To_String which overloaded form of the function the VHD
compiler chooses depends upon the context of its use. For example, if you w

assert false
report "2 * pi :=" & To_String (2.0*3.14159);

the compiler invokes the sixth function which is designed to accommodate re
numbers. Notice that in the example provided, no format specification had b
made. This is called default formatting and the function represents the real nu
in a standard notation.
Std_DevelopersKit User’s Manual, V2.2 1-29

To_String Std_IOpak

ret
ed

, and
nit

tax of

at
be

idth
ewer

acter

m
ber

eal
mum
er of
en the
 a
FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by one of the specification characters (d, f, s
t). When the input value is of type time then the format string includes time_u
after the conversion character t. In this way the input time is scaled to this
time_unit before conversion to the string representation takes place. The syn
the format specification is:

<format_specification> ::=
"% [<left_justification>]

[<field_specification>]<string_type>"
| "%[<left_justification>] [<field_specification>] t

[<t_unit>]"
<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.

A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input value to be converted to a string or the num
of digits that is placed to the right of the decimal point if the input value is a r
number or a time. For an input of type integer the precision specifies the mini
number of digits used to represent the integer in the output string. If the numb
digits that are necessary to represent the integer is less than the precision th
string representation is padded on the left with zeros. (i.e. The number 2 with
format string of “%4.2d” is converted to the string "bb02".) If the precision is not
specified then the string is never padded with zeros.
Std_DevelopersKit User’s Manual, V2.21-30

Std_IOpak To_String

ts

mal

bove.

e
e

String_type has the following format:

<string_type> ::= d | f | s | t | o | x | X

where the meaning of each letter is defined as follows:

d input value is considered to be an integer

f input value is considered to be a real number

s input is considered to be of one of the enumeration types
(boolean, severity_level, character, bit, bit_vector, std_ulogic,
std_logic_vector)

t input is considered to be of type time

o input value is considered to be a bit_vector. In this case the
resulting string represents the vector with the use of octal digi

x or X input value is considered to be a bit_vector. In this case the
resulting string represents the vector with the use of hexadeci
digits

Note that a letter may only be used with the corresponding type described a
For instance, s may not be used in a format string that applies to an integer.

When the input value is of type time then t_ unit specifies the unit in which th
result is represented. If the format string is specified, then a time unit must b
specified.

<t_unit> ::= fs | ps | ns | us | ms | sec

fs output is a string representation of time in femto seconds

ps output is a string representation of time in pico seconds

ns output is a string representation of time in nano seconds

us output is a string representation of time in micro seconds

ms output is a string representation of time in milli seconds

sec output is a string representation of time in seconds
Std_DevelopersKit User’s Manual, V2.2 1-31

To_String Std_IOpak

used:

 the
g. For

The

 index
ld
ers
 to this
ssign
put

uses
rror.

of
a
ust
rger
DEFAULT FORMAT:

If the user does not specify the format string the following default values are

The default format auto sizes the length of the minimum field width to match
minimum number of characters needed to represent the input value as a strin
an input value of type time, the input value is scaled to a suitable time unit.
time unit is only selected dynamically if no format string is specified.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If specified field width is smaller than the minimum number of charact
needed to represent the input value then the length of the result is expanded
minimum number of characters. As a result, the user must be careful not to a
an invocation of this function to a variable if auto sizing occurs for the given in
and format string. For instance, assigning an invocation of this function that
the default format for integers to a string of length 3 likely causes a run time e

The deferred constant MAX_STRING_LEN represents the maximum length
the result string. Its value is globally set to 256 in the package Std_IOpak. If
string of a larger length is required, then the constant MAX_STRING_LEN m
be set to the desired integer value. If the format string specifies a field width la
than MAX_STRING_LEN (256) then the length of the result string is set to
MAX_STRING_LEN (256).

Table 1-1. Default Format String Values

Input Type Default Format String

integer "%d"

real "%f"

enumeration types "%s"

time "%t dynamic_unit"
Std_DevelopersKit User’s Manual, V2.21-32

Std_IOpak To_String

east
g is

ft

at
f

ith

e

 of
er’s
EXAMPLES:

1. a)Given the following line:
str := To_String(265.3, "%8.2f");

Since the field width is 8 and the precision is 2, the result string is of at l
length 8 and contains two digits after the decimal point. The result strin
also right justified. Below is the string that is returned.

" bb265.30"

2. b)When the function invocation is changed as follows:
str := To_String(265.3, "%-8.2f");

The field width is still at least 8 with a precision of 2, but the result is le
justified. The string that is returned is shown below.

"265.30 bb"

3. c)When To_String is invoked as follows:
str := To_String(123456, "%16d");

First the integer 123456 is converted to the string: "123456". The form
string "%16d" means field width is 16 and the precision is ignored, all o
the characters are printed. As a result, the following string is returned:

" bbbbbbbbbb 123456"

4. d)A format string of "%16.8" causes the output string to use padding w
zeros to achieve a number with 8 digits. The resulting string is shown
below:

"bbbbbbbb 00123456"

If the format string was "8.4" the result would be as follows:
"bb123456"

The resulting string has a length of 8 as specified by the field width. Th
specified precision is 4. Since the minimum number of digits needed to
represent the integer is greater than the precision (the minimum length
the integer), the precision requirement is satisfied and all 6 of the integ
digits are placed in the string.
Std_DevelopersKit User’s Manual, V2.2 1-33

To_String (boolean) Std_IOpak

d by

ional

ret
ed

 of

at
be

idth
ewer

acter
To_String (boolean)
To convert a boolean value to a string according to the specification provide
the format string

OVERLOADED DECLARATION:

Function To_String (
val: IN boolean; -- input value to be converted to a string
format:IN string -- conversion specification
) return string;

DESCRIPTION:

This function converts the boolean input val to a string representation. An opt
format string provides the flexibility to control the appearance of the resulting
string. Left and right justification formats, as well as a default format are
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s. The syntax
the format specification is:

<format_specification> ::=
 "% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.
Std_DevelopersKit User’s Manual, V2.21-34

Std_IOpak To_String (boolean)

um

” is
gth of
 to

 index
ld
ers
 to this
ssign
put

uses
e

6)

.

at
de.
A digit string mmm specifying the precision, which is the count of the maxim
number of characters of the input value to be converted to a string

DEFAULT FORMAT:

If the user does not specify the format string then a default format string “%s
used for an input value of type boolean. The default format auto sizes the len
the minimum field width to match the minimum number of characters needed
represent the input boolean value as a string.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If specified field width is smaller than the minimum number of charact
needed to represent the input value then the length of the result is expanded
minimum number of characters. As a result, the user must be careful not to a
an invocation of this function to a variable if auto sizing occurs for the given in
and format string. For instance, assigning an invocation of this function that
the default format for boolean variable to a string of length 3 causes a run tim
error.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result string is set to MAX_STRING_LEN (256).

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5d” and the input value is boolean) an error assertion is ma
Std_DevelopersKit User’s Manual, V2.2 1-35

To_String (boolean) Std_IOpak

ring

he
t is
EXAMPLES:

Given the variable declarations:
Constant max_address : integer := 1024;
variable str16 : STRING(1 TO 16);
variable flag : boolean := false;
variable index : Integer;
variable bool : Boolean;

1. Then the following statement converts the boolean variable flag to a st
of length 16 and assign it to the variable str16.

str16 := To_String(flag, "%16s");

Now the string str16 has the value" bbbbbbbbbbb FALSE". Note the default
of right justification was used.

2. Given the following piece of VHDL code
index := 1;
assert false

report "Is index less than max_address? "
& To_String(index < max_address)

severity NOTE;

Note that first the expression index < max_address is evaluated and it
returns the boolean value TRUE. This boolean, TRUE, then inputs to t
function To_String. Since no format string is specified the default forma
used. The result string holds the value"TRUE" which has a length of four.

3. If we want only a few characters of the input value to be converted to a
string (e.g. we want only"F" or "T" for a boolean), then the function
invocation would have the format:

To_String(bool, "%.1s")

This returns"T" if the variable bool is TRUE and"F" if the variable bool
is false. Notice that To_String returns strings consisting of upper case
letters.

To_String(bool, "%-5.1s")

returns "T bbbb " if bool is true, which is left justified, and"F bbbb " if bool
is false.
Std_DevelopersKit User’s Manual, V2.21-36

Std_IOpak To_String (bit)

e

ret
ed

at
be

idth
ewer
To_String (bit)
To convert a bit value to a string according to the specification provided by th
format string.

OVERLOADED DECLARATION:

Function To_String (
 val:IN bit;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input bit val to a string representation. An optional
format string provides the flexibility to control the appearance of the resulting
string. Left and right justification formats, as well as a default format are
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s.

The syntax for this format specification is:

 <format_specification> ::=
"% [<left_justification>] [<field_specification>] s"

 <left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field width specification has the following format:

<field_specification> ::= nnn.mmm for bit values

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
Std_DevelopersKit User’s Manual, V2.2 1-37

To_String (bit) Std_IOpak

acter

m
se,

” is
f the

 index
ld

n

.

at
de.
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.

A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input value to be converted to a string. In this ca
regardless of the precision, only one character can be converted to a string.

DEFAULT FORMAT:

If the user does not specify the format string then a default format string “%s
used for the input value of type bit. The default format auto sizes the length o
minimum field width to 1 (one).

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is less than 1 then it is set to the default
minimum field width of 1 for this case. The length of result string is 1. If the
format string specifies a field width larger than MAX_STRING_LEN (256) the
the length of the result is set to MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5d” and the input value is of type bit) an error assertion is ma
Std_DevelopersKit User’s Manual, V2.21-38

Std_IOpak To_String (bit)

f

EXAMPLES:

Given the variable declarations:

variable status_reg : STRING(1 TO 8);
variable carry_out : bit;

1. Then the following statement converts carry_out from a bit to a string o
length 1 and assign it to the slice of the status_reg.

status_reg(1) := To_String(carry_out);

The previous statement uses the default format.

2. The following code segment:

Variable cout : bit;

cout := '1';
status_reg := To_string(cout, "%-8s");

causes the string "1bbbbbbb " to be assigned to status_reg.
Std_DevelopersKit User’s Manual, V2.2 1-39

To_String (character) Std_IOpak

d by

 are

ret
ed

at
be

idth
ewer
To_String (character)
To convert a character value to a string according to the specification provide
a format string. This function is primarily a debugging tool.

OVERLOADED DECLARATION:

Function To_String (
val: IN character;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input character, val, to a string representation. An
optional format string provides the flexibility to control the appearance of the
resulting string. Left and right justification formats, as well as a default format
accommodated.

This function is primarily a debugging tool that should be used to view non-
printing characters.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::='-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
Std_DevelopersKit User’s Manual, V2.21-40

Std_IOpak To_String (character)

acter

. In
 the

” is
ength

) if

 index
ld
et to

f this
g.
rmat
 non-

6)
.

.

at
is
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.

A digit string mmm normally specifies the precision, which is the count of the
maximum number of characters of the input value to be converted to a string
this case, the precision is ignored since only one input character is passed to
procedure.

DEFAULT FORMAT:

If the user does not specify the format string then a default format string “%s
used for the input value of type character. The default format auto sizes the l
of the minimum field width to 1 (one) if the input val is one of the 95 ASCII
printable characters (graphic characters) and the field width is set to 3 (three
the input val is one of the non-printable (non-graphic) ASCII characters.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is less than the default length needed it is s
1 if input val is a graphic character and set to 3 if input val is a non-graphic
character. As a result, the user must be careful not to assign an invocation o
function to a variable if auto sizing occurs for the given input and format strin
For instance, assigning an invocation of this function that uses the default fo
for characters to a string of length1 causes a run time error if the character is
printable.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then it is set to MAX_STRING_LEN and the length of the result string is 256

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5d” and input value is of type character) an error assertion
made.
Std_DevelopersKit User’s Manual, V2.2 1-41

To_String (character) Std_IOpak

t this
hen

ch),

tion is
EXAMPLES:

Given the variable declarations:

variable ch : character;
variable str8 : String(1 TO 8);
file in_file : ASCII_TEXT IS IN "alu_test.dat";

1. In the following statement:

str8 := To_String('T', "%8s");

 str8 has value" bbbbbbb T" .

2. If we have the following code:

ch := fgetc(in_file);-- read a character from
-- the file attached
-- with in_file

ASSERT (StrCmp (To_String(ch), "T") = 0)
REPORT " file alu_test.dat corrupted. "
SEVERITY ERROR;

This code reads a character from the input file alu_test.dat and conver
character to a string of length one by the invocation of To_String(ch). T
another function StrCmp compares this with the "T" and, if there is a
match, return zero (0). In this way the expression (StrCmp(To_String(
"T") = 0) is evaluated to a boolean value of TRUE. Therefore, the error
assertion is not made. If any other character was read, the error asser
made.
Std_DevelopersKit User’s Manual, V2.21-42

Std_IOpak To_String (character)

e
 is
3. The following is a table of input characters, their ordinal values, and th
resulting output strings for the function invocation To_String(c) where c
a character:

Table 1-2. To_String(c) Resultant Output

Input Character Ordinal Value Output String

NUL 0 "NUL"

ACK 6 "ACK"

A 65 "A"

b 98 "b"

DEL 127 "DEL"

3 51 "3"

? 63 "?"
Std_DevelopersKit User’s Manual, V2.2 1-43

To_String (severity_level) Std_IOpak

 by a

. An

 are

ret
ed

at
be

idth
ewer

acter
To_String (severity_level)
To convert a severity_level to a string according to the specification provided
format string.

OVERLOADED DECLARATION:

Function To_String (
val: IN severity_level;-- value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input severity_level, val, to a string representation
optional format string provides the flexibility to control the appearance of the
resulting string. Left and right justification formats, as well as a default format
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.
Std_DevelopersKit User’s Manual, V2.21-44

Std_IOpak To_String (severity_level)

m

” is
 the
rs

 index
ld

tring is
be

ation
gth

6)

.

at
A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input value to be converted to a string.

DEFAULT FORMAT:

If the user does not specify the format string then a default format string “%s
used for the input value of type severity_level. The default format auto sizes
length of the minimum field width to match the minimum number of characte
needed to represent the input severity_level value as a string.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is smaller than the minimum number of
characters needed to represent the input value then the length of the result s
expanded to this minimum number of characters. As a result, the user must
careful not to assign an invocation of this function to a variable if auto sizing
occurs for the given input and format string. For instance, assigning an invoc
of this function that uses the default format for severity_level to a string of len
4 causes a run time error if the severity level is WARNING.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result is set to MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5d” and the input value is of type severity_level) an error
assertion is made.
Std_DevelopersKit User’s Manual, V2.2 1-45

To_String (severity_level) Std_IOpak

and

”.
s

EXAMPLE:

Given the variable declarations.

variable str8 : STRING(1 TO 8);
variable ast_level : SEVERITY_LEVEL;

The following piece of VHDL code converts the variable ast_level to a string
print the string to the output file.

ast_level := warning;
str8 := To_String(ast_level, "%8s");
fprint(" severity level is = %s\n", str8);

Here the fprint statement prints str8 to the default output file “STD_OUTPUT
Note that str8 is padded on the left side with one blank space. The line that i
printed to the file is shown below:

severity level is = WARNING
Std_DevelopersKit User’s Manual, V2.21-46

Std_IOpak To_String (integer)

 by a

 are

ret
ed

at
be

idth
ewer

acter
To_String (integer)
To convert an integer value to a string according to the specification provided
format string.

OVERLOADED DECLARATION:

Function To_String (
 val:IN integer;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input integer, val, to a string representation. An
optional format string provides the flexibility to control the appearance of the
resulting string. Left and right justification formats, as well as a default format
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character d.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] d"

 <left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn .mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the filed width from the precision.
Std_DevelopersKit User’s Manual, V2.2 1-47

To_String (integer) Std_IOpak

its
 string

mat

” is
th of
 to

 index
ld

tring is
be

ation

6)

.

at
s

A digit string mmm specifies the precision, which is the minimum number of
digits, in the string, that is used to represent the integer. If the number of dig
that are necessary to represent the integer is less than the precision then the
representation is padded on the left with zeros. (i.e. The number 2 with a for
string of “%4.2d” is converted to the string "bb02".) If the precision is not
specified then the string is never padded with zeros.

DEFAULT FORMAT:

If the user does not specify the format string then a default format string “%d
used for the input value of type integer. The default format auto sizes the leng
the minimum field width to match the minimum number of characters needed
represent the input integer value as a string.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is smaller than the minimum number of
characters needed to represent the input value then the length of the result s
expanded to this minimum number of characters. As a result, the user must
careful not to assign an invocation of this function to a variable if auto sizing
occurs for the given input and format string. For instance, assigning an invoc
of this function that uses the default format for integers to a string of length 3
causes a run time error if the integer is 1024.

 If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result is set to MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%s” and the input value is of type integer) an error assertion i
made.
Std_DevelopersKit User’s Manual, V2.21-48

Std_IOpak To_String (integer)

 and
on,
EXAMPLES:

Given the variable declarations:

variable str16 : STRING(1 TO 16);
variable val : INTEGER := 1234;

Then the following statement converts the integer val to a string of length 16
assign it to the variable str16. The default justification, which is right justificati
is used.

str16 := To_String(val, "%16d");

The variable str16 holds the following string:

" bbbbbbbbbbbb 1234"

The statement:

str16 := To_String(val, "%-16d")

 has the effect of setting str16 equal to the following string:

"1234 bbbbbbbbbbbb "

which is left justified.

 The line:

str16(1 To 4) := To_String(val);

assigns"1234" to the specified slice of str16.

The line:

str16(1 to 8) := To_String(val,"%8.6d");

assigns "bb001234" the specified slice of str16.

The line

str16(1 to 8) := To_String(val, "%8.2d");

assigns "bbbb 1234" to the specified slice of str16.
Std_DevelopersKit User’s Manual, V2.2 1-49

To_String (real) Std_IOpak

 a

al

ret
ed

at
be

idth
ewer

acter
it
d to
To_String (real)
To convert a real value to a string according to the specification provided by
format string.

OVERLOADED DECLARATION:
Function To_String (
val: IN real;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input real val to a string representation. An option
format string provides the flexibility to control the appearance of the resulting
string. Left and right justification formats, as well as a default format are
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character f.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] f"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:
<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision. A dig
string mmm specifies the precision, which is the number of digits to be place
the right of the decimal point.
Std_DevelopersKit User’s Manual, V2.21-50

Std_IOpak To_String (real)

f” is
 of
 to

 the

 index
ld

tring is
be

ation
uses

6)

.

at
ade.
DEFAULT FORMAT:

If the user does not specify the format string then a default format string of “%
used for the input value of type real. The default format auto sizes the length
the minimum field width to match the minimum number of characters needed
represent the input real value as a string. A default precision of 6 is used for
real input value.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is smaller than the minimum number of
characters needed to represent the input value then the length of the result s
expanded to this minimum number of characters. As a result, the user must
careful not to assign an invocation of this function to a variable if auto sizing
occurs for the given input and format string. For instance, assigning an invoc
of this function that uses the default format for reals to a string of length 8 ca
a run time error if the real is 234.5 since the default precision is 6.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result is set to MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%s” and the input value is of type real) an error assertion is m
Std_DevelopersKit User’s Manual, V2.2 1-51

To_String (real) Std_IOpak

rs.

he
EXAMPLES:

Given the variable declarations:

variable str16 : String(1 TO 16);
variable pi : REAL;
pi := 3.1415926;

then the statement:

str16 := To_String(2.0*pi, "%16.7f");

assigns to str16 the string "bbbbbbb 6.2831852".

and the statement:

str16 := To_String(2.0*pi, “%-16.7f”);

assigns to str16 the string "6.2831852bbbbbbb ".

If the precision is not specified a default precision of 6 is used for real numbe

str16 := To_String(2.0*pi, “%16f”);

assigns a value "bbbbbbbb 6.283185" to str16. There are now only 6 digits after t
decimal point.

The statement:

To_String(2.0*pi);

returns "6.283185", a string of length 8.
Std_DevelopersKit User’s Manual, V2.21-52

Std_IOpak To_String (time)

 a

nal

ret
ed

the

at
be

idth
r if
 is
e up
To_String (time)
To convert a time value to a string according to the specification provided by
format string.

OVERLOADED DECLARATION:

Function To_String (
val: IN time;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input time, val, to a string representation. An optio
format string provides the flexibility to control the appearance of the resulting
string. Left and right justification formats, as well as a default format are
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character t followed by
desired output time unit.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] t

<t_unit>"
 <left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn[.mmm]

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide (plus 4 additional spaces for the time unit), and wide
necessary. If the converted string has fewer characters than the field width it
padded on the left (or the right, if left justification has been specified) to mak
Std_DevelopersKit User’s Manual, V2.2 1-53

To_String (time) Std_IOpak

he
ich

t

 digit
 no

 index
 width
ield
t the

 time

g.

as a

6)
the field width. The padding character is a blank space. A period separates t
field width from the precision. A digit string mmm specifies the precision, wh
is the number of digits to be placed to the right of the decimal point. If the
precision is not specified, it defaults to 6 digits.

T_ unit specifies the unit in which the result is represented. T_unit has the
following format

<t_unit> ::= fs | ps | ns | us | ms | sec

fs output is the string representation of time in femto seconds.
ps output is the string representation of time in pico seconds.
ns output is the string representation of time in nano seconds.
us output is the string representation of time in micro seconds.
ms output is string representation of time in milli seconds.
sec output is string representation of time in seconds.

DEFAULT FORMAT:

If user does not specify the format string then a default format string of “%8.3
dynamic_unit” is used for the input value of type time. The time unit is
automatically selected so that no more that three digits and no less than one
is to the left of the decimal point. The time unit is only selected dynamically if
format string is specified.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the field
plus four additional locations to accommodate the time unit. If the specified f
width is smaller than the minimum number of characters needed to represen
input value then the length of the result string is expanded to this minimum
number of characters plus an additional four characters to accommodate the
unit. As a result, the user must be careful not to assign an invocation of this
function to a variable if auto sizing occurs for the given input and format strin
For instance, assigning an invocation of this function using the format string
"%5.2 ns" to a string of length 9 causes a run time error if the time variable h
value of 1234.05 ns.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result is set to MAX_STRING_LEN.
Std_DevelopersKit User’s Manual, V2.21-54

Std_IOpak To_String (time)

 and

at

for

eans
 is
BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made
an unformatted string is returned.

2. If the format string type does not match the input value (i.e. if the form
string is “%5d” and the input value is of type time) an error assertion is
made and an unformatted string is returned.

EXAMPLES:

Given the variable declarations:

variable t1 : TIME := 21.650 ns;

1. To_String(t1, "%6.3t ns");

This returns "21.650bnsb". Notice the length of the string is 10 instead of
the field width which is 6. We need to accommodate 4 more locations
the time unit.

2. To_string(t1, "6.3t ps")

This returns the value "21650.000bpsb". Since the format specifies a
precision of 3, three places are needed after the decimal point. This m
that a total field width of 9 is needed. As a result the default field width
expanded to 9 plus an additional 4 places for the time unit.

3. To_String(t1, “%13.4t ps”);

This time the value returned is "bbb21650.0000bpsb". The field width is 13
plus 4 places for the time unit. It is right justified.
Std_DevelopersKit User’s Manual, V2.2 1-55

To_String (bit_vector) Std_IOpak

 a

lue.
the
 are

ret
ed

at
be

idth
ewer

 is a
To_String (bit_vector)
To Convert a bit_vector to a string according to the specification provided by
format string.

OVERLOADED DECLARATION:

Function To_String (
val: IN bit_vector;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input bit_vector to a string representation of its va
An optional format string provides the flexibility to control the appearance of
resulting string. Left and right justification formats, as well as a default format
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s, o, x, or X.

<format_specification> ::=
"% [<left_justification>] [<field_specification>]

<string_type>s"
<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field. The padding character
blank space. A period separates the field width from the precision.
Std_DevelopersKit User’s Manual, V2.21-56

Std_IOpak To_String (bit_vector)

m

ing

. The
.

” is

 index
ld
t the
l to
dix.
on to
nce,

6)
A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input value to be converted to a string.

String_type has the following format:

<string_type> ::= s | o | x | X

When an ‘s’ is used for string_type, the bit_vector is converted to a string us
binary representation. When an ‘o’ is used for string_type, the bit_vector is
converted to a string using octal notation. When an ‘x’ or and ‘X’ is used for
string type, the bit_vector is converted to a string using hexadecimal notation
returned string is NOT surrounded by quotation marks and prefixed by o or X

DEFAULT FORMAT:

If the user does not specify a format string then a default format string of “%s
used for the input value of type bit_vector. The default format auto sizes the
minimum field width to match the length of the input bit_vector.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width.If the specified field width is smaller than the length needed to represen
bit vector in the specified radix then the length of the result string is set equa
the minimum length necessary to represent the bit_vector in the specified ra
As a result, the user must be careful not to assign an invocation of this functi
a variable if auto sizing occurs for the given input and format string. For insta
assigning an invocation of this function that uses the format string "%o" for
bit_vectors to a string of length 4 causes a run time error if the bit_vector is
B"11011" since the resulting string would be "33".

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result string is set to MAX_STRING_LEN.
Std_DevelopersKit User’s Manual, V2.2 1-57

To_String (bit_vector) Std_IOpak

.

at
on

.
the

.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5f” and the input value is of type bit_vector) an error asserti
is made.

EXAMPLES:

Given the variable declarations:

variable address_str32 : STRING(1 TO 32);
variable data_bus : STRING(1 TO 16);
variable address : BIT_VECTOR (15 DOWNTO 0);
variable data_in : BIT_VECTOR (15 DOWNTO 0);

then the lines:

address := B"1111000011110001";
address_str32 := To_String(address, "%32s");

assigns"bbbbbbbbbbbbbbbb 1111000011110001" to the variable addresss_str32
The following statement uses the default format string to report the value of
variable address to the standard output device:

assert false
report "address is= "& To_String(address);

The line:

address_str32 := To_String(address, "%-32s");

assigns "1111000011110001bbbbbbbbbbbbbbbb " to address_str32.

The line:

address_str32 := To_String(address, "%32.8s");

assigns "bbbbbbbbbbbbbbbbbbbbbbbb 11110000" to the variable addresss_str32
Note here only the left most 8 bits are taken because the precision is 8. The
following line:

address_str32 := To_String(address, "%-32.8s");
Std_DevelopersKit User’s Manual, V2.21-58

Std_IOpak To_String (bit_vector)

to the

 the
assigns "11110000bbbbbbbbbbbbbbbbbbbbbbbb " to variable addresss_str32.

Slice Examples:

address_str16(1 TO 8) :=
To_String(address(15 DOWNTO 8));

This takes a slice of the variable address, convert it to a string, and assign it
most significant 8 positions of the string address_str16.

address_str16 now holds "11110000bbbbbbbb ";

Notice that a string variable always has a positive range.

Octal Examples:

Given the following code segment:

variable bv : bit_vector (7 downto 0);
variable str10 : string(1 to 10);
bv := B"11011110"
str10 := To_String(bv, "%10o");

The variable str10 is assigned the value "bbbbbbb 336". If the format string was
"%10.4" the left most 4 binary digits would be converted to an octal string and
value assigned to str10 would be "bbbbbbbb 15".

Hexadecimal Examples:

Given the following code segment:

variable bv : bit_vector (8 downto 0);
variable str4 : string(1 to 4);
bv := B"100101101";
str4 := To_String(bv, "%4X");

The variable str4 is assigned the value "b12D".
Std_DevelopersKit User’s Manual, V2.2 1-59

To_String (std_ulogic) Std_IOpak

ded

n

 are

ret
ed

at
be

idth
ewer

acter
To_String (std_ulogic)
To Convert a std_ulogic value to a string according to the specification provi
by a format string.

OVERLOADED DECLARATION:

Function To_String (
val: IN std_ulogic;-- input value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input std_ulogic value to a string representation. A
optional format string provides the flexibility to control the appearance of the
resulting string. Left and right justification formats, as well as a default format
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. If the converted string has f
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.
Std_DevelopersKit User’s Manual, V2.21-60

Std_IOpak To_String (std_ulogic)

m

” is
he

 index
ld

r

.

at
is
A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input value to be converted to a string.

DEFAULT FORMAT:

If the user does not specify a format string then a default format string of “%s
used for the input value of type of std_ulogic. The default format auto sizes t
length of the minimum field width to 1 (one).

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is less than 1 (one) then it is set to 1 and the
length of the result string is 1. If the format string specifies a field width large
than MAX_STRING_LEN (256) then the length of the result string is set to
MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5f” and input value is of type std_ulogic) an error assertion
made.

EXAMPLES:

Given the following variable declarations and function invocation:

variable str8 : STRING(1 TO 8);
variable ctrl1 : std_ulogic := 'X';
str8 := To_String(ctrl1, "%8s");

str8 is assigned a value of "bbbbbbb X". Given the line:

str8 := To_String(ctrl1, "%-8s");

str8 is assigned a value of "Xbbbbbbb ".
Std_DevelopersKit User’s Manual, V2.2 1-61

To_String (std_logic_vector) Std_IOpak

ded

. An

 are

ret
ed

at
be

idth

acter
To_String (std_logic_vector)
To Convert a std_logic_vector to a string according to the specification provi
by a format string.

OVERLOADED DECLARATION:

Function To_String (
val: IN std_logic_vector;-- value to be converted to a string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input std_logic_vector val to a string representation
optional format string provides the flexibility to control the appearance of the
resulting string. Left and right justification formats, as well as a default format
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
at least this wide, and wider if necessary. If the converted string has fewer
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period, separates the field width from the precision.
Std_DevelopersKit User’s Manual, V2.21-62

Std_IOpak To_String (std_logic_vector)

um

” is
s the

 index
ld

 this
g.
ing
he
h of

6)

.

at
A digit string mmm specifying the precision, which is the count of the maxim
number of characters of the input value to be converted to a string.

DEFAULT FORMAT:

If the user does not specify a format string then a default format string of “%s
used for the input value of type std_logic_vector. The default format auto size
length of the minimum field width to equal to the length of the input
std_logic_vector.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is less than the length of the input
std_logic_vector then it is set to val’LENGTH and a string of this length is
returned. As a result, the user must be careful not to assign an invocation of
function to a variable if auto sizing occurs for the given input and format strin
For instance, assigning an invocation of this function that uses the format str
"%5s" for std_logic_vectors to a string of length 5 causes a run time error if t
std_logic_vector is "11011X01" since the resulting string would have a lengt
8.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result string is set to MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5f” and the input value is of type std_logic_vector) an error
assertion is made.
Std_DevelopersKit User’s Manual, V2.2 1-63

To_String (std_logic_vector) Std_IOpak

he
EXAMPLES:

Given the variable declarations:

variable d_bus : std_logic_vector(15 downto 0);
variable addr : std_logic_vector(15 downto 0);
variable str32 : STRING (1 TO 32);

1. then the following lines:

d_bus := "000000000000XXXX";
str32 := To_String(d_bus, "%32s");

sets str32 to: "bbbbbbbbbbbbbbbb 000000000000XXXX". The line:

str32(1 TO 16) := To_String(d_bus);

sets, str32(1 TO 16), a slice of length 16 to "000000000000XXXX".

2. The following lines:

addr := "0111XXXXLHHH011Z";
str32 := To_String(addr, "%-32s");

assigns "0111XXXXLHHH011Zbbbbbbbbbbbbbbbb " to str32. The
following line:

str32(1 TO 8):= To_String(addr(15 DOWNTO 8));

take a slice of the variable addr, convert it to a string, and assign it to t
most significant 8 positions of the string str32, which now holds:

"0111XXXXbbbbbbbbbbbbbbbbbbbbbbbb ".

Notice that a string variable always has a positive range.
Std_DevelopersKit User’s Manual, V2.21-64

Std_IOpak To_String (std_ulogic_vector)

ided

ion.
the
 are

ret
ed

at
be

idth

acter
To_String (std_ulogic_vector)
To Convert a std_ulogic_vector to a string according to the specification prov
by a format string.

OVERLOADED DECLARATION:

Function To_String (
val: IN std_ulogic_vector;-- value to be converted to a
string
format:IN string-- conversion specification
) return string;

DESCRIPTION:

This function converts the input std_ulogic_vector val to a string representat
An optional format string provides the flexibility to control the appearance of
resulting string. Left and right justification formats, as well as a default format
accommodated.

FORMAT SPECIFICATIONS:

The format string provides conversion specifications which are used to interp
the input value. The conversion specifications consist of a % character follow
by some optional fields followed by the specification character s.

<format_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used in the field width form
specification to indicate that the expression being converted to string format
left justified. If right justification is desired, then the ‘-’ is simply eliminated.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
at least this wide, and wider if necessary. If the converted string has fewer
characters than the field width it is padded on the left (or the right, if left
justification has been specified) to make up the field width. The padding char
is a blank space. A period, separates the field width from the precision.
Std_DevelopersKit User’s Manual, V2.2 1-65

To_String (std_ulogic_vector) Std_IOpak

um

” is
zes

 index
ld

 this
g.
ing
he
th of

6)

.

at
r

A digit string mmm specifying the precision, which is the count of the maxim
number of characters of the input value to be converted to a string.

DEFAULT FORMAT:

If the user does not specify a format string then a default format string of “%s
used for the input value of type std_ulogic_vector. The default format auto si
the length of the minimum field width to equal to the length of the input
std_ulogic_vector.

RESULT:

The string that is returned by the function has an ascending range whose left
starts a 1 and has a length that is at least as long as that specified by the fie
width. If the specified field width is less than the length of the input
std_ulogic_vector then it is set to val’LENGTH and a string of this length is
returned. As a result, the user must be careful not to assign an invocation of
function to a variable if auto sizing occurs for the given input and format strin
For instance, assigning an invocation of this function that uses the format str
"%5s" for std_logic_vectors to a string of length 5 causes a run time error if t
std_ulogic_vector is "11011X01" since the resulting string would have a leng
8.

If the format string specifies a field width larger than MAX_STRING_LEN (25
then the length of the result string is set to MAX_STRING_LEN.

BUILT IN ERROR TRAPS:

1. If the format string is not correctly specified an error assertion is made

2. If the format string type does not match the input value (i.e. if the form
string is “%5f” and the input value is of type std_ulogic_vector) an erro
assertion is made.
Std_DevelopersKit User’s Manual, V2.21-66

Std_IOpak To_String (std_ulogic_vector)

 the
EXAMPLES:

Given the variable declarations:

variable d_bus : std_ulogic_vector(15 downto 0);
variable addr : std_ulogic_vector(15 downto 0);
variable str32 : STRING (1 TO 32);

1. then the following lines:

d_bus := "000000000000XXXX";
str32 := To_String(d_bus, "%32s");

sets str32 to: "bbbbbbbbbbbbbbbb 000000000000XXXX". The line:

str32(1 TO 16) := To_String(d_bus);

sets, str32(1 TO 16), a slice of length 16 to "000000000000XXXX".

2. The following lines:

addr := "0111XXXXLHHH011Z";
str32 := To_String(addr, "%-32s");

assigns "0111XXXXLHHH011Zbbbbbbbbbbbbbbbb " to str32. The
following line:

str32(1 TO 8):=To_String(addr(15 DOWNTO 8));

takes a slice of the variable addr, convert it to a string, and assign it to
most significant 8 positions of the string str32, which now holds:

"0111XXXXbbbbbbbbbbbbbbbbbbbbbbbb ".

Notice that a string variable always has a positive range.
Std_DevelopersKit User’s Manual, V2.2 1-67

Is_Alpha Std_IOpak

a’

ned.

r of

le ch is
Is_Alpha
To determine whether the input value is a letter of the alphabet.

DECLARATION:

Function Is_Alpha (
c : IN character-- input character to be tested
) return boolean;

DESCRIPTION:

This function determines whether the input character is a lower case letter (‘
through ‘z’) or an upper case letter (‘A’ through ‘Z’). If the test succeeds the
boolean value TRUE is returned otherwise the boolean value FALSE is retur

Result: The result is the boolean value TRUE if the input character c is a lette
the alphabet, otherwise the result is the boolean value FALSE.

EXAMPLES:

The following statements causes a loop to be executed as long as the variab
an alphabetic character:

variable ch : character;

While (Is_Alpha(ch)) LOOP
-- do something

END LOOP;
Std_DevelopersKit User’s Manual, V2.21-68

Std_IOpak Is_Upper

.

e
ed.

per

 if it is
ternate
Is_Upper
To determine whether the input value is an upper case letter of the alphabet

OVERLOADED DECLARATIONS:

Function Is_Upper (
c : IN character-- input character to be tested
) return boolean;

 DESCRIPTION:

This function determines whether the input character is one of the upper cas
letters (‘A’ through ‘Z’). If the test succeeds a boolean value of TRUE is return

Result: The result is the boolean value TRUE if the input character c is an up
case letter of the alphabet, otherwise the result is the boolean value FALSE.

EXAMPLES:

The following code segment reads a character and performs some operation
an upper case letter. If the character is not an upper case letter then some al
function is performed.

variable ch : character;
fgetc(ch)
If (Is_Upper(ch)) THEN

-- do some action
ELSE

-- do an alternate action
END IF;
Std_DevelopersKit User’s Manual, V2.2 1-69

Is_Lower Std_IOpak

a’

per

ere is
Is_Lower
To determine whether the input value is a lower case letter of the alphabet.

DECLARATION:

Function Is_Lower (
 c : IN character-- input character to be tested
) return boolean;

 DESCRIPTION:

This function determines whether the input character is a lower case letter (‘
through ‘z’). If the test succeeds a boolean value of TRUE is returned.

Result: The result is the boolean value TRUE if the input character c is an up
case letter of the alphabet, otherwise result is the boolean value FALSE.

EXAMPLES:

Given the following declarations:

variable i : integer;
variable string1024 : STRING(1 To 1024);
variable lower : boolean;

The following code segment searches string1024 for a lower case letter. If th
a lower case letter the flag lower is set to TRUE.

i := 1;
lower := FALSE;
while ((i <= 1024) and (NOT lower)) loop

lower := Is_Lower(string1024(i));
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.21-70

Std_IOpak Is_Digit

 of
e of

CII
an

the
Is_Digit
To determine whether the input value is a digit.

DECLARATION:

Function Is_Digit (
c : IN character-- input character to be tested
) return boolean;

DESCRIPTION:

This function determines whether the input character is the ASCII equivalent
one of the decimal digits (‘0’ through ‘9’). If the test succeeds a boolean valu
TRUE is returned.

Result: The result is the boolean value TRUE if the input character c is the AS
equivalent of a decimal digit (‘0’ through ‘9'), otherwise the result is the boole
value FALSE.

EXAMPLES:

Given the following declarations:

variable numstr : string(1 to 10);
variable i: Integer;
variable non_digit : boolean := FALSE;

then the following code segment checks that the numstr contains only digits.
Non_digit is set to true if some character other than a decimal digit exists in
string.

i := numstr’left;
while ((i<=numstr’right)and(not non_digit)) loop

non_digit := not (Is_Digit(numstr(i)));
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.2 1-71

Is_Space Std_IOpak

ed.

nk
lean

hat is
Is_Space
To determine whether the input value is a blank or a tab character.

DECLARATION:

Function Is_Space (
c : IN character-- input character to be tested
) return boolean;

 DESCRIPTION:

This function determines whether the input character is a blank (‘ ‘) or a
horizontal tab (‘HT’). If the test succeeds a boolean value of TRUE is return

Result: The result is the boolean value TRUE if the input character c is a bla
character (‘ ‘) or a horizontal tab character (‘HT’), otherwise result is the boo
value FALSE.

EXAMPLES:

Given the following declaration:

variable ch : character;

the following code segment continually reads in characters until a character t
not a space is reached.

While(Is_Space(ch)) LOOP
fgetc(ch); --- this skips a space

END LOOP;
Std_DevelopersKit User’s Manual, V2.21-72

Std_IOpak To_Upper (one ASCII char)

case
er, a
 This
To_Upper (one ASCII char)
To convert a lower case ASCII character to an upper case ASCII character.

DECLARATION:

Function To_Upper (
c : IN character-- input character to be converted
) return character;

DESCRIPTION:

This function converts any lower case character of the alphabet to its upper
representation (i.e. ‘a’ is converted to ‘A’). Therefore any lower case charact
through z is converted to its corresponding upper case notation A through Z.
function has no effect on any other character.

Result: To_Upper returns a single character.

EXAMPLES:

Given the following declaration:

variable ch : character;

then the line:

ch := To_Upper('t');

assigns the character 'T' to ch and the line:

ch := To_Upper ('5');

assigns '5' to ch. Notice no conversion took place.
Std_DevelopersKit User’s Manual, V2.2 1-73

To_Upper (all ASCII chars) Std_IOpak

II

case
er, a
 This

ing
il a
ted

e

e

To_Upper (all ASCII chars)
To convert all the lower case ASCII characters in a string to upper case ASC
characters.

DECLARATION:

Function To_Upper (
val: IN string-- input string to be converted
) return string;

DESCRIPTION:

This function converts any lower case character of the alphabet to its upper
representation (i.e. ‘a’ is converted to ‘A’). Therefore, any lower case charact
through z is converted to its corresponding upper case notation A through Z.
function has no effect on any other character.

Characters are converted starting with the left most character of the input str
and continue to be converted until either the entire string is converted or unt
NUL character is encountered at which point the case conversion is termina
and the converted string of length val’length is returned.

Result: To_Upper returns a resultant string which is of the same length as th
input string. The index range of the return type ranges from 1 to val’length.

EXAMPLES:

Given the following declarations:

variable str39 : STRING(1 TO 39);

The following statement:

str39 := To_Upper("I am a String !!" & NUL &
" plus some more stuff ");

assigns the value "I AM A STRING !!" & NUL & " plus some more stuff " to th
variable str39.
Std_DevelopersKit User’s Manual, V2.21-74

Std_IOpak To_Lower (one ASCII char)

case
er, A
This
To_Lower (one ASCII char)
To convert an upper case ASCII character to a lower case ASCII character.

DECLARATION:

Function To_Lower (
c : IN character-- input character to be converted
) return character;

DESCRIPTION:

This function converts any upper case character of the alphabet to its lower
representation (i.e. ‘A’ is converted to ‘a’). Therefore any upper case charact
through Z is converted to its corresponding lower case notation a through z.
function has no effect on any other character.

Result: To_Lower returns a single character.

EXAMPLES:

Given the following declaration:

variable ch : character;

The following line assigns the character 'v' to ch:

ch := To_Lower('V');

The following line assigns 'h' to ch:

ch:= To_Lower('H');
Std_DevelopersKit User’s Manual, V2.2 1-75

To_Lower (all ASCII chars) Std_IOpak

II

case
er, A
This

ing
il a
ted

e

To_Lower (all ASCII chars)
To convert all the upper case ASCII characters in a string to lower case ASC
characters.

DECLARATION:

Function To_Lower (
val: IN string-- input string to be converted
) return string;

DESCRIPTION:

This function converts any upper case character of the alphabet to its lower
representation (i.e. ‘A’ is converted to ‘a’). Therefore, any upper case charact
through Z is converted to its corresponding lower case notation a through z.
function has no effect on any other character.

Characters are converted starting with the left most character of the input str
and continue to be converted until either the entire string is converted or unt
NUL character is encountered at which point the case conversion is termina
and the converted string of length val’length is returned.

Result: To_Lower returns a resultant string which is of the same length as th
input string. The index range of the return type ranges from 1 to val’length.

EXAMPLES:

Given the following declarations:

variable str39 : STRING(1 TO 39);

The following statement:

str39 := To_Lower("I am a String !!" & NUL &
" Plus some more Stuff ");

assigns the value "i am a string !!" & NUL & " Plus some more Stuff " to the
variable str39.
Std_DevelopersKit User’s Manual, V2.21-76

Std_IOpak StrCat

y
left
ner.

g

 a

g of

h up
in a
StrCat
To concatenate two input strings.

DECLARATION:

Function StrCat (
l_str:IN string;-- left input
r_str:IN string-- right input
) return string;

DESCRIPTION:

StrCat is a function which copies, to a result string, the left string, character b
character, from left to right, until a NUL character is encountered or until the
string is exhausted. It then continues copying the right string in a similar man

Result: The result is a string consisting of the left string, up to but not includin
the first null character from the left, followed by the right string, up to but not
including the first NUL character from the left. If a string is not terminated by
NUL character the entire string is used. The range of the result string is 1 to
(StrLen(l_str) + StrLen(r_str)). If both of the input string variables are of zero
length or have a NUL character in their left most positions, the result is a strin
zero length. If one of the input string variables is of zero length or has a NUL
character in its left most position, the result is the string with a non-zero lengt
to but not including the NUL character or the entire string if it does not conta
NUL character.

EXAMPLES:

Given the variable declarations:
variable str32 : string(1 TO 32);
variable str8 : string(3 TO 10);

The assignment:
str8 := "01234" & NUL & "56"
str32(1 TO 13) := StrCat(str8,"89ABCDEF");

copies "0123489ABCDEF" to the first 13 locations of str32. The assignment:
str8 := StrCat("01234567", "89ABCDEF") (1 to 8);

copies a slice of the concatenated string "0123456789ABCDEF" to str8.
Therefore, str8 is "01234567".
Std_DevelopersKit User’s Manual, V2.2 1-77

StrNCat Std_IOpak

 to

r by
left
string

g
ng.
ed.
rs
to the
tring
of the
aller
both
e left
the
nge
StrNCat
To concatenate the specified number of characters from the right input string
the left input string.

DECLARATION:

Function StrNCat (
l_str:IN string;-- left input
r_str:IN string;-- right input
n : IN NATURAL-- number of character
) return string;

DESCRIPTION:

StrNCat is a function which copies, to a result string, the left string, characte
character, from left to right, until a NUL character is encountered or until the
string is exhausted. It then continues copying up to n characters of the right
in a similar manner.

Result: The result is a string consisting of the left string, up to but not includin
the first NUL character from the left, followed by n characters of the right stri
If the left string does not contain a NUL character then the entire string is us
Furthermore, if the right string has a NUL character within the first n characte
then only the those characters prior to the NUL character is concatenated on
left string or if the length of the string variable is less than n, then the entire s
is concatenated onto the left string. The length of the result string is the sum
length of the left input string as determined by the function StrLen and the sm
of the integer n and the length of the right string as determined by StrLen. If
of the input strings are of zero length, the result is a string of zero length. If th
input string is of zero length then the length of the result is n or the length of
right input string, which ever is smaller. The result is always an ascending ra
string starting at a left index of 1.
Std_DevelopersKit User’s Manual, V2.21-78

Std_IOpak StrNCat

ing
EXAMPLES:

Given the following code segment:

variable str32 : string(1 TO 32);
variable str16 : string(1 to 16);
variable str14 : string(1 to 14);
variable str8 : string(7 to 14);
str32(1 TO 10):=

StrNCat("01234567","89ABCDEF",2);

the variable str32 has "0123456789" in its first 10 locations. Given the follow
code segment:

str16 := "0123456789" & NUL & "abcde";
str8 := "test" & NUL & "ing";
str14 := StrNCat(str8,str16,12);

the variable str14 contains "test0123456789".
Std_DevelopersKit User’s Manual, V2.2 1-79

StrCpy Std_IOpak

n a
filled,
as

ny

s the
rs.
StrCpy
To copy source string to the target string.

DECLARATION:

Procedure StrCpy (
l_str:OUT string;-- output, target string
r_str:IN string-- input, source string
);

DESCRIPTION:

StrCpy copies the source string into the target string, starting from the left, o
character by character basis. The copying continues until the target string is
a NUL character is reached in the source string, or the entire source string h
been copied. If the copying is terminated before the target string is full then a
NUL character is placed in the target string immediately following the last
character that was copied from the source string.

Both the target string and the source string may be of any length and have a
positive range. The two strings need not have the same range or length.

EXAMPLES:

Given the following code segment:

variable str32 : string(33 TO 64)
variable str8 : string(1 TO 8);
str32 := "01234567890123456789012345678901";
str8 := "test" & NUL & "ing"

then the line:

StrCpy(str32, str8);

causes str32 to contain "test" in the first 4 elements, the fifth element contain
NUL character, and the remaining elements contains indeterminate characte

Given that the following procedure call was used instead:

StrCpy(str8, str32);

then str8 would contain: "01234567".
Std_DevelopersKit User’s Manual, V2.21-80

Std_IOpak StrNCpy

on a
 been
ring,
d

If the

pied
st

ny
StrNCpy
To copy at most n characters of the source string to the target string.

DECLARATION:

Procedure StrNCpy (
l_str:OUT string;-- output, target string
r_str:IN string;-- input, source string
n : IN NATURAL-- number of characters to be copied
);

DESCRIPTION:

StrNCpy copies the source string into the target string, starting from the left,
character by character basis. The copying continues until n characters have
copied, the target string is filled, a NUL character is reached in the source st
or the entire source string has been copied. Whichever of the afore mentione
conditions occurs first determines when the copying operation is terminated.
copying is terminated before the target string is full then a NUL character is
placed in the target string immediately following the last character that was co
from the source string. If n is 0 then a NUL character is placed in the left mo
position of the target string.

Both the target string and the source string may be of any length and have a
positive range. The two strings need not have the same range or length.
Std_DevelopersKit User’s Manual, V2.2 1-81

StrNCpy Std_IOpak

he
EXAMPLES:

Given the code segment:

variable str32 : string(33 TO 64);
variable str8 : string(1 TO 8);
str8 := "test" & NUL "ing";
str32 := "01234567890123456789012345678901";

Then the following line:

StrNCpy (str32, str8, 3);

causes str32 to contain “tes” in the first 3 elements, the NUL character in the
fourth element, and indeterminate characters in the remaining elements.

Had the following procedure call been used instead:

StrNCpy (str32, str8, 10);

then str32 would contain “test” in the first 4 elements, the NUL character in t
fifth element, and indeterminate characters in the remaining elements.

Given that the following line was used instead:

StrNCpy (str8, str32, 20);

then str8 would contain: "01234567".
Std_DevelopersKit User’s Manual, V2.21-82

Std_IOpak StrCmp

equal

str)

ing,

ng.

ates
n
bles

ated
ence

e

cause
e of

racter
StrCmp
Compare two strings and determine whether the left input string is less than,
to or greater than the right input string.

DECLARATION:

Function StrCmp (
l_str:IN string;-- left input
r_str:IN string-- right input
) return integer;

DESCRIPTION:

This function compares the left input string (l_str) and the right input string (r_
and returns one of the following integer values based on the result of the
comparison:

1. an integer value less than zero if the left string is less than the right str

2. an integer value of zero if the left string and the right string are equal,

3. an integer value greater than zero if left string is greater than right stri

The comparison is done in a lexicographically and is case sensitive. The
comparison is carried out character by character from left to right and termin
on the first occurrence of any of the following conditions: a mismatch betwee
corresponding characters in the two strings, the end of one of the string varia
is reached, or when a NUL character is reached. If the comparison is termin
because of a mismatch the integer value that is returned is actually the differ
between the ordinate values of the characters that do not match. When the
comparison is terminated because a NUL character is reached and the
corresponding character in the other string is not a NUL character then a
difference between the two characters is returned (the NUL character has th
ordinate value of 0). If both strings have NUL characters in corresponding
positions then a value of 0 is returned. When a comparison is terminated be
the end of a string variable has been reached, then if both string variables ar
the same length a 0 is returned. If one string is longer than the other then a
difference is returned. This difference uses the ordinate value of the next cha
of the longer string and a 0 for the shorter string.
Std_DevelopersKit User’s Manual, V2.2 1-83

StrCmp Std_IOpak

same
The two input strings may have any positive range. They need not have the
range or length.

EXAMPLES:

1. Given the code segment:

variable result : integer;
variable str8 : string (2 to 9);
variable str6 : string (1 to 6);
result := StrCmp ("VHDL", "vhdl");

result has the value -32.

result := StrCmp("design", "design");

result is equal to 0.

result := StrCmp("xyz", "abc");

result has the value 23.

str8 := "012345" & NUL & "6";
str6 := "012345";
result := StrCmp(str8, str6);

result is equal to 0.

str8 := "01" & NUL & "23456";
result := StrCmp(str8, str6);

result has the value -50.
Std_DevelopersKit User’s Manual, V2.21-84

Std_IOpak StrCmp

f the
2. The following example explains the use of this function in designing a
processor.

Variable next_instruction : OPCODE;
-- opcode is of type string of characters

get_instruction(next_instruction);
IF (StrCmp(next_instruction, "LDSB") = 0) THEN

exec_ldsb(); -- procedure which executes
-- LDSB instruction

ELSIF (StrCmp(next_instruction,"LDSBA")= 0) THEN
exec_ldsba();
.
.

END IF;

3. The following code segment causes some operation to be performed i
severity level of the variable message is NOTE:

variable message : severity_level := NOTE;
if (StrCmp(To_String(message,"%4s"),"NOTE")

/= 0) THEN
-- action to be performed
Std_DevelopersKit User’s Manual, V2.2 1-85

StrNCmp Std_IOpak

nd

.

d the
 on

t n
 right

d the

ost n
 of

hat is,

tch
n
ed, or

 the

cter in
StrNCmp
Compare at most the first n characters of the left and the right input strings a
determine whether the left most slice of length n of the left input string is less
than, equal to or greater than the corresponding slice in the right input string

DECLARATION:

Function StrNCmp (
l_str:IN string; -- left input
r_str:IN string;-- right input
n : IN NATURAL-- number of characters
) return integer;

DESCRIPTION:

This function compares at most n characters of the left input string (l_str) an
right input string (r_str) and returns one of the following integer values based
the result of the comparison:

1. an integer value less than zero if the sub-string formed by the left mos
characters of left string is less than the corresponding sub-string of the
string, or

2. an integer value of zero if the left most n characters of the left string an
right string are equal, or

3. an integer value greater than zero if the sub-string formed by the left m
characters of the left string is greater than the corresponding sub-string
the right string.

The comparison is done in a lexicographical fashion and is case sensitive. T
the comparison is carried out character by character from left to right and
terminates on the first occurrence of any of the following conditions: a misma
between corresponding characters in the two strings, n characters have bee
compared without a mismatch, the end of one of the string variables is reach
a NUL character is reached. If the comparison is terminated because of a
mismatch the integer value that is returned is actually the difference between
ordinate values of the characters that do not match. When the comparison is
terminated because a NUL character is reached and the corresponding chara
the other string is not a NUL character then a difference between the two
Std_DevelopersKit User’s Manual, V2.21-86

Std_IOpak StrNCmp

h

ble

his
nd a 0
ers

same
characters is returned (the NUL character has the ordinate value of 0). If bot
strings have NUL characters in corresponding positions then a value of 0 is
returned. When a comparison is terminated because the end of a string varia
has been reached, then if both string variables are of the same length a 0 is
returned. If one string is longer than the other then a difference is returned. T
difference uses the ordinate value of the next character of the longer string a
for the shorter string. When the comparison is terminated because n charact
have been compared without a mismatch then a value of 0 is returned.

The two input strings may have any positive range. They need not have the
range or length.

EXAMPLES:

1. Given the following variable declaration:

variable result : integer;
variable str8 : string (2 to 9);
variable str6 : string (1 to 6);
result := StrNCmp("VHDL Technology Group", "vhdl",4);

causes result to be assigned an integer value less than 0.

result := StrNCmp("VHDL design", "VHDL", 4);

causes result to be assigned a value of 0

result := StrNCmp("wxyz", "abc", 3);

causes result to be assigned a value that is greater than 0.

str8 := "012345" & NUL & "6";
str6 := "012345";
result := StrNCmp(str8, str6, 8);

result is equal to 0.

str8 := "01" & NUL & "23456";
result := StrNCmp(str8, str6, 3);

result has the value -50.
Std_DevelopersKit User’s Manual, V2.2 1-87

StrNCmp Std_IOpak

 the
to be
2. The following code segments causes one operation to be performed if
severity_level of the variable message is NOTE and another operation
performed if the severity_level of the variable message is WARNING:

variable message : severity_level := NOTE;
if (StrNCmp(To_String(message, "%-10s"),

"NOTE", 4) /= 0) THEN
-- perform some operation

elsif (StrNCmp(To_String(message), "WARNING",
 7) /= 0) THEN

-- perform some alternate operation
end if;
Std_DevelopersKit User’s Manual, V2.21-88

Std_IOpak StrNcCmp

han,

str)

ing,

ght

ive.
t and
tch
tring
made
er
e that

acters
cter is
racter
 has
g
cause
e of
StrNcCmp
To Compare two strings and determines whether the left input string is less t
equal to or greater than the right input string. The comparison is NOT case
sensitive.

DECLARATION:

Function StrNcCmp (
l_str:IN string;-- left input
r_str:IN string-- right input
) return integer;

DESCRIPTION:

This function compares the left input string (l_str) and the right input string (r_
and returns one of the following integer values based on the result of the
comparison:

1. an integer value less than zero if the left string is less than the right str

2. an integer value of zero if the left string and the right string are equal,

3. an integer value greater than zero if the left string is greater than the ri
string.

The comparison is done in a lexicographical fashion and is NOT case sensit
That is, the comparison is carried out character by character from left to righ
terminates on the first occurrence of any of the following conditions: a misma
between corresponding characters in the two strings, the end of one of the s
variables is reached, or a NUL character is reached. When a comparison is
between two characters any lower case characters are first converted to upp
case. If the comparison is terminated because of a mismatch the integer valu
is returned is actually the difference between the ordinate values of the char
that do not match. When the comparison is terminated because a NUL chara
reached and the corresponding character in the other string is not a NUL cha
then a difference between the two characters is returned (the NUL character
the ordinate value of 0). If both strings have NUL characters in correspondin
positions then a value of 0 is returned. When a comparison is terminated be
the end of a string variable has been reached, then if both string variables ar
the same length a 0 is returned. If one string is longer than the other then a
Std_DevelopersKit User’s Manual, V2.2 1-89

StrNcCmp Std_IOpak

racter

same
difference is returned. This difference uses the ordinate value of the next cha
of the longer string and a 0 for the shorter string.

The two input strings may have any positive range. They need not have the
range or length.

EXAMPLES:

1. Given the variable declarations:

variable result : integer;
variable str8 : string(2 to 9);
variable str6 : string (1 to 6);
result := StrNcCmp ("VHDL", "vhdl");

assigns an integer value of 0 to result since the comparison is not case
sensitive. The follow code segment:

result := StrNcCmp("design", "design");

causes result to be set equal to 0. The line below:

result := StrNcCmp("XYZ", "abc");

causes result to be set to a value of 23.

str8 := "012345" & NUL & "6";
str6 := "012345";
result := StrNcCmp(str8, str6);

result is equal to 0.

str8 := "01" & NUL & "23456";
result := StrNcCmp(str8, str6);

result has the value -50.
Std_DevelopersKit User’s Manual, V2.21-90

Std_IOpak StrNcCmp

vel
2. The following example explains the use of this function in designing a
processor.

Variable next_instruction : OPCODE;
-- opcode is of type string of characters

get_instruction(next_instruction);
IF (StrNcCmp(next_instruction, "LDSB") = 0) THEN

exec_ldsb(); -- executes LDSB instruction
ELSIF(StrNcCmp(next_instruction,"LDSBA")=0) THEN

exec_ldsba();

END IF;

3. The following code segment performs some operation if the severity le
of the variable message is NOTE. (case is ignored.)

variable message : severity_level := note;
if (StrNcCmp(To_String(message, "%4s"), "NOTE")

/= 0) THEN
-- perform some operation
Std_DevelopersKit User’s Manual, V2.2 1-91

StrLen Std_IOpak

L
acters
ing
ize of

value
StrLen
To return the length of a string.

DECLARATION:

Function StrLen (
l_str:IN string-- input string
) return NATURAL;

DESCRIPTION:

This function returns the length of the input string. If the string contains a NU
character then the length of the string is considered to be the number of char
starting from the left up to but not including the NUL character. When the str
does not contain a NUL then the length of the sting is considered to be the s
the string variable (i.e. l_str’length).

EXAMPLE:

Given the variable declaration:

variable result_len : INTEGER;

then the line:

result_len := StrLen("01234567");

assigns a value of 8 to result_len. However the following line also assigns a
of 8 to result_len.

result_len := StrLen("01234567" & NUL & "89");
Std_DevelopersKit User’s Manual, V2.21-92

Std_IOpak Copyfile (ASCII_TEXT)

file
 in

ng.

 input
Copyfile (ASCII_TEXT)
To copy one ASCII_TEXT file to another ASCII_TEXT file.

DECLARATION:

PROCEDURE Copyfile (
in_fptr:IN ASCII_TEXT;-- source file
out_fptr:OUT ASCII_TEXT-- destination file
);

DESCRIPTION:

This procedure copies the source file to the destination file. Both the source
and the destination file must be of type ASCII_TEXT. ASCII_TEXT is defined
the package Std_IOpak to be a file of CHARACTERS. Any file whose base
element is a character can be copied with this procedure.

The input file must exist in the working directory. This file is opened for readi
Note that the contents of the input file MAY be appended onto the end of the
output file if the output file already exists. (See “Known Discrepancies”.)

The copying stops when the end of the input file has been reached. Both the
file and the output file are closed when this procedure is exited.

EXAMPLES:

Given the variable declarations:

file romdata : ASCII_TEXT IS IN "NEW_ROM.dat";
-- source file

file dest_file:ASCII_TEXT IS OUT "SAVE_ROM.dat";
-- destination file

The following line copies the file NEW_ROM.dat in the working directory to
SAVE_ROM.dat within the VHDL environment. In this way the user can save
important data.

Copyfile(romdata, dest_file);
Std_DevelopersKit User’s Manual, V2.2 1-93

Copyfile (TEXT) Std_IOpak

file
lared

ng.

 input

to
Copyfile (TEXT)
To copy one TEXT file to another TEXT file.

DECLARATION:

PROCEDURE Copyfile (
in_fptr:IN TEXT,-- input TEXT, source file
out_fptr:OUT TEXT-- output TEXT, destination file
);

DESCRIPTION:

This procedure copies the source file to the destination file. Both the source
and the destination file must be of type TEXT. The type TEXT has been dec
as a file of STRING in the predeclared package TEXTIO.

The input file must exist in the working directory. This file is opened for readi
Note that the contents of the input file MAY be appended onto the end of the
output file if the output file already exists. (See “Known Discrepancies”.)

The copying stops when the end of the input file has been reached. Both the
file and the output file are closed when this procedure is exited.

EXAMPLES:

Given the variable declarations:

file romdata : TEXT IS IN "NEW_ROM_file.dat";
-- source file

file destin_file : TEXT IS OUT "SAVE_ROM.dat";
-- destination file

The following line copies the file NEW_ROM_file.dat in the working directory
SAVE_ROM.dat within the VHDL environment. In this way the user can save
important data.

Copyfile(romdata, destin_file);
Std_DevelopersKit User’s Manual, V2.21-94

Std_IOpak fprint (to ASCII_TEXT file)

 a

put

e
up to
.
e

ign
tion
fprint (to ASCII_TEXT file)
To write up to 10 arguments to a file according to the specifications given by
format string.

OVERLOADED DECLARATION:

PROCEDURE fprint (
file_ptr:OUT ASCII_TEXT;-- destination file
format:IN string;-- format control specification
arg1:IN string;-- argument to be printed
arg2:IN string;-- argument to be printed
arg3:IN string;-- argument to be printed
arg4:IN string;-- argument to be printed
arg5:IN string;-- argument to be printed
arg6:IN string;-- argument to be printed
arg7:IN string;-- argument to be printed
arg8:IN string;-- argument to be printed
arg9:IN string;-- argument to be printed
arg10:IN string-- argument to be printed
);

DESCRIPTION:

This procedure formats and writes up to 10 input string arguments to the out
file attached to file_ptr. The output file must be declared as a file of type
ASCII_TEXT with the mode OUT. ASCII_TEXT is defined in the package
Std_IOpak to be a file of CHARACTERS. Any file whose base element is a
character can be written to with this procedure. The format string provides th
information necessary to control how each argument is written. It consists of
two types of objects; conversion specifications and optional plain characters
There must be a respective argument for each conversion specification in th
format string.

This procedure provides great flexibility to the user in writing the desired
information to a particular file during the analysis/simulation phase of the des
process. (i.e. test vectors, simulation results along with some debug informa
could be printed.)
Std_DevelopersKit User’s Manual, V2.2 1-95

fprint (to ASCII_TEXT file) Std_IOpak

ers is

w line
 feed
racter

y

ng
 in
ent

idth
 as
ment

f left
acter

m
 file.

e.
FORMAT SPECIFICATIONS:

The format string may contain optional plain characters. These plain charact
written verbatim to the output file. Included with the plain characters are the
special character combinations%% and\n. The %% character combination
represents the % character. The \n character combination represents the ne
character. The new line character is either a carriage return character, a line
character, or a combination of a carriage return character and a line feed cha
depending upon the constant END_OF_LINE_MARKER. This constant is
globally set by changing its defined value in the Std_IOpak package prior to
compiling the package.

The conversion specifications are used to interpret the input arguments. The
consist of a % character followed by some optional fields followed by the
character s. The syntax of the conversion specification is:

<conversion_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left justification character ‘-’ may optionally be used to indicate that the stri
argument corresponding to this conversion specification must be left justified
its field when it is output to the file. If the left justification character is not pres
then the string argument is right justified in its field.

The field specification has the following format:
<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. (The field width is expanded
necessary to meet the precision requirements.) If the length of the string argu
is less than the field width, then the result is padded on the left (or the right, i
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.

A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input string argument to be written to the output
If not specified, the default precision is the minimum number of characters
necessary to write the entire string.

If no field specification is given, then the entire input string is written to the fil
No extra (padding) characters are written.
Std_DevelopersKit User’s Manual, V2.21-96

Std_IOpak fprint (to ASCII_TEXT file)

 the

 file

 ten
he

ng is

n is

and
DEFAULT FORMAT:

There is no default format for this procedure.

RESULT:

The input arguments is written to the file attached to the file_ptr according to
format specifications. If a NUL character exists in the string then only those
characters to the left of the NUL character are written, otherwise, all of the
characters in the string variable are written. If a string has zero length, as
determined by StrLen, then the field width is simply filled with blank spaces
unless the specified field width is zero, in which case, no text is output to the
for that string.

If the number of conversion specifications is more than 10 then only the first
conversion specifications is applied to the respective argument strings and t
result is written to the output file.

BUILT IN ERROR TRAPS:

1. If the format string is not specified an error assertion is made and nothi
written to the destination file.

2. If a conversion specification is not correctly specified an error assertio
made.

3. If there is mismatch between the number of conversion specifications
the number of argument strings an error assertion is made.
Std_DevelopersKit User’s Manual, V2.2 1-97

fprint (to ASCII_TEXT file) Std_IOpak

 this
itional
EXAMPLES:

The following code segment outputs a line of text to the file: sched.dat. After
line is output, some code is executed and then a for loop outputs several add
lines to the file.

type data_array is array(1 to 100) of integer;
variable control_state : data_array;
variable alu_num : data_array;
variable i : INTEGER;
file out_file: ASCII_TEXT IS OUT "sched.dat";
fprint(out_file,

"This is the schedule for the data path\n");
 -- some code here
for i in 1 to 100 loop

fprint(out_file,
"%3s ctrl step= %6s alu # = %6s \n",
To_String(i),
To_String(control_state(i)),
To_String(alu_num(i)));

end loop;

The resulting file has a format identical to that shown below:

This is the schedule for the data path
1 ctrl step= 26 alu # = 2
2 ctrl step= 156 alu # = 6
.
.
.

100 ctrl step= 1036 alu # = 1
Std_DevelopersKit User’s Manual, V2.21-98

Std_IOpak fprint (to TEXT file)

 a

put
T

ut

up to
.
e

ign
tion
fprint (to TEXT file)
To write up to 10 arguments to a file according to the specifications given by
format string.

OVERLOADED DECLARATION:

PROCEDURE fprint (
file_ptr:OUT TEXT;-- output TEXT, destination file
line_ptr:INOUT LINE;-- ptr to a string
format:IN string;-- format control. specification
arg1:IN string;-- argument to be printed
arg2:IN string;-- argument to be printed
arg3:IN string;-- argument to be printed
arg4:IN string;-- argument to be printed
arg5:IN string;-- argument to be printed
arg6:IN string;-- argument to be printed
arg7:IN string;-- argument to be printed
arg8:IN string;-- argument to be printed
arg9:IN string;-- argument to be printed
arg10:IN string-- argument to be printed
);

DESCRIPTION:

This procedure formats and writes up to 10 input string arguments to the out
file attached to file_ptr. The output file must be declared as a file of type TEX
with the mode OUT. TEXT is defined in the package TEXTIO to be a file of
STRING. The formal parameter line_ptr is of type line which is defined in the
package TEXTIO to be an access value for a STRING. The actual that is
associated with the formal parameter line_ptr must be declared by the user b
should never be assigned a value by the user. The format string provides the
information necessary to control how each argument is written. It consists of
two types of objects; conversion specifications and optional plain characters
There must be a respective argument for each conversion specification in th
format string.

This procedure provides great flexibility to the user in writing the desired
information to a particular file during the analysis/simulation phase of the des
process. (i.e. test vectors, simulation results along with some debug informa
could be printed.)
Std_DevelopersKit User’s Manual, V2.2 1-99

fprint (to TEXT file) Std_IOpak

ers is

w line

 is

y

ing
 in
nt,

idth
 as
ment

f left
acter

m
 file.

e.
FORMAT SPECIFICATIONS:

The format string may contain optional plain characters. These plain charact
written verbatim to the output file. Included with the plain characters are the
special character combinations%% and\n. The %% character combination
represents the % character. The \n character combination represents the ne
character. This causes the WRITELINE procedure defined in the package
TEXTIO to be executed. As a result, a line followed by an end of line marker
written to the output file.

The conversion specifications are used to interpret the input arguments. The
consist of a % character followed by some optional fields followed by the
character s. The syntax of the conversion specification is:

<conversion_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used to indicate that the str
argument corresponding to this conversion specification must be left justified
its field when it is output to the file. If the left justification character is not prese
then the string argument is right justified.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. (The field width is expanded
necessary to meet the precision requirements.) If the length of the string argu
is less than the field width, then the result is padded on the left (or the right, i
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.

A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input string argument to be written to the output
If not specified the default precision is the minimum number of characters
necessary to write the entire string.

If no field specification is given, then the entire input string is written to the fil
No extra (padding) characters are written.
Std_DevelopersKit User’s Manual, V2.21-100

Std_IOpak fprint (to TEXT file)

ature
ose
n out

tring

 the

 file

t ten
he

ng is

n is

and
It is important to remember that, when using this procedure, because of the n
of the procedures defined in the package TEXTIO, that only those strings wh
conversion specifications precede an end of line character are actually writte
to a file. Thus, if the format string is not ended with a\n then, any strings whose
conversion specifications follow the last\n in the format string, is not written to
the file until a subsequent call is made to this fprint procedure with a format s
that contains a\n.

DEFAULT FORMAT:

There is no default format for this procedure.

RESULT:

The input arguments is written to the file attached to the file_ptr according to
format specifications. If a NUL character exists in the string then only those
characters to the left of the NUL character are written, otherwise, all of the
characters in the string variable are written. If a string has zero length, as
determined by StrLen, then the field width is simply filled with blank spaces
unless the specified field width is zero, in which case, no text is output to the
for that string.

If the number of conversion specifications are more than 10 then only the firs
conversion specifications is applied to the respective argument strings and t
result is written to the output file.

BUILT IN ERROR TRAPS:

1. If the format string is not specified an error assertion is made and nothi
written to the destination file.

2. If a conversion specification is not correctly specified an error assertio
made.

3. If there is mismatch between the number of conversion specifications
the number of argument strings an error assertion is made.
Std_DevelopersKit User’s Manual, V2.2 1-101

fprint (to TEXT file) Std_IOpak

.dat.
veral
EXAMPLES:

The following code segment outputs a line of text to the file: datapath_sched
After this line is output, some code is executed and then a for loop outputs se
additional lines to the file.

type data_array is array(1 to 100) of integer;
variable control_state : data_array;
variable alu_num : data_array;
variable i : INTEGER;
variable ptr : LINE;
file out_file: TEXT IS OUT "datapath_sched.dat";
fprint(out_file,ptr,

"This is the schedule for the data path\n");
 -- some code here
for i in 1 to 100 loop

fprint(out_file, ptr,
"%3s ctrl step= %6s alu # = %6s \n",
To_String(i),
To_String(control_state(i)),
To_String(alu_num(i)));

end loop;

The resulting file has a format identical to that shown below:

This is the schedule for the data path
1 ctrl step= 26 alu # = 2
2 ctrl step= 156 alu #= 6
.
.
.

100 ctrl step= 1036 alu # = 1
Std_DevelopersKit User’s Manual, V2.21-102

Std_IOpak fprint (to string_buf)

ng
ntrol
rsion
ument

ign
tion
o a

ers is
e

w line
fprint (to string_buf)
To write up to 10 arguments to a string buffer according to the specifications
given by a format string.

OVERLOADED DECLARATIONS:

PROCEDURE fprint (
string_buf:OUT string;-- destination string buf.
format:IN string;-- format control specifications
arg1:IN string;-- argument to be printed
arg2:IN string;-- argument to be printed
arg3:IN string;-- argument to be printed
arg4:IN string-- argument to be printed
arg5:IN string;-- argument to be printed
arg6:IN string;-- argument to be printed
arg7:IN string;-- argument to be printed
arg8:IN string;-- argument to be printed
arg9:IN string;-- argument to be printed
arg10:IN string-- argument to be printed
);

DESCRIPTION:

This procedure formats and writes up to 10 input string arguments to the stri
buffer string_buf. The format string provides the information necessary to co
how each argument is written. It consists of up to two types of objects; conve
specifications and optional plain characters. There must be a respective arg
for each conversion specification in the format string.

This procedure provides great flexibility to the user in writing the desired
information to a string buffer during the analysis/simulation phase of the des
process. (i.e. test vectors, simulation results along with some debug informa
could be printed.) This string buffer can later be modified or printed directly t
file.

FORMAT SPECIFICATIONS:

The format string may contain optional plain characters. These plain charact
written verbatim to the string buffer. Included with the plain characters are th
special character combinations%% and\n. The %% character combination
represents the % character. The \n character combination represents the ne
Std_DevelopersKit User’s Manual, V2.2 1-103

fprint (to string_buf) Std_IOpak

 feed
racter

y

ing
 in

s

idth
 as
ment

f left
acter

m
ffer.

ring
character. The new line character is either a carriage return character, a line
character, or a combination of a carriage return character and a line feed cha
depending upon the constant END_OF_LINE_MARKER. This constant is
globally set by changing its defined value in the Std_IOpak package prior to
compiling the package.

The conversion specifications are used to interpret the input arguments. The
consist of a % character followed by some optional fields followed by the
character s. The syntax of the conversion specification is:

<conversion_specification> ::=
"% [<left_justification>] [<field_specification>] s"

<left_justification> ::= '-'

A left_justification character ‘-’ may optionally be used to indicate that the str
argument corresponding to this conversion specification must be left justified
its field when it is output to the string buffer. If the left justification character i
not present then the string argument is right justified in its field.

The field specification has the following format:

<field_specification> ::= nnn.mmm

A digit string nnn specifies the maximum field width. The result string has a w
that is at least this wide, and wider if necessary. (The field width is expanded
necessary to meet the precision requirements.) If the length of the string argu
is less than the field width, then the result is padded on the left (or the right, i
justification has been specified) to make up the field width. The padding char
is a blank space. A period separates the field width from the precision.

A digit string mmm specifies the precision, which is the count of the maximu
number of characters of the input string argument to be written to the string bu
If not specified, the default precision is the minimum number of characters
necessary to write the entire string.

If no field specification, is given, then the entire input string is written to the st
buffer. No extra (padding) characters are written.
Std_DevelopersKit User’s Manual, V2.21-104

Std_IOpak fprint (to string_buf)

ter
r are
tring
with
s

t ten
he
of
an fit
hen,

uffer

ng is

n is

and
DEFAULT FORMAT:

There is no default format for this procedure.

RESULT:

The input arguments is written to the string buffer specified by the formal
parameter string_buf according to the format specifications. If a NUL charac
exists in the string then only those characters to the left of the NUL characte
written, otherwise, all of the characters in the string variable are written. If a s
has zero length, as determined by StrLen, then the field width is simply filled
blank spaces unless the specified field width is zero, in which case, no text i
output to the string buffer for that string.

If the number of conversion specifications are more than 10 then only the firs
conversion specifications is applied to the respective argument strings and t
result is written to the string buffer. If the string buffer is too small to hold all
the characters generated by this procedure then only those characters that c
are written into the string buffer. If the string buffer is larger than necessary t
after the characters are written to the string buffer (starting at the left most
position), the position just after the last character to be written to the string b
is filled with a NUL character.

BUILT IN ERROR TRAPS:

1. If the format string is not specified an error assertion is made and nothi
written to the string buffer.

2. If a conversion specification is not correctly specified an error assertio
made.

3. If there is mismatch between the number of conversion specifications
the number of argument strings an error assertion is made.
Std_DevelopersKit User’s Manual, V2.2 1-105

fprint (to string_buf) Std_IOpak

 this
itional
EXAMPLES:

The following code segment outputs a line of text to the file: sched.dat. After
line is output, some code is executed and then a for loop outputs several add
lines to the file.

type data_array is array(1 to 100) of integer;
variable control_state : data_array;
variable alu_num : data_array;
variable i : INTEGER;
variable str1024 : string (1 to 1024);
file out_file: ASCII_TEXT IS OUT "sched.dat";
fprint(str1024,

"This is the schedule for the data path");
fputs (str1024, out_file);
 -- some code here
for i in 1 to 100 loop

fprint(str1024,,
"%3s ctrl step= %6s alu # = %6s ",
To_String(i),
To_String(control_state(i)),
To_String(alu_num(i)));

fputs(str1024, out_file);
end loop;

The resulting file has a format identical to that shown below:

This is the schedule for the data path
1 ctrl step= 26 alu # = 2
2 ctrl step= 156 alu # = 6
.
.
.

100 ctrl step= 1036 alu # = 1
Std_DevelopersKit User’s Manual, V2.21-106

Std_IOpak fscan (from ASCII_TEXT file)

at

_ptr
 must

ose

d.

e

fscan (from ASCII_TEXT file)
To read from a ASCII_TEXT file according to specifications given by the form
string and save the results into the corresponding arguments.

OVERLOADED DECLARATION:

PROCEDURE fscan (
file_ptr:IN ASCII_TEXT;-- input file
format:IN string;-- format control specifications
arg1:OUT string;-- argument to hold result
arg2:OUT string;-- argument to hold result
arg3:OUT string-- argument to hold result
arg4:OUT string;-- argument to hold result

arg18:OUT string;-- argument to hold result
arg19:OUT string;-- argument to hold result
arg20:OUT string-- argument to hold result
);

DESCRIPTION:

This procedure reads up to 20 input values from the input file attached to file
and saves them to the corresponding output string arguments. The input file
be declared as a file of type ASCII_TEXT with the mode IN. ASCII_TEXT is
defined in the package Std_IOpak to be a file of CHARACTERS. Any file wh
base element is a character can be read with this procedure.

The format string provides a method of controlling how each argument is rea
The format string consists of four types of objects:

1. White space characters (blank space, tab, or new line).

2. Non-white space plain characters (not including %).

3. The special character pairs “%%” and “\n”.

4. Conversion Specifications.

There must be a respective argument for each conversion specification in th
format string.
Std_DevelopersKit User’s Manual, V2.2 1-107

fscan (from ASCII_TEXT file) Std_IOpak

h
 be a

e
 by

lts are

al
The

l

FORMAT SPECIFICATIONS:

The white space characters in the format string are ignored. There must be a
matching character in the input file for every non-white space character
(excluding those preceded by a %) encountered in the format string. For eac
occurrence of the character combination %% in the format string there must
% character in the corresponding position of the input file. Similarly, for each
occurrence of \n in the format string there must be an end of line marker in th
corresponding position of the input file. The end of line marker is determined
the global constant END_OF_LINE_MARKER (see “Introduction”). The
conversion specifications are used to interpret the input arguments. The resu
placed in the corresponding output string arguments.

The conversion specifications consist of a % character followed by an option
field followed by one of the specification characters (c, d, f, s, o, x, X, and t).
syntax of the conversion specification is:

<conversion_specification> ::=
"% [<field_specification>] <string_type>"

String_type is defined as follows:
<string_type> ::= c | d | f | s |o | x | X |t

c input is considered to be a character string.

d input is considered to be an integer.

f input is considered to be a real number.

s input is considered to be a character string without any white
space characters.

o input is considered to be a bit_vector specified in octal
representation.

x or X input is considered to be a bit_vector specified in hexadecima
representation.

t input is considered to be of type time.

The field specification has the following format:

<field_specification> ::= nnn
Std_DevelopersKit User’s Manual, V2.21-108

Std_IOpak fscan (from ASCII_TEXT file)

m

o
ng of
pose

s in

s a
r the

he
 field
pace

,
is
y the

 end of
e first
ion
t is,
le nor

y the
ters

ead.

is

racter
et
e

where the digit string nnn specifies the maximum field width (i.e. the maximu
number of characters to be read).

All of the string types are handled identically except for string types c and t. N
error checking is ever done to see if the string that is read in is actually a stri
the specified type. The existence of various string types is largely for the pur
of clarity and documentation.

For all string types, other than c and t, fscan first skips over any white space
the file that precede the information to be read. Then, if the field width is
specified, as many characters as specified by the field width is read in unles
white space or the end of the file is encountered first. If either a white space o
end of the file is encountered before the number of characters specified by t
field width are read then no more characters is read for that parameter. If no
width specification is given, then characters are simply read in until a white s
or the end of the file is encountered.

A conversion specification oft works in a similar manner except that it reads in
two fields that are separated by a white space (a number representing a time
possibly including a sign, and the unit in which the time is represented). In th
case, characters are read in until either the number of characters specified b
field width have been read, two white spaces have been encountered, or the
the file has been reached. Remember that any white spaces that precede th
field are skipped. Note that a time unit may follow the t conversion specificat
in the format string (i.e. %12t ps). If it does, then the time unit is ignored. Tha
it is not treated as characters that have to be matched to those in the input fi
does it require that the time read from the file be specified in that time unit.

A conversion specification ofc is closely related to conversion specifications
other than t. If the field width is specified, as many characters as specified b
field width (including white spaces) is read in until either the number of charac
specified by the field width are read or the end of the file is encountered,
whichever comes first. If the field width is not specified then one character is r
Note that preceding white space characters are not skipped.

As noted above this procedure scans past line boundaries. A line boundary
considered, by this procedure, to be a carriage return character, a line feed
character, or a combination of a carriage return character and a line feed cha
as determined by the constant END_OF_LINE_MARKER which is globally s
by changing its defined value in the Std_IOpak package prior to compiling th
package.
Std_DevelopersKit User’s Manual, V2.2 1-109

fscan (from ASCII_TEXT file) Std_IOpak

e read
tual
gth of
ngth
e

 only
good
ion.

t 20
lts is
d
not

tput
s.

n is
rned

f
cified
DEFAULT FORMAT:

There is no default format for this procedure.

RESULT:

When the arguments are read from the file, the number of characters that ar
in may not match the size of the string associated with the corresponding ac
parameter. If the number of characters that are read in is greater than the len
the string then only the left most characters are placed into the string. If the le
of the string is greater than the number of characters that are read in, then th
string is filled from left to right and a NUL character is placed after the last
character.

If the format string is exhausted while there are more output arguments, then
those arguments which have corresponding conversion specifications holds
results. The rest of the arguments has a NUL character in the left most posit

If the number of conversion specifications are more than 20 then only the firs
input values is read, if the end of the file has not been reached, and the resu
written to the corresponding output arguments. If the end of the file is reache
before all of the string arguments have been filled then the strings that have
been filled has a NUL character in their left most positions.

BUILT IN ERROR TRAPS:

1. If a format string is not specified an error assertion is made and the ou
arguments are returned with a NUL character in their left most position

2. If a conversion specification is not correctly specified an error assertio
made and all of the output arguments that have not been read are retu
with a NUL character in their left most positions.

3. If the number of conversion specifications are more than the number o
output string arguments, then an error assertion is made. The data spe
by the extra conversion specifications is not read from the file.

EXAMPLES:

1. Given the variable declarations
Std_DevelopersKit User’s Manual, V2.21-110

Std_IOpak fscan (from ASCII_TEXT file)

ed.

rings.
variable stri : string(1 To 10);
variable strf : string(1 To 10);
variable name : string(1 to 20);
file fptr : ASCII_TEXT IS IN "datafile.dat"

If we have this line in the input file “datafile.dat”:
bbb25b789.5 bJohn

then given the following statement:
fscan(fptr, "%d %10f %20s", stri, strf, name);

a value of "25" & NUL & "*******" is assigned to the string stri, a value
of "789.5" & NUL & "****" is assigned to the string strf, and a value of
"John" & NUL & "***************" is assigned to the string name. Note
that in this example a * represents a character whose value is not defin
(i.e. the string element may not contain a specific character.)

2. Given an input file design.dat which has the following data in it
10110110 1 1 10 01 #1111
01100110 0 1 11 01 #1110

. . .

and given the variable declarations:
file in_file: ASCII_TEXT IS IN "design.dat";
variable databus : String(1 TO 8);
variable dtack : String(1 TO 1);
variable rw : string(1 TO 1);
variable ctrl1 : string(1 TO 2);
variable ctrl2 : string(1 TO 2);
variable addr : string(1 TO 4);

then the statement
fscan(in_file, "%s %s %s %s %s#%s", databus,

 dtack, rw, ctrl1, ctrl2,addr);

reads a line and assign the appropriate values to the corresponding st
Std_DevelopersKit User’s Manual, V2.2 1-111

fscan (from TEXT file) Std_IOpak

_ptr
 must

es of

e

fscan (from TEXT file)
To read text from a TEXT file according to specifications given by the format
string and save the results into the corresponding arguments.

OVERLOADED DECLARATION:

PROCEDURE fscan (
file_ptr:IN TEXT;-- IN TEXT, input file
line_ptr:INOUT LINE;-- ptr to a string
format:IN string;-- format control specifications.
arg1:OUT string;-- argument to hold result
arg2:OUT string;-- argument to hold result
arg3:OUT string-- argument to hold result
arg4:OUT string;-- argument to hold result

arg18:OUT string;-- argument to hold result
arg19:OUT string;-- argument to hold result
arg20:OUT string-- argument to hold result
);

DESCRIPTION:

This procedure reads up to 20 input values from the input file attached to file
and saves them to the corresponding output string arguments. The input file
be declared as a file of type TEXT. The format string provides a method of
controlling how each argument is read. The format string consists of four typ
objects:

1. White space characters (blank space, tab, or new line).

2. Non-white space plain characters (not including %).

3. The special character pairs “%%” and “\n”.

4. Conversion Specifications.

There must be a respective argument for each conversion specification in th
format string.
Std_DevelopersKit User’s Manual, V2.21-112

Std_IOpak fscan (from TEXT file)

h
 be a

e
ed to
tput

al
The

l

FORMAT SPECIFICATIONS:

The white space characters in the format string are ignored. There must be a
matching character in the input file for every non-white space character
(excluding those preceded by a %) encountered in the format string. For eac
occurrence of the character combination %% in the format string there must
% character in the corresponding position of the input file. Similarly, for each
occurrence of \n in the format string there must be an end of line marker in th
corresponding position of the input file. The conversion specifications are us
interpret the input arguments. The results are placed in the corresponding ou
string arguments.

The conversion specifications consist of a % character followed by an option
field followed by one of the specification characters (c, d, f, s, o, x, X, and t).
syntax of the conversion specification is:

<conversion_specification> ::=
"% [<field_specification>] <string_type>"

String_type is defined as follows:
<string_type> ::= c | d | f | s | o | x | X |t

c input is considered to be a character string.

d input value is considered to be an integer.

f input value is considered to be a real number.

s input is considered to be a character string without any white
space characters.

o input is considered to be a bit_vector specified in octal
representation.

x or X input is considered to be a bit_vector specified in hexadecima
representation.

t input is considered to be of type time.

The field specification has the following format:

<field_specification> ::= nnn
Std_DevelopersKit User’s Manual, V2.2 1-113

fscan (from TEXT file) Std_IOpak

m

o
ng of
pose

s in

s a
r the

he
 field
pace

,
is
y the

 end of
e first
ion
t is,
le nor

y the
ters

ead.

ure
ition

TIO.
where the digit string nnn specifies the maximum field width (i.e. the maximu
number of characters to be read).

All of the string types are handled identically except for string types c and t. N
error checking is ever done to see if the string that is read in is actually a stri
the specified type. The existence of various string types is largely for the pur
of clarity and documentation.

For all string types, other than c and t, fscan first skips over any white space
the file that precede the information to be read. Then, if the field width is
specified, as many characters as specified by the field width is read in unles
white space or the end of the file is encountered first. If either a white space o
end of the file is encountered before the number of characters specified by t
field width are read then no more characters is read for that parameter. If no
width specification is given, then characters are simply read in until a white s
or the end of the file is encountered.

A conversion specification oft works in a similar manner except that it reads in
two fields that are separated by a white space (a number representing a time
possibly including a sign, and the unit in which the time is represented). In th
case, characters are read in until either the number of characters specified b
field width have been read, two white spaces have been encountered, or the
the file has been reached. Remember that any white spaces that precede th
field are skipped. Note that a time unit may follow the t conversion specificat
in the format string (i.e. %12t ps). If it does, then the time unit is ignored. Tha
it is not treated as characters that have to be matched to those in the input fi
does it require that the time read from the file be specified in that time unit.

A conversion specification ofc is closely related to conversion specifications
other than t. If the field width is specified, as many characters as specified b
field width (including white spaces) is read in until either the number of charac
specified by the field width are read or the end of the file is encountered,
whichever comes first. If the field width is not specified then one character is r
Note that preceding white space characters are not skipped.

As noted above this procedure scans past line boundaries. Since this proced
uses the procedures defined in the package TEXTIO, it uses that same defin
for an end of line marker that is used by the procedures in the package TEX
Std_DevelopersKit User’s Manual, V2.21-114

Std_IOpak fscan (from TEXT file)

e read
tual
gth of
ngth
e

 only
good
ion.

t 20
lts is
d
not

tput
s.

n is
rned

f
cified
DEFAULT FORMAT:

There is no default format for this procedure.

RESULT:

When the arguments are read from the file, the number of characters that ar
in may not match the size of the string associated with the corresponding ac
parameter. If the number of characters that are read in is greater than the len
the string then only the left most characters are placed into the string. If the le
of the string is greater than the number of characters that are read in, then th
string is filled from left to right and a NUL character is placed after the last
character.

If the format string is exhausted while there are more output arguments, then
those arguments which have corresponding conversion specifications holds
results. The rest of the arguments has a NUL character in the left most posit

If the number of conversion specifications are more than 20 then only the firs
input values is read, if the end of the file has not been reached, and the resu
written to the corresponding output arguments. If the end of the file is reache
before all of the string arguments have been filled then the strings that have
been filled has a NUL character in their left most positions.

BUILT IN ERROR TRAPS:

1. If a format string is not specified an error assertion is made and the ou
arguments are returned with a NUL character in their left most position

2. If a conversion specification is not correctly specified an error assertio
made and all of the output arguments that have not been read are retu
with a NUL character in their left most positions.

3. If the number of conversion specifications are more than the number o
output string arguments, then an error assertion is made. The data spe
by the extra conversion specifications is not read from the file.

EXAMPLES:

1. Given the variable declarations
Std_DevelopersKit User’s Manual, V2.2 1-115

fscan (from TEXT file) Std_IOpak

ed.

rings.
variable stri : string(1 To 10);
variable strf : string(1 To 10);
variable name : string(1 to 20);
variable ptr : LINE;
file fptr : TEXT is IN "datafile.dat";

If we have this line in the input file “datafile.dat”:
bbb25b789.5 bJohn

then given the following statement:
fscan(fptr,ptr,"%d %10f %20s",stri,strf,name);

a value of "25" & NUL & "*******" is assigned to the string stri, a value
of "789.5" & NUL & "****" is assigned to the string strf, and a value of
"John" & NUL & "***************" is assigned to the string name. Note
that in this example a * represents a character whose value is not defin
(i.e. It is not guaranteed that that string element contains a specific
character.)

2. Given an input file design.dat which has the following data in it
10110110 1 1 10 01 #1111
01100110 0 1 11 01 #1110

. . . .

and given the variable declarations:
file in_file: ASCII_TEXT IS IN "design.dat";
variable databus : String(1 TO 8);
variable dtack : String(1 TO 1);
variable rw : string(1 TO 1);
variable ctrl1 : string(1 TO 2);
variable ctrl2 : string(1 TO 2);
variable addr : string(1 TO 4);
ptr : LINE;

then the statement
fscan(in_file, ptr,"%s %s %s %s %s#%s", databus,

dtack, rw, ctrl1, ctrl2,addr);

reads a line and assign the appropriate values to the corresponding st
Std_DevelopersKit User’s Manual, V2.21-116

Std_IOpak fscan (from string_buf)

ring

y

ead.

e

fscan (from string_buf)
To read text from a string buffer according to specifications given by format st
and save result into corresponding arguments.

PROCEDURE

PROCEDURE fscan (
string_buf:IN string;-- input string buffer
format:IN string;-- format control specifications.
arg1:OUT string;-- argument to hold result
arg2:OUT string;-- argument to hold result
arg3:OUT string-- argument to hold result
arg4:OUT string;-- argument to hold result

arg18:OUT string;-- argument to hold result
arg19:OUT string;-- argument to hold result
arg20:OUT string-- argument to hold result
);

DESCRIPTION:

This procedure reads up to 20 input values from the string buffer specified b
string_buf and saves them to the corresponding output string arguments.

The format string provides the method of controlling how each argument is r
The format string consists of four types of objects:

1. White space characters (blank space, tab, or new line).

2. Non-white space plain characters (not including %).

3. The special character pairs “%%” and “\n”.

4. Conversion Specifications.

There must be a respective argument for each conversion specification in th
format string.

FORMAT SPECIFICATIONS:

The white space characters in the format string are ignored. There must be a
matching character in the input file for every non-white space character
Std_DevelopersKit User’s Manual, V2.2 1-117

fscan (from string_buf) Std_IOpak

h
 be a
ach
e

ned

lts are

al
The

l

m

(excluding those preceded by a %) encountered in the format string. For eac
occurrence of the character combination %% in the format string there must
% character in the corresponding position of the string buffer. Similarly, for e
occurrence of \n in the format string there must be an end of line marker in th
corresponding position of the string buffer. The end of line marker is determi
by the global constant END_OF_LINE_MARKER (see “Introduction”). The
conversion specifications are used to interpret the input arguments. The resu
placed in the corresponding output string arguments.

The conversion specifications consist of a % character followed by an option
field followed by one of the specification characters (c, d, f, s, o, x, X, and t).
syntax of the conversion specification is:

<conversion_specification> ::=
"% [<field_specification>] <string_type>"

String_type is defined as follows:

<string_type> ::= c | d | f | s | o | x | X | t

c input is considered to be a character string.

d input value is considered to be an integer.

f input value is considered to be a real number.

s input is considered to be a character string without any white
space characters.

o input is considered to be a bit_vector specified in octal
representation.

x or X input is considered to be a bit_vector specified in hexadecima
representation.

t input is considered to be of type time.

The field specification has the following format:
<field_specification> ::= nnn

where the digit string nnn specifies the maximum field width (i.e. the maximu
number of characters to be read).
Std_DevelopersKit User’s Manual, V2.21-118

Std_IOpak fscan (from string_buf)

o
ng of
pose

s in
th is
s a
e
rst
ing
idth

r the

,
is
y the

 end of
ecede

ose in
e

y the
ters

ered,
ead.

is

racter
et
All of the string types are handled identically except for string types c and t. N
error checking is ever done to see if the string that is read in is actually a stri
the specified type. The existence of various string types is largely for the pur
of clarity and documentation.

For all string types, other than c and t, fscan first skips over any white space
the string buffer that precede the information to be read. Then, if the field wid
specified, as many characters as specified by the field width is read in unles
white space or the end of the string buffer is encountered first. The end of th
string buffer may be either the right most index of the string variable or the fi
occurrence of the NUL character. If either a white space or the end of the str
buffer is encountered before the number of characters specified by the field w
are read then no more characters is read for that parameter. If no field width
specification is given, then characters are simply read in until a white space o
end of the string buffer is encountered.

A conversion specification oft works in a similar manner except that it reads in
two fields that are separated by a white space (a number representing a time
possibly including a sign, and the unit in which the time is represented). In th
case, characters are read in until either the number of characters specified b
field width have been read, two white spaces have been encountered, or the
the string buffer has been reached. Remember that any white spaces that pr
the first field are skipped. Note that a time unit may follow the t conversion
specification in the format string (i.e. %12t ps). If it does, then the time unit is
ignored. That is, it is not treated as characters that have to be matched to th
the string buffer nor does it require that the time read from the string buffer b
specified in that time unit.

A conversion specification ofc is closely related to conversion specifications
other than t. If the field width is specified, as many characters as specified b
field width (including white spaces) is read in until either the number of charac
specified by the field width are read or the end of the string buffer is encount
whichever comes first. If the field width is not specified then one character is r
Note that preceding white space characters are not skipped.

As noted above this procedure scans past line boundaries. A line boundary
considered, by this procedure, to be a carriage return character, a line feed
character, or a combination of a carriage return character and a line feed cha
as determined by the constant END_OF_LINE_MARKER which is globally s
Std_DevelopersKit User’s Manual, V2.2 1-119

fscan (from string_buf) Std_IOpak

e

rs that
nding
 the
g. If
 in,

he

 only
good
ion.

t 20
the
ut
trings
ns.

utput
s.

n is
rned

 the
ified
.

by changing its defined value in the Std_IOpak package prior to compiling th
package.

DEFAULT FORMAT:

There is no default format for this procedure.

RESULT:

When the arguments are read from the string buffer, the number of characte
are read in may not match the size of the string associated with the correspo
actual parameter. If the number of characters that are read in is greater than
length of the string then only the left most characters are placed into the strin
the length of the string is greater than the number of characters that are read
then the string is filled from left to right and a NUL character is placed after t
last character.

If the format string is exhausted while there are more output arguments, then
those arguments which have corresponding conversion specifications holds
results. The rest of the arguments has a NUL character in the left most posit

If the number of conversion specifications are more than 20 then only the firs
input values is read, if the end of the input string has not been reached, and
results is written to the corresponding output arguments. If the end of the inp
string is reached before all of the string arguments have been filled then the s
that have not been filled has a NUL character placed in their left most positio

BUILT IN ERROR TRAPS:

1. If the format string is not specified an error assertion is made and the o
arguments are returned with a NUL character in their left most position

2. If a conversion specification is not correctly specified an error assertio
made and all of the output arguments that have not been read are retu
with a NUL character in their left most positions.

3. If there is mismatch between number of conversion specifications and
number of argument strings an error assertion is made. The data spec
by the extra conversion specifications is not read from the string buffer
Std_DevelopersKit User’s Manual, V2.21-120

Std_IOpak fscan (from string_buf)
EXAMPLES:

Given an input file design.dat which has the following data in it

10110110 1 1 10 01 #1111
01100110 0 1 11 01 #1110

.

.

.

.

and given the variable declarations:

file in_file: ASCII_TEXT IS IN "design.dat";
variable str_buf : string(1 TO 256);
variable databus : String(1 TO 8);
variable dtack : String(1 TO 1);
variable rw : string(1 TO 1);
variable ctrl1 : string(1 TO 2);
variable ctrl2 : string(1 TO 2);
variable addr : string(1 TO 4);

Then the statements

fgetline (str_buf, in_file);
fscan(str_buf, "%s %s %s %s %s#%s",

databus, dtack, rw, ctrl1, ctrl2,addr);

reads a line and assign the appropriate values to the corresponding strings.
Std_DevelopersKit User’s Manual, V2.2 1-121

fgetc (ASCII_TEXT) Std_IOpak

alue
ed.

IN.

 this
fgetc (ASCII_TEXT)
To read the next character from a file of type ASCII_TEXT.

DECLARATION:

Procedure fgetc (
result:OUT INTEGER;-- ordinal value of character
stream:IN ASCII_TEXT-- input file
);

DESCRIPTION:

This procedure reads a character from the input file and returns the ordinal v
of the character. If the end of the file has been reached a value of -1 is return
The input file must be declared as a file of type ASCII_TEXT with the mode
ASCII_TEXT is defined in the package Std_IOpak to be a file of
CHARACTERS. Any file whose base element is a character can be read with
procedure.

EXAMPLE:

The following code segment counts the number of characters in the file
design.doc:

variable n : integer;
variable count : integer := 0;
file f_in : ASCII_TEXT is IN "design.doc";
WHILE (NOT ENDFILE(f_in)) LOOP

fgetc(n, f_in);
count := count + 1;

END LOOP;
Std_DevelopersKit User’s Manual, V2.21-122

Std_IOpak fgetc (TEXT)

alue
ed.

T is
r
ess

by the

n the
e
rs on
fgetc (TEXT)
To read the next character from a file of type TEXT.

DECLARATION:

Procedure fgetc (
result:OUT INTEGER;-- ordinal value of character
stream:IN TEXT;-- input file
ptr: INOUT LINE-- pointer to a string
);

DESCRIPTION:

This procedure reads a character from the input file and returns the ordinal v
of the character. If the end of the file has been reached a value of -1 is return
The input file must be declared as a file of type TEXT with the mode IN. TEX
defined in the package TEXTIO to be a file of STRING. The formal paramete
line_ptr is of type LINE which is defined in the package TEXTIO to be an acc
value for a STRING. The actual that is associated with the formal parameter
line_ptr must be declared by the user but should never be assigned a value
user.

Note that after the ordinal value of the last character on a line is returned the
next call to fgetc causes the ordinal value of the line feed character (LF) to b
returned. Subsequent calls to fgetc causes the ordinal values of the characte
the next line to be returned.

EXAMPLE:

The following code segment counts the number of characters in the file
design.doc:

variable n : integer;
variable count : integer := 0;
ptr : LINE;
file f_in : TEXT is IN "design.doc";
WHILE (NOT ENDFILE(f_in)) LOOP

fgetc (n, f_in, ptr);
count := count + 1;

END LOOP;
Std_DevelopersKit User’s Manual, V2.2 1-123

fgets (ASCII_TEXT) Std_IOpak

ave

ing if
 l_str.
IN.

 this
 line
d

prior

hen it
is
d just
fgets (ASCII_TEXT)
To read, at most, the next n characters from a file of type ASCII_TEXT and s
them to a string.

DECLARATION:

Procedure fgets (
l_str:OUT string;-- output string, destination string
n : IN NATURAL;-- input integer, max. chars. to be read
stream:IN ASCII_TEXT-- input file
);

DESCRIPTION:

This procedure reads, at most, the next n characters from the input file, stopp
an end of line or an end of file is encountered, and saves them into the string
The input file must be declared as a file of type ASCII_TEXT with the mode
ASCII_TEXT is defined in the package Std_IOpak to be a file of
CHARACTERS. Any file whose base element is a character can be read with
procedure. An end of line is signalled by either a carriage return character, a
feed character, or a combination of a carriage return character and a line fee
character as determined by the deferred constant END_OF_LINE_MARKER
which is globally set by changing its defined value in the Std_IOpak package
to compiling the package. The end of line character(s) is also placed into the
output string.

The characters are read into the string starting at its left most position. If the
length of the string is smaller than the number of characters that are read in, t
contains only those characters that fit in the string. If the length of the string
larger than the number of characters that are read in a NUL character is place
after the last character that was read in.
Std_DevelopersKit User’s Manual, V2.21-124

Std_IOpak fgets (ASCII_TEXT)

es
99.
EXAMPLES:

Given the following declarations:

subtype str99 is string(1 to 99);
type str_ray is array(1 to 500) of str99;
file in_f : ASCII_TEXT is IN "design.doc";
variable str_buff : str_ray;
variable i : INTEGER;

then the following code segment reads in a file than is no longer than 500 lin
and store it in an array of strings. It also assumes a maximum line length of

i := 1;
while ((i <= 500) and (not endfile(in_f)) loop

fgets(str_buff(i), 99, in_f);
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.2 1-125

fgets (TEXT) Std_IOpak

m to

ing if
 l_str.
T is
r
ess

by the

t uses
in the

hen it
is
d just
fgets (TEXT)
To read, at most, the next n characters from a file of type TEXT and save the
a string.

DECLARATION:

Procedure fgets (
l_str:OUT string;-- output string, destination string
n : IN NATURAL;-- input integer, max. chars. to be read
stream:IN TEXT;-- input file
line_ptr:INOUT LINE-- ptr to a string
);

DESCRIPTION:

This procedure reads, at most, the next n characters from the input file, stopp
an end of line or an end of file is encountered, and saves them into the string
The input file must be declared as a file of type TEXT with the mode IN. TEX
defined in the package TEXTIO to be a file of STRING. The formal paramete
line_ptr is of type LINE which is defined in the package TEXTIO to be an acc
value for a STRING. The actual that is associated with the formal parameter
line_ptr must be declared by the user but should never be assigned a value
user.

Since this procedure uses the procedures defined in the package TEXTIO, i
that same definition for an end of line marker that is used by the procedures
package TEXTIO. The end of line character(s) is NOT placed into the output
string.

The characters are read into the string starting at its left most position. If the
length of the string is smaller than the number of characters that are read in, t
contains only those characters that fit in the string. If the length of the string
larger than the number of characters that are read in a NUL character is place
after the last character that was read in.
Std_DevelopersKit User’s Manual, V2.21-126

Std_IOpak fgets (TEXT)

es
99.
EXAMPLES:

Given the following declarations:

subtype str99 is string(1 to 99);
type str_ray is array(1 to 500) of str99;
file in_f : TEXT is IN "design.doc";
variable str_buff : str_ray;
variable i : INTEGER;
ptr : LINE;

then the following code segment reads in a file than is no longer than 500 lin
and store it in an array of strings. It also assumes a maximum line length of

i := 1;
while ((i <= 500) and (not endfile(in_f)) loop

fgets(str_buff(i), 99, in_f, ptr);
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.2 1-127

fgetline (ASCII_TEXT) Std_IOpak

n in
file of

er a
e
stant
 in

hen it
is
d just
e any

have
fgetline (ASCII_TEXT)
To read a line from the input ASCII_TEXT file and save it to a string.

DECLARATION:

Procedure fgetline (
l_str:OUT string;-- output string, destination string
stream:IN ASCII_TEXT-- input, ASCII_TEXT file
);

DESCRIPTION:

This procedure reads a line from the input file, starting from the current positio
the file, and saves the result to a string. The input file must be declared as a
type ASCII_TEXT with the mode IN. ASCII_TEXT is defined in the package
Std_IOpak to be a file of CHARACTERS. Any file whose base element is a
character can be read with this procedure. An end of line is signalled by eith
carriage return character, a line feed character, or a combination of a carriag
return character and a line feed character as determined by the deferred con
END_OF_LINE_MARKER which is globally set by changing its defined value
the Std_IOpak package prior to compiling the package. The end of line
character(s) is also placed into the output string.

The characters are read into the string starting at its left most position. If the
length of the string is smaller than the number of characters that are read in, t
contains only those characters that fit in the string. If the length of the string
larger than the number of characters that are read in a NUL character is place
after the last character that was read in. If the end of the file is reached befor
characters are read then this routine places a NUL character in the left most
position of the output string. If the end of the file is reached after characters
been read then the end of the file is treated as the end of the line.
Std_DevelopersKit User’s Manual, V2.21-128

Std_IOpak fgetline (ASCII_TEXT)

es
e text
EXAMPLE:

Given the following declarations:

subtype str99 is string(1 to 99);
type str_ray:array(1 to 500) of str99;
file in_f : ASCII_TEXT is IN "design.doc";
variable str_buff : str_ray;
variable i : INTEGER;

then the following code segment reads in a file than is no longer than 500 lin
and store it in an array of strings. If a line is longer than 99 characters then th
on that line past the 99th character is lost.

i := 1;
while ((i <= 500) and (not endfile(in_f)) loop

fgetline(str_buff(i), in_f);
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.2 1-129

fgetline (TEXT) Std_IOpak

n in
file of
a
d
t is
ut

t uses
in the

hen it
is
d just
e any

have
fgetline (TEXT)
To read a line from the input TEXT file and save it to a string.

DECLARATION:

Procedure fgetline (
l_str:OUT string;-- output string, destination string
stream:IN TEXT;-- input, TEXT file
line_ptr:INOUT LINE-- ptr to string
);

DESCRIPTION:

This procedure reads a line from the input file, starting from the current positio
the file, and saves the result to a string. The input file must be declared as a
type TEXT with the mode IN. TEXT is defined in the package TEXTIO to be
file of STRING. The formal parameter line_ptr is of type LINE which is define
in the package TEXTIO to be an access value for a STRING. The actual tha
associated with the formal parameter line_ptr must be declared by the user b
should never be assigned a value by the user.

Since this procedure uses the procedures defined in the package TEXTIO, i
that same definition for an end of line marker that is used by the procedures
package TEXTIO. The end of line character(s) is NOT placed into the output
string.

The characters are read into the string starting at its left most position. If the
length of the string is smaller than the number of characters that are read in, t
contains only those characters that fit in the string. If the length of the string
larger than the number of characters that are read in a NUL character is place
after the last character that was read in. If the end of the file is reached befor
characters are read then this routine places a NUL character in the left most
position of the output string. If the end of the file is reached after characters
been read then the end of the file is treated as the end of the line.
Std_DevelopersKit User’s Manual, V2.21-130

Std_IOpak fgetline (TEXT)

es
e text
EXAMPLE:

Given the following declarations:

subtype str99 is string(1 to 99);
type str_ray is array(1 to 500) of str99;
file in_f : TEXT is IN "design.doc";
variable str_buff : str_ray;
variable i : INTEGER;
variable ptr : LINE;

then the following code segment reads in a file than is no longer than 500 lin
and store it in an array of strings. If a line is longer than 99 characters then th
on that line past the 99th character is lost.

i := 1;
while ((i <= 500) and (not endfile(in_f)) loop

fgetline(str_buff(i), in_f, ptr);
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.2 1-131

fputc (ASCII_TEXT) Std_IOpak

ose
turn
ter.
fputc (ASCII_TEXT)
To write a character to an ASCII_TEXT file.

DECLARATION:

Procedure fputc (
c : IN character;-- input, character to be written
stream:OUT ASCII_TEXT-- output ASCII_TEXT file
);

DESCRIPTION:

This procedure writes a character to the output file. The output file must be
declared as a file of type ASCII_TEXT with the mode OUT. ASCII_TEXT is
defined in the package Std_IOpak to be a file of CHARACTERS. Any file wh
base element is a character can be read with this procedure. The carriage re
and line feed characters is written to the output file just like any other charac

EXAMPLES:

Given the following variable declarations:

variable str_buff : STRING(1 to 4096);
variable i : INTEGER;
file out_f : ASCII_TEXT is OUT "outfile.dat";

the following code segment writes the contents of str_buff directly to the file
“outfile.dat” without modification:

i := 1;
while (i <= StrLen(str_buff)) loop

fputc(str_buff(i), file_out);
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.21-132

Std_IOpak fputc (TEXT)

ype

st be

cters

ge
fputc (TEXT)
To write a character to an TEXT file.

DECLARATION:

Procedure fputc (
c : IN character;-- input, character to be written
stream:OUT TEXT;-- output, file of characters
line_ptr:INOUT LINE-- pointer to a string
);

DESCRIPTION:

This procedure writes a character to the output file. The output file must be
declared as a file of type TEXT with the mode OUT. TEXT is defined in the
package TEXTIO to be a file of STRING. The formal parameter line_ptr is of t
LINE which is defined in the package TEXTIO to be an access value for a
STRING. The actual that is associated with the formal parameter line_ptr mu
declared by the user but should never be assigned a value by the user.

When a carriage return character or a line feed character is passed to this
procedure, a procedure defined in the package TEXTIO is used to write chara
to the file and generate an end of line marker. Note that when characters are
written with this procedure they are held in a buffer (the string pointed to by
line_ptr), rather than actually written to a file, until a call is made with a carria
return or a line feed as the input character.

EXAMPLES:

Given the following variable declarations:
variable str_buff : STRING(1 to 4096);
variable i : INTEGER;
variable str : LINE;
file out_f : TEXT is OUT "outfile.dat";

the following code segment writes the contents of str_buff directly to the file
“outfile.dat” without modification:

i := 1;
while (i <= StrLen(str_buff)) loop

fputc(str_buff(i), file_out, str);
i := i + 1;

end loop;
Std_DevelopersKit User’s Manual, V2.2 1-133

fputs (ASCII_TEXT) Std_IOpak

s
hen
 After
h

 in

doc”.
fputs (ASCII_TEXT)
To write a string to an ASCII_TEXT file.

DECLARATION:

Procedure fputs (
l_str:IN string;-- input, string to be written
stream:OUT ASCII_TEXT-- destination file
);

DESCRIPTION:

This procedure writes a string of characters to the output file specified by the
formal parameter stream. The output file must be declared as a file of type
ASCII_TEXT with the mode OUT. ASCII_TEXT is defined in the package
Std_IOpak to be a file of CHARACTERS. Any file whose base element is a
character can be written to with this procedure. The characters in the string i
written to the file starting at the left most character in the string and ending w
either a NUL character is reached or the end of the string variable is reached.
the string is written to the file an end of line marker is written to the file. Whic
end of line marker is used is determined by the deferred constant
END_OF_LINE_MARKER which is globally set by changing its defined value
the Std_IOpak package prior to compiling the package (see “Introduction”).

EXAMPLES:

Given the following declarations:
subtype str99 is string(1 to 99);
type s_buff is array(1 to 50) of str99;
file out_f : ASCII_TEXT is OUT "design.doc";
variable string_buff : s_buff;
variable i : INTEGER;

then the following code segment writes an array of strings to the file “design.
for i in 1 to 50 loop

fputs(string_buff(i), out_f);
end loop;
Std_DevelopersKit User’s Manual, V2.21-134

Std_IOpak fputs (TEXT)

EXT

e

ut

cter
f the
e
ker

doc”.
fputs (TEXT)
To write a string to a TEXT file.

DECLARATION:

Procedure fputs (
l_str:IN string;-- input, string to be written
stream:OUT TEXT;-- destination file
line_ptr:INOUT LINE-- pointer to a string
);

DESCRIPTION:

This procedure writes a string of characters to the output file specified by the
formal parameter stream. The output file must be declared as a file of type T
with the mode OUT. TEXT is defined in the package TEXTIO to be a file of
STRING. The formal parameter line_ptr is of type LINE which is defined in th
package TEXTIO to be an access value for a STRING. The actual that is
associated with the formal parameter line_ptr must be declared by the user b
should never be assigned a value by the user.

The characters in the string is written to the file starting at the left most chara
in the string and ending when either a NUL character is reached or the end o
string variable is reached. This procedure uses the procedures in the packag
TEXTIO to write the string to the file as well as to generate an end of line ma
in the file after the string is written.

EXAMPLES:

Given the following declarations:
subtype str99 is STRING(1 to 99);
type s_buff is array(1 to 50) of str99;
file out_f : TEXT is OUT "design.doc";
variable string_buff : s_buff;
variable i : INTEGER;
variable ptr : LINE;

then the following code segment writes an array of strings to the file “design.
for i in 1 to 50 loop

fputs(string_buff(i), out_f, ptr);
end loop;
Std_DevelopersKit User’s Manual, V2.2 1-135

Find_Char Std_IOpak

ified
ex of
st
iable.
ct to
nd a

he
acter
Find_Char
To find a given character in a string and return its position.

DECLARATION:

Function Find_Char (
l_str:IN string;-- input, string
c : IN character-- input, character to be searched
) return NATURAL;

DESCRIPTION:

This function searches the string l_str for the existence of the character spec
by the formal parameter c. Find_Char starts the search from the left most ind
the string and ends the search when the character is found, it reaches the fir
occurrence of the NUL character, or when it reaches the end of the string var
If the character is found then the relative position of the character with respe
the left most position of the input string is returned. If the character is not fou
zero (0) is returned.

Result: The result is the natural number zero if the character is not found. If t
character is found the result is the position of the first occurrence of the char
relative to the left most position of the input string (l_str’LEFT).

EXAMPLE:

Given the following declarations:

variable str14 : string(3 TO 16);
variable loc : Integer;
str14 := "This is a test";
loc := Find_Char(str16, 'i');

The above two lines assigns a value of 3 to the variable loc. This gives the
location of first occurrence of letter ‘i’.
Std_DevelopersKit User’s Manual, V2.21-136

Std_IOpak Sub_Char

t the
rns

acter

es

 it is

and
Sub_Char
To substitute a new character at a given position of the input string.

DECLARATION:

Function Sub_Char (
l_str:IN string;-- input string
c : IN character;-- character to be substituted
n : IN NATURAL-- position at which char. to be substituted
) return string;

DESCRIPTION:

This function substitutes the character specified by the formal parameter c a
position of the string l_str that is specified by the formal parameter n and retu
the resulting string. The formal parameter n specifies the position of the char
to be substituted relative to the left most index of the input string.

If n is zero or n is larger than the length of the input string no substitution tak
place and the input string is returned without any change.

Result: The result string that is returned has the range 1 to l_str’length.

EXAMPLES:

Given the following declarations:

variable str8 : string(3 TO 10);
variable loc : Integer;

The following code searchs for an upper case letter T in the string str8 and if
found it is replaced with lower case t.

IF ((loc := Find_Char(str8, 'T')) /= 0) THEN
str8 := Sub_Char(str8, 't', loc);

END IF;

If str8 is assigned the value "A Tester" then loc is set equal to the number 3
the returned string is:

"A tester"
Std_DevelopersKit User’s Manual, V2.2 1-137

Sub_Char Std_IOpak
Std_DevelopersKit User’s Manual, V2.21-138

re of
ibrary
Chapter 2
Std_Mempak

Using Std_Mempak
As shown in the diagram, Std_Mempak is most often utilized in the architectu
the model. Referencing the Std_Mempak package is as easy as making a L
and Use clause declaration.

Figure 2-1. Three-stage Model Using Std_Mempak

Entity

Functional
Architecture

Std_Mempak

Timing
Verification

Input

Delays

Out-
put

Delays
+

Load
Depen-
dency
Std_DevelopersKit User’s Manual, V2.2 2-1

Known Discrepancies Std_Mempak

y

e”
ity to
es

e
he

he
s
ding
ice.
ply
ed to

er to

L
sing
Referencing the Std_Mempak Package

In order to reference the Std_Mempak package you need to include a Librar
clause in the VHDL source code file either immediately before an Entity,
Architecture or Configuration, or within any declarative region. The “Library”
clause declares that a library of the name Std_DevelopersKit exists. The “Us
clause enables the declarative region following the Use clause to have visibil
the declarations contained within each package. The example below illustrat
how to make the Std_Mempak package visible.

LIBRARY Std_DevelopersKit;
USE Std_DevelopersKit.Std_Mempak.all;

Known Discrepancies
You should be aware of the manner in which the QuickHDL Lite handles the
opening of an existing file for writing. The QuickHDL Lite simulator erases th
contents of an existing file when it is opened for writing. It also appends to t
end of the file if when the file is opened the file name is preceded by the
characters “>>”. This means that when using the Mem_Dump procedure, if t
file that Mem_Dump is to write to already exists, then the information it write
may or may not be appended to the end of the file (if it already exists) depen
upon what simulator is being used. Of course QuickHDL Lite gives you a cho
As noted above, if you want the data appended to the end of the file you sim
have to put the characters “>>” at the beginning of the file name that is pass
the Mem_Dump procedure.

Introduction
Std_Mempak provides the user with a common interface for VHDL memory
model development. In addition, the package allows the VHDL model design
build a model which uses the least amount of memory space required for the
active address spaces of the memory. Using the routines provided, the VHD
model designer may simulate megabytes of memory system designs while u
only a fraction of the actual space on a given simulation run.
Std_DevelopersKit User’s Manual, V2.22-2

Std_Mempak Introduction

, and
ither
.

pe.
e
e

’ or

s.
The
e of
r is

 have
. In

nes
 for
e

is
 is
Memory Access

Std_Mempak provides routines that allow the VHDL designer to rapidly and
easily build models of Static or Dynamic RAMs, ROMs, or Video RAMs.
Routines are provided to read from memory, write to memory, reset memory
load memory from a file. The input to and output from the memories can be e
bit vectors or one of the types defined in the IEEE Std_Logic_1164 package
When working with dynamic RAMs the afore mentioned routines perform the
refresh monitoring for the designer.

X-Handling

This package provides a data structure which stores data in the UX01 subty
The designer may monitor the contents of memory in order to determine if th
memory never contained data, if the memory contains corrupted data, or if th
memory contains valid data. X handling is also provided when dealing with
memory addresses. Any X’s in the specified address are mapped to either ‘0
‘1’ as determined by the user.

File Programmability

When simulating ROMs it is necessary to initially load their contents from file
This package defines a powerful file format for specifying memory contents.
contents of memory can be specified for an entire memory (the address rang
which is limited only by the integer size of the machine on which the simulato
being run) or any address range of the memory. In addition the memory can
any positive word width. Routines are provided to load ROMs from such files
addition it may be advantageous to start a simulation of a design in some
intermediate state. To facilitate this, RAMs can be loaded as well. Also, routi
are provided to, at any point in time, dump the contents of a memory to a file
later review or retrieval. The format of the file is the same as the format of th
files used to load memories.

Globally Defined Constants

There are several globally defined constants in this package. Each of these
defined in the Std_Mempak package body. If one or more of these constants
Std_DevelopersKit User’s Manual, V2.2 2-3

General Information Std_Mempak

es that
ng,

ories
ons.
m - 1
one
changed then the package must be recompiled along with any other packag
access it. The following is a list of the constants in this package, their meani
and the value assigned to them at the time of shipping.

General Information
Before attempting to model a memory it is important to understand how mem
are organized. On the most basic level a memory is simply an array of locati
Each location has an address. The first address is 0 and the last address is
(assuming the memory has m locations). Each location or address contains

Table 2-1. Std_MemPak Globally Defined Constants

Constant Meaning Value at
time of

shipping

MEM_WARNINGS_
ON

Enable warning assertions TRUE

DATA_X_MAP map ‘X’s in data to bit value ‘1’

DATA_U_MAP map ‘U’s in data to bit value ‘1’

ADDRESS_X_MAP map ‘X’s in addresses to bit value ‘1’

ADDRESS_U_MAP map ‘U’s in addresses to bit value ‘1’

MAX_STR_LEN maximum length of strings 256

WORDS_PER_LINE # of data words written to a line of the
output file when performing a memory
dump

16

EXTENDED_OPS If TRUE then Mem_Set_WPB_Mask,
Mem_Block_Write, Mem_Row_Write,
and the write-per-bit feature of
Mem_Write can be used with memories
other than VRAMS.

FALSE

MEM_DUMP_TIME If true time Mem_Dump is called is
written to the output file.

TRUE
Std_DevelopersKit User’s Manual, V2.22-4

Std_Mempak General Information

 from
ly no

ory
ay is
y
 array

y of
use,
er,

k

d.

r the

e
et,

long
t are

,
dures

t is
“word”. Here the term word refers to the number of bits that can be accessed
the memory at one time. A word may be as small as 1 bit and there is virtual
limit to how large it can be.

The description given above is obvious and intuitive, however, in reality, mem
chips usually do not consist of a linear array of words. In reality a memory arr
usually one or more 2-dimensional arrays of words. The minimum complexit
model needed to represent any memory would consist of one 2-dimensional
of words. The array, of course, would be broken of into a series of rows and
columns.

The differentiation between a linear array of words and a 2-dimensional arra
words is not important when modeling static RAMs (SRAMs) or ROMs beca
externally, these memory chips appear to be a linear array of words. Howev
when modeling a dynamic RAM (DRAM) or a Video RAM (VRAM) this
distinction becomes important.

Video RAM Support

Video RAM (VRAM) support is built into the latest version of the Std_Mempa
package. Video RAMs can now be modeled in much the same manner as
Std_Mempak has always allowed SRAMs, ROMs, and DRAMs to be modele
Std_Mempak allows for the modelling of Video RAMs using the same
dynamically allocated memory structures that have always been available fo
other memory types. In addition, file IO is also available for Video RAMs.

Std_MemPak provides for the modeling of Video RAMs through the use of th
pre-existing common memory routines (Mem_Read, Mem_Write, Mem_Res
Mem_Load, Mem_Dump, and Mem_valid) and the DRAM memory routines
(Mem_Wake_Up, Mem_Refresh, Mem_Row_Refresh, and Mem_Access). A
with these procedures, Std_Mempak now provides additional procedures tha
specifically designed for VRAMs (VRAM_Initialize, Mem_Set_WPB_Mask,
Mem_Block_Write, Mem_Row_Write, Mem_RdTrans, Mem_Split_RdTrans,
Mem_RdSAM, Mem_Split_RdSAM, Mem_Active_SAM_Half,
Mem_WrtTrans, Mem_Split_WrtTrans, Mem_WrtSAM, Mem_Split_WrtSAM
Mem_Get_SPtr, Mem_Set_SPtr, and To_Segment). The use of these proce
allows for the rapid and efficient modeling of VRAMs. The concerns of the
VHDL model designer can be limited to the details of the particular VRAM tha
Std_DevelopersKit User’s Manual, V2.2 2-5

General Information Std_Mempak

 be
e is

.
s
t the
ow at
ber

 row

del

he
ines
a that
s.

 first
ow.

 of
re is
ation

he
being modeled. The Std_Mempak routines take care of data manipulation,
memory allocation, and tracking refresh periods.

Refreshing of DRAMs and VRAMs

In a DRAM or a VRAM the contents of memory are not permanent and must
refreshed (rewritten) at least once in a given period of time. This period of tim
known as the refresh period. If the memory is not refreshed then data is lost
Fortunately, it is not necessary to actually re-write each word. The memory i
simply instructed to perform a refresh and it handles all of the details. To limi
amount of time it takes to refresh a memory all refreshes are done an entire r
a time. Because of this it is important for the model designer to know the num
of rows that a DRAM or VRAM has and the number of words that are in each
(i.e. the number of columns).

Dynamic Allocation

Std_Mempak handles memory modeling by using the minimum memory mo
described above. Memory is assumed to be a 2-dimensional array of words.
However, in order to limit the amount of machine memory allocated (that is t
memory on the machine that is running the simulator) the Std_Mempak rout
only allocate the amount of memory space that is necessary to store the dat
has been written to memory. In order to do this, memory is allocated in block
The obvious choice for the size of a block of memory is the number of words
stored in one row. In this way, each time a word is written to memory if the
address it is written to is in a row that has not been allocated then that row is
allocated and the word is then written to the appropriate location within that r
All of this is handled invisibly by the Std_Mempak routines.

Row and Column Organization

Because the functioning of a DRAM or VRAM is so dependent upon how the
memory is organized into rows and columns, it is necessary that the number
rows and columns in the memory be known when the memory’s data structu
created. Thus the appropriate function in Std_Mempak requires such inform
in its input parameters. However, this information is not as important when
modeling SRAMs and ROMs. As a result, this information is not required of t
Std_DevelopersKit User’s Manual, V2.22-6

Std_Mempak General Information

RAMs

 the

 is a
 on a

 are
n be
ur

. Each
res all
ory
emory.
f the
designer by the Std_Mempak routines that generate the data structures for S
and ROMs.

It is also useful to know how these routines determine where in a row to find
data specified by an address. This is done as follows.

ROW = address div row size (i.e. # of columns)

COLUMN (i.e. offset within row) = address mod row size (i.e. # of columns)

Note that the numbering of both the rows and the columns start from 0. This
quite similar method to how the location of an address is actually determined
real memory chip.

Subroutines

To ease the task of the model designer many of the routines in Std_Mempak
common to the three different types of memory. That is the same routines ca
used to access each of the memory types. This is accomplished by having fo
different memory initialization functions (ROM_Initialize, SRAM_Initialize,
DRAM_Initialize, and VRAM_Initialize). These functions generate the data
structure for the memory and store the appropriate information in that data
structure. They return an access value that is a pointer to that data structure
of the memories use the same data structure and, as a result, these procedu
return the same type, mem_id_type. Whenever an access is made to a mem
that access variable must be passed to the procedure that is accessing the m
As mentioned, most of the routines that access memory are common to all o
memory types. These are:

1. Mem_Read--reads a word from memory
2. Mem_Write--writes a word to memory (not ROMs)
3. Mem_Valid--checks the validity of a word at an address
4. Mem_Access--views a word in memory
5. Mem_Load--loads the contents of a memory from a file
6. Mem_Dump--writes the contents of a memory to a file
7. Mem_Reset--Resets an address range to a specified value

There are also several routines that are specific to DRAMs these are:
Std_DevelopersKit User’s Manual, V2.2 2-7

General Information Std_Mempak

)

fore

en

 a
X’s or
1. Mem_Wake_up--initializes a DRAM for operation
2. Mem_Refresh--refreshes memory
3. Mem_Row_Refresh--refreshes a specified row of memory (not ROMS

In addition, there are a large number of routines that are specific to VRAMs.

X-Handling

X-Handling of Input Data

The Std_Mempak procedures first convert any data into the X01 subtype be
storing it. The ‘U’ value is used to indicate a condition in which the specified
memory location has not been initialized (has never been written to). The ‘X’
value indicates that an indeterminate value has been written to the specified
memory location or that, if the memory is a DRAM or a VRAM, the refresh
period for the row containing that data item has expired and the data has be
invalidated. The values ‘0’ and ‘1’ obviously represent valid data.

Figure 2-2. ‘U’ and ‘X’ Handling of Input Data

X-Handling of Output Data

Some procedures return data in the form of a bit or a bit_vector. When such
procedure is used and the specified memory address contains one or more ‘

std_logic_vector
std_ulogic_vector
std_ulogic

std_logic_vector
std_ulogic_vector
std_ulogic

MEMORY

To_X01

To_Bit_Vector

Data

Address ‘X’ ➞ ADDRESS_X_MAP
‘U’ ➞ ADDRESS_U_MAP

(‘U’, ‘X’, ‘0’, ‘1’)
Std_DevelopersKit User’s Manual, V2.22-8

Std_Mempak General Information

nd
e
l to

tants

r
ess
nate

t equal
se
tants
‘U’s they must be mapped to some bit value. The constants DATA_X_MAP a
DATA_U_MAP determine the values that ‘X’s and ‘U’s are mapped to. Thes
constants are found in the Std_Mempak package body and maybe set equa
either ‘0’ or ‘1’. If they are changed Std_Mempak and any packages that use
Std_Mempak must be recompiled. At the time of shipping both of these cons
were set equal to ‘1’.

X-Handling of Addresses

A similar problem is encountered with ‘X’s and ‘U’s when std_logic_vectors o
std_ulogic_vectors are used to specify addresses. A ‘U’ or an ‘X’ in the addr
leads to ambiguity in determining which address is being accessed. To elimi
this problem, these values are mapped to valid bit values. The mapping is
determined by the constants ADDRESS_X_MAP and ADDRESS_U_MAP.
These constants are found in the Std_Mempak package body and maybe se
to either ‘0’ or ‘1’. If they are changed Std_Mempak and any packages that u
Std_Mempak must be recompiled. At the time of shipping both of these cons
were set equal to ‘1’.

Figure 2-3. ‘U’ and ‘X’ Handling of Addresses

MEMORY

To_Bit_Vector

Data

Address

‘X’ ➞ DATA_X_MAP
‘U’ ➞ DATA_U_MAP

bit_vector

bit_vector
integer

bit

(‘U’, ‘X’, ‘0’, ‘1’)
Std_DevelopersKit User’s Manual, V2.2 2-9

ROMs Std_Mempak

m a
or
OM to

OM.

le.
ROMs
ROMs are the simplest memory type to model. ROMs can only be loaded fro
file, have their contents written to a file, have the validity of a word checked,
have a word read. It is quite adequate for the model designer to consider a R
be nothing more than a linear array of words. The Std_Mempak procedures
perform any manipulations required for data retrieval.

Before a ROM can be used the ROM_Initialize function must be called. This
routine generates the data structure necessary to store information into the R
It returns a mem_id_type which is a pointer to this data structure.This routine
must be called only once for each ROM being modeled.The access value
returned by this function must be used in all subsequent references to the
initialized ROM. ROM_Initialize also loads the contents of the ROM from a fi

This section describes theROM_Initialize function. It is the only function
provided in Std_MemPak that is unique to ROMs.
Std_DevelopersKit User’s Manual, V2.22-10

Std_Mempak ROM_Initialize

 file.

ROM.
e for

data
 to
 this
ROM_Initialize
To generate the data structure for a ROM and to initialize its contents from a

DECLARATION:
Function ROM_Initialize (
name:IN string;-- name of ROM
length:IN Positive;-- number of words in ROM
width:IN Positive;-- number of bits per word
default_word:IN std_logic_vector;-- default value of ROM
file_name:IN string-- file used to load ROM
) return mem_id_type;

Function ROM_Initialize (
name:IN string;-- name of ROM
length:IN Positive;-- number of words in ROM
width:IN Positive;-- number of bits per word
default_word:IN std_ulogic_vector;-- default value of ROM
file_name:IN string-- file used to load ROM
) return mem_id_type;

Function ROM_Initialize (
name:IN string;-- name of ROM
length:IN Positive;-- number of words in ROM
width:IN Positive;-- number of bits per word
default_word:IN bit_vector;-- default value of ROM
file_name:IN string-- file used to load ROM
) return mem_id_type;

DESCRIPTION:

This function generates the data structure that is used to store the data for a
It returns a pointer to the generated data structure. It must be called only onc
each ROM being modeled. Multiple calls to this procedure results in multiple
structures being generated. The mem_id_type value that is returned is used
identify the modeled ROM and must be passed to all procedures that access
ROM.
Std_DevelopersKit User’s Manual, V2.2 2-11

ROM_Initialize Std_Mempak

ed in

he
ry.
efault
’s.

e

t of
.

ARGUMENTS

• name

is a string that is used so that the modeler can identify a ROM. It is display
any assertion statements that the Std_Mempak routines generate when
accessing a ROM.

• length

specifies the number of words stored in the specified ROM.

• width

specifies the number of bits in each word of the ROM.

• default_word

specifies the default value for those addresses that are not initialized by t
specified file. The “default_word” must have the same width as the memo
The elements of the vector are converted to the X01 subtype before the d
word is stored. If the vector is of zero length, then the default word is all ‘U

• file_name

specifies the name of the file from which the contents of the ROM are to b
loaded. This parameter is optional. If it is not specified, the memory is not
loaded from a file. See the procedure Mem_Load in section 4.6 along with
section 4.7 for how the loading of ROMs is accomplished

BUILT IN ERROR TRAP:

If the “default_word” does not have the same width as the memory and is no
zero length an error assertion is issued and the default word is set to all ‘U’s
Std_DevelopersKit User’s Manual, V2.22-12

Std_Mempak Static RAMs

tions
from
 file,
s
ore

his
RAM.
Static RAMs
Static RAMs (SRAMs) can be modeled easily using this package. The opera
that can be performed on SRAMs are: write a word to memory, read a word
memory, load the memory from a file, dump the contents of the memory to a
reset a range of the memory, and check the validity of a word in memory. It i
quite adequate for the model designer to consider an SRAM to be nothing m
than a linear array of words. The Std_Mempak procedures perform any
manipulations required to handle data operations in an SRAM.

Before an SRAM can be used the SRAM_Initialize function must be called. T
routine generates the data structure necessary to store information into the S
It returns a mem_id_type which is a pointer to this data structure.This routine
must be called only once for each SRAM being modeled.The access value
returned by this function must be used in all subsequent references to the
initialized SRAM.

This section describes the SRAM_Initialize function. It is the only function
provided in Std_Mempak that is unique to static RAMs.
Std_DevelopersKit User’s Manual, V2.2 2-13

SRAM_Initialize Std_Mempak

.

n
only
in
urned
 that
SRAM_Initialize
SRAM Initialization: To generate and initialize the data structure for an SRAM

DECLARATION:
Function SRAM_Initialize (
name:IN string;-- name of SRAM
length:IN Positive;-- # of words in SRAM
width:IN Positive;-- number of bits per word
default_word:IN std_logic_vector-- default value of SRAM
) return mem_id_type;

Function SRAM_Initialize (
name:IN string;-- name of SRAM
length:IN Positive;-- # of words in SRAM
width:IN Positive;-- number of bits per word
default_word:IN std_ulogic_vector-- default value of SRAM
) return mem_id_type;

Function SRAM_Initialize (
name:IN string;-- name of SRAM
length:IN Positive;-- # of words in SRAM
width:IN Positive;-- number of bits per word
default_word:IN bit_vector-- default value of SRAM
) return mem_id_type;

DESCRIPTION:

This function generates the data structure that is used to store the data for a
SRAM. It returns a pointer to the generated data structure. It must be called
once for each SRAM being modeled. Multiple calls to this procedure results
multiple data structures being generated. The mem_id_type value that is ret
is used to identify the modeled SRAM and must be passed to all procedures
access this SRAM.
Std_DevelopersKit User’s Manual, V2.22-14

Std_Mempak SRAM_Initialize

erate

he
he
th,

t of
.

ARGUMENTS

• name

is a string that is used so that the modeler can identify an SRAM. It is
displayed in any assertion statements that the Std_Mempak routines gen
when accessing an SRAM. The parameter “

• length

specifies the number of words stored in the specified SRAM.

• width

specifies the number of bits in each word of the SRAM.

• default_word

specifies the default value for the memory. All addresses have this value
immediately after the SRAM is initialized. The “default_word” must have t
same width as the memory. The elements of the vector are converted to t
X01 subtype before the default word is stored. If the vector is of zero leng
then the default word is all ‘U’s.

BUILT IN ERROR TRAP:

If the “default_word” does not have the same width as the memory and is no
zero length an error assertion is issued and the default word is set to all ‘U’s
Std_DevelopersKit User’s Manual, V2.2 2-15

Dynamic RAMs Std_Mempak

el.
y,
f the

M to
y

his

 the

e
e

onal.
ak

um
d.
.
de to
n the

s in
has
n as

”
 not
Dynamic RAMs
Dynamic RAMs (DRAMs) are the most complex of the memory types to mod
The operations that can be performed on DRAMs are write a word to memor
read a word from memory, load the memory from a file, dump the contents o
memory to a file, reset a range of the memory, check the validity of a word in
memory, and refresh the memory. The model designer must consider a DRA
be a 2-dimensional array of words. The Std_Mempak procedures perform an
manipulations required to handle data operations in a DRAM.

Before a DRAM can be used the DRAM_Initialize function must be called. T
routine generates the data structure necessary to store information into the
DRAM. It returns a mem_id_type which is a pointer to this data structure.This
routine must be called only once for each DRAM being modeled.The access
value returned by this function must be used in all subsequent references to
initialized DRAM.

In practice, upon power up, DRAMs require several initialization cycles befor
they become operational. Also, should a period of time that is greater than th
DRAM’s refresh period pass without any operations being performed on the
DRAM, the same initialization cycles are required to make the device operati
A facility to simulate these “wake up” cycles is provided for in the Std_Memp
modeling of DRAMs. The function Mem_Wake_UP causes the DRAM to
become operational if one of the above mentioned conditions should occur.

Also, DRAMs must have each of their rows periodically refreshed. The maxim
amount of time that a row can go without being refreshed is the refresh perio
Should the refresh period be exceeded on any row, its data is no longer valid
When the Std_Mempak routines are used to access a DRAM checks are ma
see if the refresh period has expired on the row being accessed. If it has, the
data is invalidated and ‘X’s are returned. As with real DRAMs the procedure
Std_Mempak causes a row to be refreshed any time an address in that row
been read from or written to. In addition the two primary refresh modes know
“RAS-Only Refresh” and “CAS-before-RAS Refresh” are provided for by the
procedures Mem_Row_Refresh and Mem_Refresh, respectively. “RAS-Only
Refresh” refreshes a specified row of the DRAM. “CAS-Before-RAS Refresh
causes an unknown row of memory to be refreshed. A refresh counter that is
user visible is used to supply the address of the ROW to be refreshed. Each
Std_DevelopersKit User’s Manual, V2.22-16

Std_Mempak Dynamic RAMs

 the
RE-
s

execution of a “CAS-Before-RAS Refresh” cycle causes the row specified by
counter to be refreshed and the counter incremented. Thus, if a “CAS-BEFO
RAS Refresh” cycle is executed once for each row, then the entire memory i
refreshed.

This section describes those routines that are unique to dynamic RAMs.
Std_DevelopersKit User’s Manual, V2.2 2-17

DRAM_Initialize Std_Mempak

.

only
in
urned
 that
DRAM_Initialize
DRAM Initialization: To generate and initialize the data structure for a DRAM

DECLARATION:

Function DRAM_Initialize (
name: IN string;-- name of DRAM
rows: IN Positive;-- #of rows in the DRAM
columns:IN Positive;-- #of columns in the DRAM
width: IN Positive;-- # of bits per word
refresh_period:IN TIME;-- max time between refresh
default_word:IN std_logic_vector-- default value of DRAM
) return mem_id_type;

Function DRAM_Initialize (
name: IN string;-- name of DRAM
rows: IN Positive;-- #of rows in the DRAM
columns:IN Positive;-- #of columns in the DRAM
width: IN Positive;-- # of bits per word
refresh_period:IN TIME;-- max time between refresh
default_word:IN std_ulogic_vector-- default value of DRAM
) return mem_id_type;

Function DRAM_Initialize (
name: IN string;-- name of DRAM
rows: IN Positive;-- #of rows in the DRAM
columns:IN Positive;-- #of columns in the DRAM
width: IN Positive;-- # of bits per word
refresh_period:IN TIME;-- max time between refresh
default_word:IN bit_vector-- default value of DRAM
) return mem_id_type;

DESCRIPTION:

This function generates the data structure that is used to store the data for a
DRAM. It returns a pointer to the generated data structure. It must be called
once for each DRAM being modeled. Multiple calls to this procedure results
multiple data structures being generated. The mem_id_type value that is ret
is used to identify the modeled DRAM and must be passed to all procedures
access this DRAM.
Std_DevelopersKit User’s Manual, V2.22-18

Std_Mempak DRAM_Initialize

yed
essing

the

ry to
 then
row
ugh

d

 the
he
th,
for
 is

no
me

the
ory
ich
ize a
ARGUMENTS

• name

is a string that is used so that the modeler can identify a DRAM. It is displa
in assertion statements that the Std_Mempak routines generate when acc
a DRAM.

• rows

specifies the number of rows in the specified DRAM.

• columns

specifies the number of columns (that is the number of words per row) in
DRAM.

• width

specifies the number of bits in each word of the DRAM.

• refresh_period

specifies that maximum time a row can retain its data before it is necessa
refresh it. If the row is not refreshed before the refresh period has expired,
the data in it is invalidated (set to ‘X’s). Note that this function treats each
as if it was reset at the time this function was called. As a result, even tho
once the memory is “woken up” it only returns ‘X’s when read, the refresh
period of any row does not expire until the time that the function was calle
plus the refresh period.

• default_word

specifies the default value for the memory. The “default_word” must have
same width as the memory. The elements of the vector are converted to t
X01 subtype before the default word is stored. If the vector is of zero leng
then the default word is all ‘U’s. The default word has a different function
DRAMs then it does for SRAMs and ROMs. When a DRAM is initialized, it
not “woken up” and, thus, is not functional. When the Mem_Wake_Up
function is called, the DRAM returns ‘X’s for any read operation because
data was written to it. If the contents of the DRAM are to be initialized to so
default word then the procedure Mem_Reset must be used. In this case,
purpose of the “default_word” is to allow Mem_Reset to set all of the mem
to the default value without allocating any memory on the machine on wh
the simulation is being run. The code segment below shows how to initial
Std_DevelopersKit User’s Manual, V2.2 2-19

DRAM_Initialize Std_Mempak

t of
.

64K by 8 bit DRAM and initialize its contents to the default word
“10110001”.

Variable dram1 : mem_id_type;
dram1 := DRAM_Initialize (

(
name => "DRAM #1";
rows => 256;
columns => 256;
width => 8;
refresh_period => 4.0 ms;
default_word => bit_vector'("10110001")

);
Mem_Reset (dram1, bit_vector'("10110001"));
-- Note that Mem_Reset "wakes up" the memory

BUILT IN ERROR TRAP:

If the “default_word” does not have the same width as the memory and is no
zero length an error assertion is issued and the default word is set to all ‘U’s
Std_DevelopersKit User’s Manual, V2.22-20

Std_Mempak Mem_Wake_Up

e
e

onal.
a

e if

ecute

this
e
ory

rror
Mem_Wake_Up
Memory Wake Up: To “wake up” a DRAM.

DECLARATION:

Procedure Mem_Wake_Up (
mem_id:INOUT mem_id_type-- memory to be woken up
);

DESCRIPTION:

In practice, upon power up, DRAMs require several initialization cycles befor
they become operational. Also, should a period of time that is greater than th
DRAM’s refresh period pass without any operations being performed on the
DRAM, the same initialization cycles are required to make the device operati
This procedure provides a facility to simulate these “wake up” cycles. When
DRAM is initialized with DRAM_Initialize, it is in an inactive state (not “woken
up”). This procedure must be called to “wake up” the DRAM. The same is tru
a time interval equivalent to the refresh period expires without one of the
procedures Mem_Read, Mem_Write, Mem_Row_Refresh, or Mem_Refresh
being called. (The procedures Mem_Reset and Mem_Load automatically ex
a call to Mem_Wake_UP.)

This procedure takes the current time and writes it into a variable in the data
structure of the memory specified by the parameter“mem_id” . The procedures
Mem_Read, Mem_Write, Mem_Row_Refresh, and Mem_Refresh compare
variable to the current time to ensure that an operation was performed on th
memory within the refresh period. If an operation was performed on the mem
within the refresh period, they then update this variable.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a ROM or an SRAM then an e
assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-21

Mem_Refresh Std_Mempak

er

is

esses

fresh
in the
nt to
set to
.

rror
Mem_Refresh
To refresh a row of a DRAM.

OVERLOADED DECLARATIONS:

Procedure Mem_Refresh (
mem_id:INOUT mem_id_type;-- memory to be refreshed
);

DESCRIPTION:

This procedure first checks to see that the memory specified by the paramet
“mem_id” has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. The procedure
refreshes only one row of memory. The row is determined by a counter that
maintained within the memory’s data structure. It checks to see if the refresh
period has expired on the row specified by the counter. If it has then all addr
in that row are filled with ‘X’s. If the constant MEM_WARNINGS_ON is true,
then a warning assertion is issued. As long as the memory is “woken up” a re
is performed. Of course, if the refresh period has expired, any data that was
row is lost. Once the row is refreshed the counter is then incremented to poi
the next row. Once the highest numbered row is refreshed, the counter is re
0. To be consistent with the actual hardware this counter is NOT user visible

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a ROM or an SRAM then an e
assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-22

Std_Mempak Mem_Row_Refresh

er

to

 the
 has
 with

SB.
Mem_Row_Refresh
To refresh the specified row of a DRAM.

OVERLOADED DECLARATIONS:

Procedure Mem_Row_Refresh (
mem_id:INOUT mem_id_type;-- memory to be refreshed
row: IN Natural-- row to be refreshed
);

Procedure Mem_Row_Refresh (
mem_id:INOUT mem_id_type;-- memory to be refreshed
row: IN bit_vector-- row to be refreshed
);

Procedure Mem_Row_Refresh (
mem_id:INOUT mem_id_type;-- memory to be refreshed
row: IN std_logic_vector-- row to be refreshed
);

Procedure Mem_Row_Refresh (
mem_id:INOUT mem_id_type;-- memory to be refreshed
row: IN std_ulogic_vector-- row to be refreshed
);

DESCRIPTION:

This procedure first checks to see that the memory specified by the paramet
“mem_id” has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. It then checks
see if the refresh period has expired on the row specified by the parameter“row” .
If it has, then all addresses in that row are filled with ‘X’s. If the constant
MEM_WARNINGS_ON is true, then a warning assertion is issued. As long as
memory is “woken up” a refresh is performed. Of course, if the refresh period
expired, any data that was in the row is lost. Note that if the actual associated
the parameter“row” is a vector then the left most index of the vector is
considered to be the MSB and the right most index is considered to be the L
Furthermore the vector is considered to be in an unsigned format.
Std_DevelopersKit User’s Manual, V2.2 2-23

Mem_Row_Refresh Std_Mempak

the
ant
the
bered

 the
 is

r

ed by
 are

de

ory

n an
HANDLING OF ‘U’s AND ‘X’s IN THE ROW ADDRESS:

If the row is specified by a vector and the length of the vector is longer than
number of bits needed to access the highest numbered row then if the const
MEM_WARNINGS_ON is true a warning assertion is issued. If the length of
vector is shorter than the number of bits needed to represent the highest num
row then the vector is assumed to be the least significant bits of the row and
remaining bits are assumed to be ‘X’s. If the constant MEM_WARNINGS_ON
true then an assertion is issued.

Any time the vector specifying the row either contains ‘U’s or ‘X’s or is shorte
than necessary it is necessary to map these values to a bit value in order to
determine which row to refresh. The values they are mapped to are determin
the constants ADDRESS_X_MAP and ADDRESS_U_MAP. These constants
globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAPS:

1. If the row specified is greater then the highest numbered row in the mem
then an error assertion is issued and no operation is performed.

2. If an attempt is made to use this procedure on a ROM or an SRAM the
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-24

Std_Mempak Mem_Access
Mem_Access
Memory Access: To examine an address of memory without refreshing the
corresponding DRAM row.

OVERLOADED DECLARATIONS:

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT std_ulogic-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT bit-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN bit_vector;-- address to read from
data:OUT bit-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_logic_vector;-- address to read from
data:OUT std_ulogic-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_ulogic_vector;-- address to read from
data:OUT std_ulogic-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT bit_vector-- contents of memory location
);
Std_DevelopersKit User’s Manual, V2.2 2-25

Mem_Access Std_Mempak

ulate
 the
 or a

 and

r

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT std_logic_vector-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT std_ulogic_vector-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN bit_vector;-- address to read from
data:OUT bit_vector-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_logic_vector;-- address to read from
data:OUT std_logic_vector-- contents of memory location
);

Procedure Mem_Access (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_ulogic_vector;-- address to read from
data:OUT std_ulogic_vector-- contents of memory location
);

DESCRIPTION:

This procedure reads a word from memory. The procedure is not meant to em
some hardware function but, rather, is provided to aid the model designer in
design of the memory model. The word that is read can be either a single bit
vector. The parameter“mem_id” is the pointer to the memory data structure. It
identifies the memory that is to be read. The parameter“address” specifies the
address to be read. Note that if the actual associated with the parameter“address”
is a vector then the left most index of the vector is considered to be the MSB
the right most index is considered to be the LSB. Furthermore the vector is
considered to be in an unsigned format. The parameter“data” contains the data
that has been read from memory. If the actual associated with the paramete
Std_DevelopersKit User’s Manual, V2.22-26

Std_Mempak Mem_Access

y the
 the

he

 is
y.

as
e,
ing

e data

are
o aid

e of

ed by
ally

de

han
, if the

e
ress
“data” is a vector whose length is less than the width of the memory then onl
least significant bits of the memory are returned. If the actual associated with
parameter“data” is a vector whose length is longer than the width of memory
then the word read from memory is placed in the least significant bits of the
parameter“data” and the most significant bits are set to ‘X’. In either case if t
constant MEM_WARNINGS_ON is true then an assertion of severity
WARNING is made to alert the user to this condition. MEM_WARNINGS_ON
a constant whose value is globally defined in the Std_Mempak package bod

Whenever this procedure is called a check is made to see that the memory h
been “woken up”. If not, X’s are returned and if MEM_WARNINGS_ON is tru
a warning assertion is issued. If the refresh period has expired on the row be
accessed (row = address mod number of columns) then ‘X’s are returned, th
in the row is invalidated, and, if MEM_WARNINGS_ON is true, a warning
assertion is made. This procedure differs from Mem_Read in that it does not
perform a refresh. This is because this procedure does not emulate a hardw
function but, rather, is provided as a way of viewing the contents of memory t
in the design of a model.

HANDLING OF ‘U’s AND ‘X’s IN READING DATA:

If a ‘U’ or an ‘X’ is to be returned as the result of a read operation and the typ
the parameter“data” is either bit or bit_vector then the ‘U’ or ‘X’ must be
mapped to a valid bit value. The values that they are mapped to are determin
the constants DATA_X_MAP and DATA_U_MAP. These constants are glob
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
to inform the user of the mapping.

HANDLING OF ‘U’s AND ‘X’s IN ADDRESSES:

If the address is specified by a vector and the length of the vector is longer t
the number of bits needed to access the highest address in the memory then
constant MEM_WARNINGS_ON is true, a warning assertion is issued. If the
length of the vector is shorter than the number of bits needed to represent th
address then the vector is assumed to be the least significant bits of the add
and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true then a warning assertion is issued.
Std_DevelopersKit User’s Manual, V2.2 2-27

Mem_Access Std_Mempak

mory it
ddress

de

rror
is filled
d

 in
Any time the vector specifying the address either contains ‘U’s or ‘X’s or is
shorter than what is necessary to access the entire address space of the me
is necessary to map these values to bit values in order to determine which a
to read. The values they are mapped to are determined by the constants
ADDRESS_X_MAP and ADDRESS_U_MAP. These constants are globally
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAP:

If the specified address is out of the address range of the memory then an e
assertion is issued and the actual that is associated with the parameter data
with ‘X’s. If the actual is a bit or a bit_vector the ‘X’s are handled as describe
above.

NOTE: This procedure may also be used with ROMs and SRAMs, however,
these cases it is identical to the procedure Mem_Read.
Std_DevelopersKit User’s Manual, V2.22-28

Std_Mempak Video RAMs

mic

logic.

l the

maller

M.

f up

e.
he

 in

he

y be
er
s a
Video RAMs

General Information

Before attempting to model a Video RAM it is important to understand the
general organization of VRAMs. VRAMs consist of three main parts: a Dyna
RAM (DRAM), a Serial Access Memory (SAM), and a collection of small
registers (such as a mask register and a color register), buffers, and control
The DRAM and the SAM are essentially the same from VRAM to VRAM
varying mostly in their sizes. Std_Mempak provides a data structure to mode
DRAM and SAM portions of VRAMs. It also provides routines to handle data
manipulation between these two main portions of the VRAM. In addition, it
provides routines to ease the modeling of the transfer of data between the s
registers and the DRAM and the SAM.

The DRAM portion of the VRAM is essentially the same as any dynamic RA
Off chip access to the DRAM is limited to a word at a time. The address is
specified on the VRAM’s address lines by supplying first the row address
followed by the column address. The Serial Access Memory is a small static
memory. Data can be transferred between the SAM and the DRAM in units o
to the entire size of the SAM.

Off chip access to the SAM, like the DRAM, is limited to a single word at a tim
However, unlike the DRAM, there is no direct addressability into the SAM. T
address of the SAM that may be read from or written to is determined by the
serial pointer. This pointer may be set from the VRAM’s address lines. In
addition, there may be two other pointers into the SAM calledtaps. They, also,
may be set from the VRAM’s address lines. The SAM can also be accessed
split register mode in which the SAM is effectively treated as two separate
memories. In this case, the SAM is divided into an upper and a lower half. T
SAM itself may vary from chip to chip. The SAM always has the same width
(number of bits in a word) as the DRAM. The number of words, however, ma
either the same as the number of columns in the DRAM (number of words p
row) or one half as large. The larger version of the SAM is referred to here a
full size SAM and the smaller version is referred to as ahalf size SAM.
Std_DevelopersKit User’s Manual, V2.2 2-29

Video RAMs Std_Mempak

k

ing

of
 If
M.

s
med.
ich tap
The following diagram shows the portion of the VRAM for which Std_mempa
provides a data structure to model the memory:

Figure 2-4. VRAM Data Structure Diagram

There are four primary data transfer operations that are involved in transferr
data between the DRAM and the SAM. Not all VRAMs implement all four
operations. The first is aread transfer operation between the DRAM and the
SAM while the SAM is in single register mode. This operation causes a row
data from the DRAM to be copied into the SAM. This fills the SAM with data.
the SAM is a half size SAM then only half of the row is transferred into the SA
A mechanism is provided for determining which half is transferred. Some
VRAMs have awrite transfer operation in which the contents of the SAM are
written to either a row of the DRAM or to a specified half of a row. An addres
into the SAM is usually provided when one of these two operations are perfor
This address is usually used to set the serial pointer and one of the taps. Wh

SAM
s words x r bits

DRAM

m rows x n columns x r bits
m + n bits

r bits

r bits

DRAM
data

Address

SAM
data

s words x r bits
Std_DevelopersKit User’s Manual, V2.22-30

Std_Mempak Video RAMs

he

n

nto
 half
f
o

 the

inter
er.

. In
ter.
, the
nce
rial
er

ap
is set is determined by the half of the SAM in which the address is located. T
diagram below shows a more detailed representation of the SAM and its
associated pointers.

Figure 2-5. A SAM and Associated Pointers

Data may also be transferred from the DRAM to the SAM when the SAM is i
split register mode. This is known as asplit register read transfer operation. In
the case of a full size SAM, the contents of half of a specified row is copied i
one half of the SAM. Here too, a mechanism is provided to determine which
of the row is to be transferred into which half of the SAM. If the SAM is a hal
size SAM then a specified quarter of the row is transferred into one of the tw
SAM halves. Some VRAMs also have asplit register write transfer operation in
which half of the SAM is copied into a half (or a quarter) of a specified row of
DRAM. Once again an address into the SAM is usually provided when this
operation is performed. In this case, the address does not affect the serial po
but does set the tap for the half of the SAM that is involved in the data transf

Data may be read from the SAM (to off of the VRAM chip) one word at a time
this case the word that is read from the SAM is determined by the serial poin
Following the read, the serial pointer is incremented. In single register mode
serial pointer is incremented by 1 modulo the size of the SAM. As a result, o
the highest address in the SAM is read, the serial pointer resets to 0. The se
pointer operates in a slightly different manner when the SAM is in split regist
mode. In this case, the serial pointer is incremented by one. If, however,
incrementing the pointer causes it to pass a half SAM boundary then, if the t

SAM

0 s/2 - 1 0 s/2 - 1

0 s - 1

lower
tap

upper
tap

serial
ptr
Std_DevelopersKit User’s Manual, V2.2 2-31

Video RAMs Std_Mempak

point
ply
ts to

 to 0.

rite

 row

M

as a

ite-

age

tions
ines
address for the half of the SAM it is entering is set, the serial pointer is set to
to the address specified by that tap. If it is not set, then the serial pointer sim
goes to the next address in the SAM. If it is entering the upper half then it poin
the first address in the upper half. If it is entering the lower half then it is reset
Some VRAMs also allow for write access to the SAM in both single and split
register modes. The operations described above are known as serial read and
serial write operations.

Std_Mempak provides routines to implement the data transfer operations
described above. VRAMs also have several other data transfer operations.
VRAMs have a single word register called a color register. The capability to w
the contents of the color register to several DRAM locations at one time is
generally provided. This is typically known as ablock write operation. Some
VRAMs also allow the contents of the color register to be written to an entire
of the DRAM. This is typically known as aflash write operation. Although
Std_Mempak does not provide storage for a color register it does provide the
VHDL model designer with procedures to write a single word to multiple DRA
locations and to an entire DRAM row.

In addition VRAMs usually have a write mask register (referred to in this text
write-per-bit mask register). This register determines what bits of the DRAM
are modified when a write is performed. That is, when a byte is written to the
DRAM, only those bits that have a ‘1’ in the corresponding location in the wr
per-bit mask are modified. For example:

write-per-bit mask1001
word to be written1100
current memory contents0011
memory contents after write1010

Std_Mempak allows for extensive write-per-bit capabilities and provides stor
for the write-per-bit mask.

In addition to the operations described above all of the standard DRAM
operations are available to access the DRAM portions of VRAMs. These
operations include memory reads, memory writes, and memory refresh opera
(i.e. CAS-before-RAS refresh and RAS-Only refresh). The Std_Mempak rout
that provide these functions for DRAMs are available for use with VRAMs.
Std_DevelopersKit User’s Manual, V2.22-32

Std_Mempak Video RAMs

 be

le to
Modeling VRAMs with Std_Mempak

Since VRAMs make extensive use of DRAMs, before attempting to model a
VRAM, the VHDL model designer should be familiar with the use of
Std_Mempak in modeling DRAMs. All of the routines provided for use with
DRAMs (except DRAM_Initialize) and all of the common procedures can also
used when modeling VRAMs.

The following table lists all of the Std_Mempak procedures that are applicab
VRAMs and describes the hardware functions that they implement.

Table 2-2. Std_Mempak Procedures for VRAMs

Std_Mempak Routine Hardware Function

VRAM_Initialize Initialize VRAM data structure - no
hardware equivalent.

Mem_RdTrans Read Transfer operation (DRAM to SAM)
in single register mode.

Mem_Split_RdTrans Read Transfer operation (DRAM to SAM)
in split register mode.

Mem_WrtTrans Write Transfer operation (SAM to DRAM)
in single register mode.

Mem_Split_WrtTrans Write Transfer operation (SAM to DRAM)
in split register mode.

Mem_RdSAM Serial Read operation (from SAM) in single
register mode.

Mem_Split_RdSAM Serial Read operation (from SAM) in split
register mode.

Mem_WrtSAM Serial Write operation (to SAM) in single
register mode.

Mem_Split_WrtSAM Serial Write (to SAM) in split register mode.

Mem_Block_Write Write a word to several DRAM addresses.

Mem_Row_Write Write a word to an entire DRAM row.
Std_DevelopersKit User’s Manual, V2.2 2-33

Video RAMs Std_Mempak

s and
The diagram on the facing page shows the primary memory transfer function
the portions of the VRAM on which they operate.

Mem_Set_WPB_Mask Set the write-per-bit mask.

Mem_Active_SAM_Half Determines which half of the SAM is active.

Mem_Get_SPtr Return the value of the serial pointer - no
hardware equivalent.

Mem_Set_SPtr Set value of serial pointer - no hardware
equivalent.

Mem_Read Read a word from the DRAM.

Mem_Write Write a word to the DRAM.

Mem_Wake_Up Initialize the DRAM for I/O.

Mem_Refresh CAS-before-RAS refresh.

Mem_Row_Refresh RAS-Only Refresh.

Mem_Access Read a word from the DRAM without
refreshing the row - no hardware equivalent.

Mem_Reset Reset a range of DRAM addresses to a given
value - no hardware equivalent.

Mem_Load Load a portion of the DRAM from a file - no
hardware equivalent.

Mem_Dump Store a portion of the DRAM to a file - no
hardware equivalent.

Mem_Valid Check if a DRAM address contains valid
data - no hardware equivalent.

Table 2-2. Std_Mempak Procedures for VRAMs

Std_Mempak Routine Hardware Function
Std_DevelopersKit User’s Manual, V2.22-34

Std_Mempak Video RAMs

f
d by
ed.
e

is

 the
Figure 2-6. Primary Memory Transfer Function Mapping

When modeling VRAMs it is important to remember that the DRAM portion o
the VRAM behaves just the same as any DRAM would behave when isolate
itself. Before a VRAM can be used the VRAM_Initialize function must be call
This routine generates the data structure necessary to store information in th
VRAM. It returns a mem_id_type which is a pointer to this data structure. Th
routine must be called only once for each VRAM being modeled. The access
value returned by this function must be used in all subsequent references to
initialized DRAM.

Mem_RdTrans

Mem_Split_RdTrans

Mem_WrtTrans
Mem_Split_WrtTrans

Mem_RdSAM

Mem_Split_RdSAM

Mem_WrtSAM

Mem_Split_WrtSAM

Mem_Read
Mem_Write

Mem_Block_Write
Mem_Row_Write

DRAM

SAM

To off chip

To off chip
Std_DevelopersKit User’s Manual, V2.2 2-35

Video RAMs Std_Mempak

me
ation

ure
nal.

at all

te

 of
In practice, upon power up, the DRAM portion of a VRAM requires several
initialization cycles before it becomes operational. Also, should a period of ti
that is greater than the DRAM portion’s refresh period pass without any oper
being performed on the DRAM, the same initialization cycles are required to
make the device operational. A facility to simulate these “wake up” cycles is
provided for in Std_Mempak’s modeling of VRAMs and DRAMs. The proced
Mem_Wake_Up causes the DRAM portion of the VRAM to become operatio

This section describes those routines that are unique to Video RAMs. Note th
those routines that were previously described as unique to DRAMs (expect
DRAM_Initialize) are appropriate for use with VRAMs. These routines opera
on the DRAM portion of VRAMs. All of the common routines are also
appropriate for use with VRAMs and they also operate on the DRAM portion
VRAMs.
Std_DevelopersKit User’s Manual, V2.22-36

Std_Mempak VRAM_Initialize

.

VRAM_Initialize
VRAM Initialization: To generate and initialize the data structure for a VRAM

DECLARATION:

Function VRAM_Initialize (
name: IN string;-- name of VRAM
rows: IN Positive;-- # of rows in the DRAM
columns:IN Positive;-- # of columns in the DRAM
width: IN Positive;-- # of bits per word
sam_columns:IN Positive,-- # of words in the SAM
block_size:IN Positive,-- max words in block write
refresh_period:IN TIME,-- max time between refresh
default_word:IN std_logic_vector-- default value of DRAM
) return mem_id_type;

Function VRAM_Initialize (
name: IN string;-- name of VRAM
rows: IN Positive;-- # of rows in the DRAM
columns:IN Positive;-- # of columns in the DRAM
width: IN Positive;-- # of bits per word
sam_columns:IN Positive,-- # of words in the SAM
block_size:IN Positive,-- max words in block write
refresh_period:IN TIME;-- max time between refresh
default_word:IN std_ulogic_vector-- default value of DRAM
) return mem_id_type;

Function VRAM_Initialize (
name: IN string;-- name of VRAM
rows: IN Positive;-- # of rows in the DRAM
columns:IN Positive;-- # of columns in the DRAM
width: IN Positive;-- # of bits per word
sam_columns:IN Positive,-- # of words in the SAM
block_size:IN Positive,-- max words in block write
refresh_period:IN TIME;-- max time between refresh
default_word:IN bit_vector-- default value of DRAM
) return mem_id_type;
Std_DevelopersKit User’s Manual, V2.2 2-37

VRAM_Initialize Std_Mempak

only
in
urned
 that

yed
essing

the

M

M.
hat
of 2.

ng a
 2
t be a
DESCRIPTION:

This function generates the data structure that is used to store the data for a
VRAM. It returns a pointer to the generated data structure. It must be called
once for each VRAM being modeled. Multiple calls to this procedure results
multiple data structures being generated. The mem_id_type value that is ret
is used to identify the modeled VRAM and must be passed to all procedures
access this VRAM.

ARGUMENTS

• name

is a string that is used so that the modeler can identify a VRAM. It is displa
in assertion statements that the Std_Mempak routines generate when acc
a VRAM.

• rows

specifies the number of rows in the DRAM portion of the VRAM.

• columns

specifies the number of columns (that is the number of words per row) in
DRAM portion of the VRAM.

• width

specifies the number of bits in each word of the DRAM portion of the VRA
as well as each word in the SAM.

• sam_columns

determines the number of words (columns) in the SAM portion of the VRA
This parameter must be equal to the “columns” parameter or one half of t
number. This parameter must also be assigned a value that is a multiple

• block_size

specifies the maximum number of words that may be written to a row duri
block write operation. This number must be a power of 2 (i.e. block_size =n).
It must also be no greater than the number of columns in a row and it mus
factor of the bit width of the memory.
Std_DevelopersKit User’s Manual, V2.22-38

Std_Mempak VRAM_Initialize

 it is

 this
led.
’s
t the

f the
. If
ord
en
t

s
ts of

 is to

n.
• refresh_period

specifies the maximum time a row of the DRAM can retain its data before
necessary to refresh the row. If the row is not refreshed before the refresh
period has expired, then the data in it is invalidated (set to ‘X’s). Note that
function treats each row as if it was reset at the time this function was cal
As a result, even though once the memory is “woken up” it only returns ‘X
when read, the refresh period of any row does not expire until the time tha
function was called plus the refresh period.

Note that the write-per-bit mask is initialized to all ‘1’s. The serial pointer is
initialized to address 0 of the SAM. The two taps are initialized to the lowest
addresses in their respective SAM halves.

• default_word

specifies the default value for the DRAM portion of the VRAM. The
“default_word” must have the same width as the memory. The elements o
vector are converted to the X01 subtype before the default word is stored
the vector is of zero length, then the default word is all ‘U’s. The default w
has a different function for VRAMs then it does for SRAMs and ROMs. Wh
a VRAM is initialized, the DRAM portion is not “woken up” and, thus, is no
functional. When the Mem_Wake_Up function is called, the VRAM return
‘X’s for any read operation because no data was written to it. If the conten
the DRAM are to be initialized to some default word then the procedure
Mem_Reset must be used. In this case, the purpose of the “default_word”
allow Mem_Reset to set all of the DRAM to the default value without
allocating any memory on the machine on which the simulation is being ru
The SAM portion of the VRAM is always initialized to contain all ‘X’s.
Std_DevelopersKit User’s Manual, V2.2 2-39

VRAM_Initialize Std_Mempak

h a
d

d is
et to

. The
The code segment below shows how to initialize a 64K by 8 bit VRAM wit
full size SAM and to initialize the contents of the DRAM to the default wor
“10110001”.

Variable vram1 : mem_id_type;
vram1 := VRAM_Initialize (

(
name => "VRAM #1";
rows => 256;
columns => 256;
width => 8;
sam_columns => 256;
refresh_period => 4.0 ms;
default_word => bit_vector'("10110001")

);
Mem_Reset (vram1, bit_vector'("10110001"));
-- Note that Mem_Reset "wakes up" the memory

BUILT IN ERROR TRAPS:

1. If the“default_word” does not have the same width as the memory an
not of zero length an error assertion is issued and the default word is s
all ‘U’s.

2. If the parameter“sam_columns” is not equal to the parameter“columns”
or is not equal to one half of that value then an error assertion is issued
VRAM procedures may not function properly if this error occurs.
Std_DevelopersKit User’s Manual, V2.22-40

Std_Mempak Mem_Set_WPB_Mask

1
 the

d in
ory,

 of

 of
e

Mem_Set_WPB_Mask
Set Write-Per-Bit Mask: To set a VRAM’s write-per-bit mask.

OVERLOADED DECLARATIONS:

Procedure Mem_Set_WPB_Mask (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantmask:IN std_logic_vector-- write-per-bit mask
);

Procedure Mem_Set_WPB_Mask (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantmask:IN std_ulogic_vector-- write-per-bit mask
);

Procedure Mem_Set_WPB_Mask (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantmask:IN bit_vector-- write-per-bit mask
);

DESCRIPTION:

This procedure sets the write-per-bit mask for the VRAM specified by the
parameter “mem_id” . The actual associated with the formal parameter“mask” is
the value to which the write-per-bit mask is set after it is converted to the X0
subtype. If the length of the actual is less than the width of the memory then
least significant bits of the write-per-bit mask is filled with the“mask” and the
most significant bits are filled with ‘X’s. The ‘X’s are then mapped as describe
the next section. If the length of the actual is greater than the width of the mem
then only the least significant bits of the vector are used. Any time the length
the actual does not match the width of the memory, if the constant
MEM_WARNINGS_ON is true, an assertion of severity WARNING is made.
The constant MEM_WARNINGS_ON is globally defined in the Std_Mempak
package body.

Note: If the constant EXTENDED_OPS is set to TRUE prior to the installation
Std_Mempak (prior to compilation of the package) then this procedure can b
used with DRAMs and SRAMs.
Std_DevelopersKit User’s Manual, V2.2 2-41

Mem_Set_WPB_Mask Std_Mempak

er
ry it

ped

, an
HANDLING OF ‘X’s:

Any time the vector specifying the write-per-bit mask either contains ‘X’s (aft
being converted to the X01 subtype) or is shorter than the width of the memo
is necessary to map the resulting ‘X’s to bit values. The value that ‘X’ is map
to is determined by the constant DATA_X_MAP. This constant is globally
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is
issued when such a mapping occurs.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-42

Std_Mempak Mem_Block_Write
Mem_Block_Write
Write a Word to a Block: Write a word to several consecutive locations in the
DRAM portion of a VRAM.

OVERLOADED DECLARATIONS:

Procedure Mem_Block_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantaddress:IN Natural;-- start address
Constantdata:IN std_logic_vector;-- data to write
Constantcolumn_mask:IN std_logic_vector,-- col. mask
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Block_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantaddress:IN Natural;-- start address
Constantdata:IN std_ulogic_vector;-- data to write
Constantcolumn_mask:IN std_ulogic_vector,-- col. mask
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Block_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantaddress:IN std_logic_vectorl;-- start address
Constantdata:IN std_logic_vector;-- data to write
Constantcolumn_mask:IN std_logic_vector,-- col. mask
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Block_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantaddress:IN std_ulogic_vector;-- start address
Constantdata:IN std_ulogic_vector;-- data to write
Constantcolumn_mask:IN std_ulogic_vector,-- col. mask
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);
Std_DevelopersKit User’s Manual, V2.2 2-43

Mem_Block_Write Std_Mempak

e,
of

ment

en.
e the
l
ngth
nsists
Procedure Mem_Block_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantaddress:IN Natural;-- start address
Constantdata:IN bit_vector;-- data to write
Constantcolumn_mask:IN bit_vector,-- col. mask
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Block_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantaddress:IN bit_vector;;-- start address
Constantdata:IN bit_vector;-- data to write
Constantcolumn_mask:IN bit_vector,-- col. mask
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

DESCRIPTION:

This procedure writes a word specified by the parameter“data” to the DRAM
portion of the VRAM specified by the parameter“mem_id” . The word is written
to the addresses specified by the parameters“column_mask” and“address”. If
the parameter“write_per_bit” is true, then write-per-bit is enabled. In this cas
only those bits of the DRAM that have a ‘1’ in the corresponding bit position
the write-per-bit mask are modified.

ARGUMENTS

• address

specifies the starting address of the block write operation. If the actual
associated with the parameter “address” is a vector, then the left most ele
of the vector is considered to be the MSB and the right most element is
considered to be the LSB.

• column_mask

specifies the addresses to which (starting at the address specified by the
parameter “address”) the data word or portions of the word are to be writt
The left most element of the parameter “column_mask” is considered to b
MSB and the right most element is considered to be the LSB. If the actua
associated with the formal parameter “column_mask” is a vector whose le
is less than the width of the memory then the column mask that is used co
of a vector whose least significant bits are filled with the contents of the
Std_DevelopersKit User’s Manual, V2.22-44

Std_Mempak Mem_Block_Write

 the
hose
nt
tant

tant

n

” and

ding

rite

ory
 the

is
parameter “column_mask” and whose most significant bits are set to ‘X’. If
actual associated with the formal parameter “column_mask” is a vector w
length is greater than the width of the memory then only the least significa
bits of this vector are used for the column mask. In either case, if the cons
MEM_WARNINGS_ON is true then an assertion of severity WARNING is
made to alert the user to this condition. MEM_WARNINGS_ON is a cons
whose value is globally defined in the Std_Mempak package body.

• column_mask”

determines the addresses to which data is to be written. If the block size
(specified in the procedure VRAM_Initialize) is smaller than the width of a
word of the memory, then each word of the memory (as well as the colum
mask) is broken up into memory_width / block_size segments. For each
segment of the column mask, each bit represents an address. The least
significant bit represents the address specified by the parameter “address
the most significant bit represents the address specified by the parameter
“address” + block_size - 1. For each bit in the column mask, the correspon
segment of the data word is written to the corresponding segment of the
address represented by the bit if the bit is a ‘1’. If the bit is a ‘0’, then the
segment of the corresponding address remains unchanged. This is
demonstrated in the example shown below:

Given a VRAM that is 16 bits wide and has a block size of four, then a block w
to location 1024 with the parameters shown below has the following results
(assuming that the memory is initially filled with ‘1’s):

write-per-bit mask = 1111 0110 0101 0111
column mask = 1110 1000 1110 1010
data = 1101 0011 1011 0101

address 1024 = 1111 1111 1111 1111
address 1025 = 1101 1111 1011 1101
address 1026 = 1101 1111 1011 1111
address 1027 = 1101 1011 1011 1101

If the actual associated with the formal parameter“data” is a vector whose length
is less than the width of the memory then the least significant bits of the mem
locations are filled with the data and the most significant bits are set to ‘X’. If
actual associated with the formal parameter“data” is a vector whose length is
greater than the width of the memory then only the least significant bits of th
Std_DevelopersKit User’s Manual, V2.2 2-45

Mem_Block_Write Std_Mempak

de

 of
e

rtion

of
nd if

also
. As a
sses

tion
lid.
w is

ial

.
are
eter is

e.
pak
vector are written to the memory. In either case, if the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
to alert the user to this condition.

Note: If the constant EXTENDED_OPS is set to TRUE prior to the installation
Std_Mempak (prior to compilation of the package) then this procedure can b
used with DRAMs and SRAMs.

REFRESH:

Whenever this procedure is called a check is made to see that the DRAM po
of the VRAM has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed (row = address mod number
columns) then the data in the row is invalidated before the write takes place a
MEM_WARNINGS_ON is true a warning assertion is made. This procedure
refreshes the row containing the addresses to which the data is being written
result, even if the refresh period had expired for the row containing the addre
to which data is being written, the addresses (excluding those addresses or
portions of those addresses which are not modified due to the values of the
column mask and/or the write-per-bit mask) involved in the block write opera
ends up containing valid data if the word being written to the addresses is va
The remainder of the addresses in that row containscontain ‘X’s. Also, the ro
refreshed even if none of the addresses are modified due to the value of the
column mask and/or the write-per-bit mask.

HANDLING OF ‘U’s AND ‘X’s IN DATA:

The data is converted to the X01 subtype before being stored. No other spec
action is taken if the data contains ‘U’s or ‘X’s.

HANDLING OF ‘X’s IN COLUMN_MASK:

The contents of the parameter“column_mask” are converted to the X01 subtype
If after this conversion, there are any ‘X’s in the column mask (whether they
passed in through the parameter or if they are generated because the param
too short) the ‘X’s are converted to the value specified by the constant
DATA_X_MAP. If MEM_WARNINGS_ON is true, a warning assertion is mad
DATA_X_MAP is a constant whose value is globally defined in the Std_Mem
package body.
Std_DevelopersKit User’s Manual, V2.22-46

Std_Mempak Mem_Block_Write

han
n of

ify the
 to
 the
 ‘X’s.

M it is
s to
y the
e

de

 an
HANDLING OF ‘U’s AND ‘X’s IN ADDRESSES:

If the address is specified by a vector and the length of the vector is longer t
the number of bits needed to access the highest address in the DRAM portio
the VRAM then, if the constant MEM_WARNINGS_ON is true, a warning
assertion is issued and the least significant bits of the vector are used to spec
address. If the length of the vector is shorter than the number of bits needed
represent the highest address in the DRAM then the vector is assumed to be
least significant bits of the address and the remaining bits are assumed to be
If the constant MEM_WARNINGS_ON is true, a warning assertion is issued.

Any time the vector specifying the address either contains ‘U’s or ‘X’s or is
shorter than what is necessary to access the entire address space of the DRA
necessary to map these values to bit values in order to determine the addres
which data is to be written. The values they are mapped to are determined b
constants ADDRESS_X_MAP and ADDRESS_U_MAP. These constants ar
globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAPS:

1. If the specified address is out of the address range of the memory then
error assertion is issued and no operation is performed.

2. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-47

Mem_Row_Write Std_Mempak
Mem_Row_Write
Write a Word to a Row: Write a word to all locations in a row of the DRAM
portion of a VRAM.

OVERLOADED DECLARATIONS:

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN Natural;-- row address
Constantdata:IN std_logic_vector;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN Natural;-- row address
Constantdata:IN std_ulogic;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN Natural;-- row address
Constantdata:IN std_ulogic_vector;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN Natural;-- row address
Constantdata:IN bit;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN std_logic_vectorl;-- row address
Constantdata:IN std_logic_vector;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);
Std_DevelopersKit User’s Manual, V2.22-48

Std_Mempak Mem_Row_Write
Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN std_ulogic_vector;-- row address
Constantdata:IN std_ulogic_vector;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN Natural;-- row address
Constantdata:IN bit_vector;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN bit_vector;;-- row address
Constantdata:IN bit_vector;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN std_logic_vector;-- row address
Constantdata:IN std_ulogic;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN std_ulogic_vectorl;-- row address
Constantdata:IN std_ulogic;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);

Procedure Mem_Row_Write (
Variablemem_id:INOUT mem_id_type;-- VRAM
Constantrow:IN bit_vector;-- row address
Constantdata:IN bit;-- data to write
Constantwrite_per_bit:IN Boolean := FALSE-- enable wpb
);
Std_DevelopersKit User’s Manual, V2.2 2-49

Mem_Row_Write Std_Mempak

ition

ory
 the

is

de
e

 of
e

rtion

 a
 As a
ds up

the
DESCRIPTION:

This procedure writes a word specified by the parameter“data” to the DRAM
portion of the VRAM specified by the parameter“mem_id” . The word is written
to all of the locations in the row of the DRAM specified by the parameter “row” .
If the parameter“write_per_bit” is true, then write-per-bit is enabled. In this
case, only those bits of the DRAM that have a ‘1’ in the corresponding bit pos
of the write-per-bit mask are modified.

If the actual associated with the parameter“row” is a vector, then the left most
index of the vector is considered to be the MSB and the right most index is
considered to be the LSB.

If the actual associated with the formal parameter“data” is a vector whose length
is less than the width of the memory then the least significant bits of the mem
locations are filled with the data and the most significant bits are set to ‘X’. If
actual associated with the formal parameter“data” is a vector whose length is
greater than the width of the memory then only the least significant bits of th
vector are written to the memory. In either case, if the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
to alert the user to this condition. MEM_WARNINGS_ON is a constant whos
value is globally defined in the Std_Mempak package body.

Note: If the constant EXTENDED_OPS is set to TRUE prior to the installation
Std_Mempak (prior to compilation of the package) then this procedure can b
used with DRAMs and SRAMs.

REFRESH:

Whenever this procedure is called a check is made to see that the DRAM po
of the VRAM has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed then the data in the row is
invalidated before the write takes place and if MEM_WARNINGS_ON is true
warning assertion is made. This procedure also refreshes the specified row.
result, even if the refresh period had expired for the specified row, the row en
containing valid data if the word being written to all the locations in the row is
valid. Also, even if write-per-bit is enabled and several bits are masked out,
entire row is refreshed.
Std_DevelopersKit User’s Manual, V2.22-50

Std_Mempak Mem_Row_Write

ial

the

ion
w. If
 the
nt

r
 it is
which

e

de

 an
HANDLING OF ‘U’s AND ‘X’s IN DATA:

The data is converted to the X01 subtype before being stored. No other spec
action is taken if the data contains ‘U’s or ‘X’s.

HANDLING OF ‘U’s AND ‘X’s IN THE ROW ADDRESS:

If the row is specified by a vector and the length of the vector is longer than
number of bits needed to access the highest row in the DRAM portion of the
VRAM then, if the constant MEM_WARNINGS_ON is true, a warning assert
is issued and the least significant bits of the vector are used to specify the ro
the length of the vector is shorter than the number of bits needed to address
highest row in the DRAM then the vector is assumed to be the least significa
bits of the row and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true, a warning assertion is issued.

Any time the vector specifying the row either contains ‘U’s or ‘X’s or is shorte
than what is necessary to access the entire row address space of the DRAM
necessary to map these values to bit values in order to determine the row to
data is to be written. The values they are mapped to are determined by the
constants ADDRESS_X_MAP and ADDRESS_U_MAP. These constants ar
globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAPS:

1. If the specified row is out of the row address range of the memory then
error assertion is issued and no operation is performed.

2. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-51

Mem_RdTrans Std_Mempak

AM
Mem_RdTrans
Single Register Mode Read Transfer: To perform a read transfer from the DR
to the SAM with the SAM in single register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN std_logic_vector;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
ConstantSerial_Ptr:IN std_logic_vector;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN std_ulogic_vector;
Constantrow_segment:IN segment_type := FULL
);
Std_DevelopersKit User’s Manual, V2.22-52

Std_Mempak Mem_RdTrans

ister
 to
Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
ConstantSerial_Ptr:IN std_ulogic_vector;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN bit_vector;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL
);

Procedure Mem_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
ConstantSerial_Ptr:IN bit_vector;
Constantrow_segment:IN segment_type := FULL
);

DESCRIPTION:

This procedure performs a read transfer operation with the SAM in single reg
mode. In other words, data is transferred from the DRAM portion of a VRAM
the SAM portion. Since the SAM is in single register mode, the entire SAM is
loaded with data.
Std_DevelopersKit User’s Manual, V2.2 2-53

Mem_RdTrans Std_Mempak

if
st

is

AM

e
 is

t. If
the
 to an
at

ing

imum
ARGUMENTS

• mem_id

specifies the VRAM on which the operation is to take place.

• row

specifies the row of the DRAM from which data is to be copied. Note that
the actual associated with the parameter “row” is a vector then the left mo
index of the vector is considered to be the MSB and the right most index
considered to be the LSB.

• row_segment

specifies the portion of that row from which the data is transferred. If the S
is a full size SAM then the “row_segment” parameter must have the value
FULL (the default value) which specifies that the entire row should be
transferred to the SAM. If the SAM is a half size SAM then the
“row_segment” parameter must have the value UPPER_HALF or the valu
LOWER_HALF specifying that either the upper or the lower half of the row
to be transferred to the SAM.

• Serial_Ptr

specifies the SAM address to which the VRAM’s serial pointer is to be se
this SAM address points to an address in the upper half of the SAM then
upper tap is set to point to that address as well. If this SAM address points
address in the lower half of the SAM then the lower tap is set to point to th
address.

If the SAM is a full size SAM and the specified“row_segment” is something
other than FULL then, if the constant MEM_WARNINGS_ON is true, an
assertion of severity WARNING is issued and the operation proceeds assum
that the parameter“row_segment” had the value FULL.
MEM_WARNINGS_ON is a constant whose value is globally defined in the
Std_Mempak package body.

Also, if the value specified for the serial pointer is greater than the maximum
address of the SAM then the serial pointer and the upper tap is set to the max
SAM address and, if MEM_WARNINGS_ON is true, a warning assertion is
issued.
Std_DevelopersKit User’s Manual, V2.22-54

Std_Mempak Mem_RdTrans

rtion

the

ion
w. If
 the
nt

r
 it is
 to

de

r of
eded
REFRESH:

Whenever this procedure is called a check is made to see that the DRAM po
of the VRAM has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed then the data in the row is
invalidated, the SAM is filled with ‘X’s, and if MEM_WARNINGS_ON is true a
warning assertion is made. This procedure also refreshes the specified row.

HANDLING OF ‘U’s AND ‘X’s IN ROW AND SERIAL POINTER:

If the row is specified by a vector and the length of the vector is longer than
number of bits needed to access the highest row in the DRAM portion of the
VRAM then, if the constant MEM_WARNINGS_ON is true, a warning assert
is issued and the least significant bits of the vector are used to specify the ro
the length of the vector is shorter than the number of bits needed to address
highest row in the DRAM then the vector is assumed to be the least significa
bits of the row and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true, a warning assertion is issued.

Any time the vector specifying the row either contains ‘U’s or ‘X’s or is shorte
than what is necessary to access the entire row address space of the DRAM
necessary to map these values to bit values in order to determine which row
read. The values they are mapped to are determined by the constants
ADDRESS_X_MAP and ADDRESS_U_MAP. These constants are globally
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

The above description also applies to the serial pointer. However, the numbe
bits needed to address the SAM may be different than the number of bits ne
to address a row.
Std_DevelopersKit User’s Manual, V2.2 2-55

Mem_RdTrans Std_Mempak

 an

r

BUILT IN ERROR TRAPS:

1. If the specified row is out of the row address range of the memory then
error assertion is issued and the SAM is filled with ‘X’s.

2. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.

3. If the SAM is a half size SAM and a value other than UPPER_HALF o
LOWER_HALF is associated with the“row_segment” parameter then an
error assertion is issued and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-56

Std_Mempak Mem_Split_RdTrans

 the
Mem_Split_RdTrans
Split Reg. Mode Read Transfer: To perform a read transfer from the DRAM to
SAM with the SAM in split register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN std_logic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
Constanttap:IN std_logic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);
Std_DevelopersKit User’s Manual, V2.2 2-57

Mem_Split_RdTrans Std_Mempak
Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN std_ulogic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
Constanttap:IN std_ulogic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN bit_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);
Std_DevelopersKit User’s Manual, V2.22-58

Std_Mempak Mem_Split_RdTrans

ter
 to
 is

if
ost
is

s.
Procedure Mem_Split_RdTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
Constanttap:IN bit_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
);

DESCRIPTION:

This procedure performs a read transfer operation with the SAM in split regis
mode. In other words, data is transferred from the DRAM portion of a VRAM
the SAM portion. Since the SAM is in split register mode, only half of the SAM
loaded with data.

ARGUMENTS

• mem_id

specifies the VRAM on which the operation is to take place.

• row

specifies the row of the DRAM from which data is to be copied. Note that
the actual associated with the parameter “rows” is a vector then the left m
index of the vector is considered to be the MSB and the right most index
considered to be the LSB.

• row_segment

specifies the portion of that row from which the data is transferred

• sam_segment

specifies the portion of the SAM that is to receive the data.

The following tables show the allowed combinations of values for the
“row_segment” and “sam_segment” parameters for full and half size SAM

Table 2-3. row_segment & sam_segment for Full Size RAM

sam_segment row_segment

LOWER_HALF LOWER_HALF

LOWER_HALF UPPER_HALF
Std_DevelopersKit User’s Manual, V2.2 2-59

Mem_Split_RdTrans Std_Mempak

o

p

e

alf

et to
the
ave a
alf
The values UPPER_HALF and LOWER_HALF refer, respectively, to the
upper and lower halves of a row or of the SAM. The values QUARTER1,
QUARTER2, QUARTER3, and QUARTER4 refer to the least significant t
the most significant quarters of a row.

• tap

specifies the SAM address to which the VRAM’s tap is to be set. Which ta
(either the upper or the lower) is dependent upon the value of the
“sam_segment” parameter. If the “sam_segment” parameter has the valu
UPPER_HALF then the upper tap is set. If it has the value LOWER_HALF
then the lower tap is set. The “tap” parameter specifies an offset into the h
SAM. If the SAM is 16 words long, then if the upper tap is to point to the
second word in the upper half of the SAM the “tap” parameter would be s
1 (0 being the first word) rather than 9. Also, if the actual associated with
“tap” parameter is vector, then in the above example, the vector should h
width of 3. If the value specified for the tap is greater than the maximum h

UPPER_HALF LOWER_HALF

UPPER_HALF UPPER_HALF

Table 2-4. row_segment & sam_segment for Half Size SAM

sam_segment row_segment

LOWER_HALF QUARTER1

LOWER_HALF QUARTER2

LOWER_HALF QUARTER3

LOWER_HALF QUARTER4

UPPER_HALF QUARTER1

UPPER_HALF QUARTER2

UPPER_HALF QUARTER3

UPPER_HALF QUARTER4

Table 2-3. row_segment & sam_segment for Full Size RAM

sam_segment row_segment
Std_DevelopersKit User’s Manual, V2.22-60

Std_Mempak Mem_Split_RdTrans

dress

rial

rtion

also

the

ion
w. If
 the
nt

r
 it is
 to

de
SAM address then the appropriate tap is set to the maximum half SAM ad
and, if MEM_WARNINGS_ON is true, a warning assertion is issued. If the
data is transferred into the active half of the SAM (the half in which the se
pointer is presently pointing) then, if the constant
MEM_WARNINGS_ON is true, a warning assertion is issued.
MEM_WARNINGS_ON is a constant whose value is globally defined in
the Std_Mempak package body. The serial pointer is not affected by this
procedure.

REFRESH:

Whenever this procedure is called a check is made to see that the DRAM po
of the VRAM has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed then the data in the row is
invalidated, the appropriate half of the SAM is filled with ‘X’s, and if
MEM_WARNINGS_ON is true a warning assertion is made. This procedure
refreshes the specified row.

HANDLING OF ‘U’s AND ‘X’s IN THE ROW AND THE TAP:

If the row is specified by a vector and the length of the vector is longer than
number of bits needed to access the highest row in the DRAM portion of the
VRAM then, if the constant MEM_WARNINGS_ON is true, a warning assert
is issued and the least significant bits of the vector are used to specify the ro
the length of the vector is shorter than the number of bits needed to address
highest row in the DRAM then the vector is assumed to be the least significa
bits of the row and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true, a warning assertion is issued.

Any time the vector specifying the row either contains ‘U’s or ‘X’s or is shorte
than what is necessary to access the entire row address space of the DRAM
necessary to map these values to bit values in order to determine which row
read. The values they are mapped to are determined by the constants
ADDRESS_X_MAP and ADDRESS_U_MAP. These constants are globally
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.
Std_DevelopersKit User’s Manual, V2.2 2-61

Mem_Split_RdTrans Std_Mempak

eeded
ed to

 an
ith

 error
The above description also applies to the tap. However, the number of bits n
to specify a half SAM address may be different than the number of bits need
address a row.

BUILT IN ERROR TRAPS:

1. If the specified row is out of the row address range of the memory then
error assertion is issued and the appropriate half of the SAM is filled w
‘X’s.

2. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.

3. If the values of the“row_segment” and“sam_segment”parameters are
other than those indicated in the tables on the preceding pages then an
assertion is issued and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-62

Std_Mempak Mem_RdSAM

e

r

Mem_RdSAM
Single Register Mode Serial Read: To perform a serial read operation with th
SAM in single register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT std_logic_vector-- output word
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT std_ulogic_vector-- output word
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT bit_vector-- output word
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT std_ulogic-- output word
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT bit-- output word
);

DESCRIPTION:

This procedure performs a serial read of the SAM while it is in single registe
mode.
Std_DevelopersKit User’s Manual, V2.2 2-63

Mem_RdSAM Std_Mempak

ead
 the
he
ial
AM

s
ry

icant
e,

ition.

ince
s not

e of

ed by
ally

, an
ARGUMENTS

• mem_id specifies the VRAM that is to be read.

• data contains the word that is to be read from the SAM. The word that is r
out of the SAM is the word that is pointed to by the serial pointer. If one of
taps also points to that address then that tap is cleared (reset to point to t
lowest address in its half of the SAM). After the read is completed the ser
pointer is incremented by one. If the serial pointer goes past the highest S
address then it is reset to 0.

If the actual associated with the parameter“data” is a vector whose length is les
than the width of the memory, then only the least significant bits of the memo
are returned. If the actual associated with the parameter“data” is a vector whose
length is longer than the width of the memory then the word read from the
memory is placed in the least significant bits of the actual and the most signif
bits are set to ‘X’. In either case, if the constant MEM_WARNINGS_ON is tru
then an assertion of severity WARNING is made to alert the user to this cond
MEM_WARNINGS_ON is a constant whose value is globally defined in the
Std_Mempak package body.

REFRESH:

Since this procedure does not access the DRAM portion of the VRAM and s
the SAM portion is static and does not require refreshing, this procedure doe
refresh any portion of the VRAM.

HANDLING OF ‘U’s AND ‘X’ IN READING DATA:

If a ‘U’ or an ‘X’ is to be returned as the result of a read operation and the typ
the parameter“data” is either bit or bit_vector then the ‘U’ or ‘X’ must be
mapped to a valid bit value. The values that they are mapped to are determin
the constants DATA_X_MAP and DATA_U_MAP. These constants are glob
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true, then an assertion of severity WARNING is
made to inform the user of the mapping.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-64

Std_Mempak Mem_Split_RdSAM

AM

ode.

ead
 the
he
Mem_Split_RdSAM
Split Register Mode Serial Read: To perform a serial read operation with the S
in split register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_Split_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT std_logic_vector-- output word
);

Procedure Mem_Split_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT std_ulogic_vector-- output word
);

Procedure Mem_Split_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT bit_vector-- output word
);

Procedure Mem_Split_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT std_ulogic-- output word
);

Procedure Mem_Split_RdSAM (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variabledata:OUT bit-- output word
);

DESCRIPTION:

This procedure performs a serial read of the SAM while it is in split register m

ARGUMENTS

• mem_id specifies the VRAM that is to be read.

• data contains the word that is to be read from the SAM. The word that is r
out of the SAM is the word that is pointed to by the serial pointer. If one of
taps also points to that address then that tap is cleared (reset to point to t
Std_DevelopersKit User’s Manual, V2.2 2-65

Mem_Split_RdSAM Std_Mempak

ial

AM
, this
hich

de.

e

 read
e

is
tant

ince
s not

e of

ed by
ally

, an
lowest address in its half of the SAM). After the read is completed the ser
pointer is incremented by one. If the serial pointer goes past the highest
address in the SAM half that it is in, it is set to the value of the tap of the S
half which it is entering. If the tap has never been set or has been cleared
means that the serial pointer goes to the lowest address of the SAM half w
it is entering. In this case, it behaves like the SAM is in single register mo

If the actual associated with the parameter“data” is a vector whose length is
less than the width of the memory, then only the least significant bits of th
memory are returned. If the actual associated with the parameter“data” is a
vector whose length is longer than the width of the memory then the word
from the memory is placed in the least significant bits of the actual and th
most significant bits are set to ‘X’. In either case, if the constant
MEM_WARNI)NGS_ON is true, then an assertion of severity WARNING
made to alert the user to this condition. MEM_WARNINGS_ON is a cons
whose value is globally defined in the Std_Mempak package body.

REFRESH:

Since this procedure does not access the DRAM portion of the VRAM and s
the SAM portion is static and does not require refreshing, this procedure doe
refresh any portion of the VRAM.

HANDLING OF ‘U’s AND ‘X’ IN READING DATA:

If a ‘U’ or an ‘X’ is to be returned as the result of a read operation and the typ
the parameter“data” is either bit or bit_vector then the ‘U’ or ‘X’ must be
mapped to a valid bit value. The values that they are mapped to are determin
the constants DATA_X_MAP and DATA_U_MAP. These constants are glob
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true, then an assertion of severity WARNING is
made to inform the user of the mapping.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-66

Std_Mempak Mem_WrtTrans

M

Mem_WrtTrans
Single Register Mode Write Transfer: To perform a write transfer from the SA
to the DRAM with the SAM in single register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN std_logic_vector;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
ConstantSerial_Ptr:IN std_logic_vector;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);
Std_DevelopersKit User’s Manual, V2.2 2-67

Mem_WrtTrans Std_Mempak
Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN std_ulogic_vector;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
ConstantSerial_Ptr:IN std_ulogic_vector;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
ConstantSerial_Ptr:IN bit_vector;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
ConstantSerial_Ptr:IN Natural;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);
Std_DevelopersKit User’s Manual, V2.22-68

Std_Mempak Mem_WrtTrans

ister
 the

he
ndex

 is a
LL
 If
 the
e

t.
or
 right

that
Procedure Mem_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
ConstantSerial_Ptr:IN bit_vector;
Constantrow_segment:IN segment_type := FULL;
Constantwrite_per_bit:IN Boolean := FALSE
);

DESCRIPTION:

This procedure performs a write transfer operation with the SAM in single reg
mode. In other words, data is transferred from the SAM portion of a VRAM to
DRAM portion. Since the SAM is in single register mode, the entire SAM is
copied to a DRAM row.

ARGUMENTS

• mem_id

specifies the VRAM on which the operation is to take place.

• row

specifies the row of the DRAM to which data is to be copied. Note that if t
actual associated with the parameter “rows” is a vector then the left most i
of the vector is considered to be the MSB and the right most index is
considered to be the LSB.

• row_segment

specifies the portion of the row to which the data is transferred. If the SAM
full size SAM then the “row_segment” parameter must have the value FU
(the default value) which specifies that the entire row should be modified.
the SAM is a half size SAM then the “row_segment” parameter must have
value UPPER_HALF or the value LOWER_HALF specifying that either th
upper or the lower half of the row is to be modified.

• Serial_Ptr

specifies the SAM address to which the VRAM’s serial pointer is to be se
Note that if the actual associated with the parameter “Serial_Ptr” is a vect
then the left most index of the vector is considered to be the MSB and the
most index is considered to be the LSB. If this SAM address points to an
address in the upper half of the SAM then the upper tap is set to point to
Std_DevelopersKit User’s Manual, V2.2 2-69

Mem_WrtTrans Std_Mempak

lf of
r

 bit

ing

imum

rtion

, a
t, even
d up

w is

the

ion
w. If
 the
nt
address as well. If this SAM address points to an address in the lower ha
the SAM then the lower tap is set to point to that address. If the paramete
“write_per_bit” is true (the default is false), then write-per-bit is enabled. In
this case, only those bits of the DRAM that have a ‘1’ in the corresponding
position of the write-per-bit mask are modified.

If the SAM is a full size SAM and the specified“row_segment” is something
other than FULL then, if the constant MEM_WARNINGS_ON is true, an
assertion of severity WARNING is issued and the operation proceeds assum
that the“row_segment” had the value FULL. MEM_WARNINGS_ON is a
constant whose value is globally defined in the Std_Mempak package body.

Also, if the value specified for the serial pointer is greater than the maximum
address of the SAM then the serial pointer and the upper tap is set to the max
SAM address and, if MEM_WARNINGS_ON is true, a warning assertion is
issued.

REFRESH:

Whenever this procedure is called a check is made to see that the DRAM po
of the VRAM has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed then the data in the row is
invalidated before the write takes place and, if MEM_WARNINGS_ON is true
warning assertion is made. This procedure also refreshes the row. As a resul
if the refresh period had expired for the row, the locations to be written to en
containing valid data if the SAM contains valid data. The remainder of the
addresses in that row (if the SAM is not a full size SAM) contains ‘X’s. Also,
even if write-per-bit is enabled and several bits are masked out, the entire ro
refreshed.

HANDLING OF ‘U’s AND ‘X’s IN ROW AND SERIAL POINTER:

If the row is specified by a vector and the length of the vector is longer than
number of bits needed to access the highest row in the DRAM portion of the
VRAM, then if the constant MEM_WARNINGS_ON is true, a warning assert
is issued and the least significant bits of the vector are used to specify the ro
the length of the vector is shorter than the number of bits needed to address
highest row in the DRAM then the vector is assumed to be the least significa
Std_DevelopersKit User’s Manual, V2.22-70

Std_Mempak Mem_WrtTrans

r
 it is
which

e

de

r of
eded

 an

r

bits of the row and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true, a warning assertion is issued.

Any time the vector specifying the row either contains ‘U’s or ‘X’s or is shorte
than what is necessary to access the entire row address space of the DRAM
necessary to map these values to bit values in order to determine the row to
data is to be written. The values they are mapped to are determined by the
constants ADDRESS_X_MAP and ADDRESS_U_MAP. These constants ar
globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

The above description also applies to the serial pointer. However, the numbe
bits needed to address the SAM may be different than the number of bits ne
to address a row.

BUILT IN ERROR TRAPS:

1. If the specified row is out of the row address range of the memory then
error assertion is issued and no operation is performed.

2. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.

3. If the SAM is a half size SAM and a value other than UPPER_HALF o
LOWER_HALF is associated with the“row_segment” parameter, then an
error assertion is issued and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-71

Mem_Split_WrtTrans Std_Mempak

the
Mem_Split_WrtTrans
Split Reg. Mode Write Transfer: To perform a write transfer from the SAM to
DRAM with the SAM in split register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN std_logic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_logic_vector;
Constanttap:IN std_logic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);
Std_DevelopersKit User’s Manual, V2.22-72

Std_Mempak Mem_Split_WrtTrans
Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN std_ulogic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN std_ulogic_vector;
Constanttap:IN std_ulogic_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type
Constantwrite_per_bit:IN Boolean := FALSE;
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN Natural;
Constanttap:IN bit_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);
Std_DevelopersKit User’s Manual, V2.2 2-73

Mem_Split_WrtTrans Std_Mempak

ster
 the
 is

if
ost
is
Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
Constanttap:IN Natural;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtTrans (
Variablemem_id:INOUT mem_id_type;
Constantrow:IN bit_vector;
Constanttap:IN bit_vector;
Constantrow_segment:IN segment_type;
Constantsam_segment:IN sam_segment_type;
Constantwrite_per_bit:IN Boolean := FALSE
);

DESCRIPTION:

This procedure performs a write transfer operation with the SAM in split regi
mode. In other words, data is transferred from the SAM portion of a VRAM to
DRAM portion. Since the SAM is in split register mode, only half of the SAM
copied.

ARGUMENTS

• mem_id

specifies the VRAM on which the operation is to take place.

• row

specifies the row of the DRAM from which data is to be copied. Note that
the actual associated with the parameter “rows” is a vector then the left m
index of the vector is considered to be the MSB and the right most index
considered to be the LSB.

• row_segment

specifies the portion of that row which receives the data

• sam_segment”

specifies the portion of the SAM from which the data is copied.
Std_DevelopersKit User’s Manual, V2.22-74

Std_Mempak Mem_Split_WrtTrans

er
R2,
ant

is
The following tables show the allowed combinations of values for the
“row_segment” and “sam_segment” parameters for full and half size SAMs.

The values UPPER_HALF and LOWER_HALF refer, respectively, to the upp
and lower halves of a row or of the SAM. The values QUARTER1, QUARTE
QUARTER3, and QUARTER4 refer to the least significant to the most signific
quarters of a row.

If the parameter“write_per_bit” is true (the default is false), then write-per-bit
enabled. In this case, only those bits of the DRAM that have a ‘1’ in the
corresponding bit position of the write-per-bit mask are modified.

Table 2-5. Full Size SAM

sam_segment row_segment

LOWER_HALF LOWER_HALF

LOWER_HALF UPPER_HALF

UPPER_HALF LOWER_HALF

UPPER_HALF UPPER_HALF

Table 2-6. Half Size SAM

sam_segment row_segment

LOWER_HALF QUARTER1

LOWER_HALF QUARTER2

LOWER_HALF QUARTER3

LOWER_HALF QUARTER4

UPPER_HALF QUARTER1

UPPER_HALF QUARTER2

UPPER_HALF QUARTER3

UPPER_HALF QUARTER4
Std_DevelopersKit User’s Manual, V2.2 2-75

Mem_Split_WrtTrans Std_Mempak

t if
st
is

p is

ng,
AM
.

e
 for
te tap

e half
 if
.
e

rtion

, a
t, even
d up

w is
• tap

specifies the SAM address to which the VRAM’s tap is to be set. Note tha
the actual associated with the parameter “tap” is a vector then the left mo
index of the vector is considered to be the MSB and the right most index
considered to be the LSB. Which tap (either the upper or the lower) is
dependent upon the value of the “sam_segment” parameter. If the
“sam_segment” parameter has the value UPPER_HALF then the upper ta
set. If it has the value LOWER_HALF then the lower tap is set. The “tap”
parameter specifies an offset into the half SAM. If the SAM is 16 words lo
then if the upper tap is to point to the second word in the upper half of the S
the “tap” parameter would be set to 1 (0 being the first word) rather than 9
Also if the actual associated with the “tap” parameter is vector, then, in th
above example, the vector should have a width of 3. If the value specified
the tap is greater than the maximum half SAM address then the appropria
is set to the maximum half SAM address and, if MEM_WARNINGS_ON is
true, a warning assertion is issued. If the data is transferred from the activ
of the SAM (the half in which the serial pointer is presently pointing) then,
the constant MEM_WARNINGS_ON is true, a warning assertion is issued
MEM_WARNINGS_ON is a constant whose value is globally defined in th
Std_Mempak package body. The serial pointer is not affected by the
procedure.

REFRESH:

Whenever this procedure is called a check is made to see that the DRAM po
of the VRAM has been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed then the data in the row is
invalidated before the write takes place and, if MEM_WARNINGS_ON is true
warning assertion is made. This procedure also refreshes the row. As a resul
if the refresh period had expired for the row, the locations to be written to en
containing valid data if the SAM contains valid data. The remainder of the
addresses in that row (if the SAM is not a full size SAM) contains ‘X’s. Also,
even if write-per-bit is enabled and several bits are masked out, the entire ro
refreshed.
Std_DevelopersKit User’s Manual, V2.22-76

Std_Mempak Mem_Split_WrtTrans

the

ion
w. If
 the
nt

r
 it is
which

e

de

eeded
ed to

 an

 error
HANDLING OF ‘U’s AND ‘X’s IN THE ROW AND THE TAP:

If the row is specified by a vector and the length of the vector is longer than
number of bits needed to access the highest row in the DRAM portion of the
VRAM then, if the constant MEM_WARNINGS_ON is true, a warning assert
is issued and the least significant bits of the vector are used to specify the ro
the length of the vector is shorter than the number of bits needed to address
highest row in the DRAM then the vector is assumed to be the least significa
bits of the row and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true, a warning assertion is issued.

Any time the vector specifying the row either contains ‘U’s or ‘X’s or is shorte
than what is necessary to access the entire row address space of the DRAM
necessary to map these values to bit values in order to determine the row to
data is to be written. The values they are mapped to are determined by the
constants ADDRESS_X_MAP and ADDRESS_U_MAP. These constants ar
globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

The above description also applies to the tap. However, the number of bits n
to specify a half SAM address may be different than the number of bits need
address a row.

BUILT IN ERROR TRAPS:

1. If the specified row is out of the row address range of the memory then
error assertion is issued and no operation is performed.

2. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.

3. If the values of the“row_segment” and“sam_segment”parameters are
other than those indicated in the tables on the preceding pages, then an
assertion is issued and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-77

Mem_WrtSAM Std_Mempak

e

r

Mem_WrtSAM
Single Register Mode Serial Write: To perform a serial write operation with th
SAM in single register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_WrtSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:IN std_logic_vector;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:IN std_ulogic_vector;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:IN bit_vector;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:IN std_ulogic;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_RdSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:IN bit;
Constantwrite_per_bit:IN Boolean := FALSE
);

DESCRIPTION:

This procedure performs a serial write to the SAM while it is in single registe
mode.
Std_DevelopersKit User’s Manual, V2.22-78

Std_Mempak Mem_WrtSAM

hich
the
the
ial
AM

hat
ied.

ory
 the

is

e the
ot

cial

, an
ARGUMENTS

• mem_id

specifies the VRAM to which the data is to be written.

• data

contains the word that is to be written to the SAM. The SAM address to w
the word is written is the address indicated by the serial pointer. If one of
taps also points to that address, then that tap is cleared (reset to point to
lowest address in its half of the SAM). After the write is completed the ser
pointer is incremented by one. If the serial pointer goes past the highest S
address then it is reset to 0.

If the parameter“write_per_bit” is true, then write-per-bit is enabled. In this
case, only those bits of the word in the SAM pointed to by the serial pointer t
have a ‘1’ in the corresponding bit position of the write-per-bit mask are modif

If the actual associated with the formal parameter“data” is a vector whose length
is less than the width of the memory then the least significant bits of the mem
locations are filled with the data and the most significant bits are set to ‘X’. If
actual associated with the formal parameter“data” is a vector whose length is
greater than the width of the memory then only the least significant bits of th
vector are written to the memory. In either case, if the constant
MEM_WARNINGS_ON is true, then an assertion of severity WARNING is
made to alert the user to this condition.

REFRESH:

Since this procedure does not access the DRAM portion of a VRAM and sinc
SAM portion is static and does not require refreshing, this procedure does n
refresh any portion of the VRAM.

HANDLING OF ‘U’s AND ‘X’ IN WRITING DATA:

The data is converted to the X01 subtype before being written. No other spe
action is taken if the data contains ‘U’s or ‘X’s.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-79

Mem_Split_WrtSAM Std_Mempak

.
e

Mem_Split_WrtSAM
Split Register Mode Serial Write: To perform a serial write operation with the
SAM in split register mode.

OVERLOADED DECLARATIONS:

Procedure Mem_Split_WrtSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:OUT std_logic_vector;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtSAM (
Variablemem_id:INOUT mem_id_type
Constantdata:OUT std_ulogic_vector;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:OUT bit_vector;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:OUT std_ulogic;
Constantwrite_per_bit:IN Boolean := FALSE
);

Procedure Mem_Split_WrtSAM (
Variablemem_id:INOUT mem_id_type;
Constantdata:OUT bit;
Constantwrite_per_bit:IN Boolean := FALSE
);

DESCRIPTION:

This procedure performs a serial write to the SAM while it is in split register
mode. The parameter“mem_id” specifies the VRAM to which the data is to be
written. The parameter“data” contains the word that is to be written to the SAM
The SAM address to which the word is written is the address indicated by th
Std_DevelopersKit User’s Manual, V2.22-80

Std_Mempak Mem_Split_WrtSAM

leared

 past
p of

SAM
 is in

hat
ied.

mory
 the

is

e the
ot

cial

, an
serial pointer. If one of the taps also points to that address, then that tap is c
(reset to point to the lowest address in its half of the SAM). After the write is
completed the serial pointer is incremented by one. If the serial pointer goes
the highest address in the SAM half that it is in, it is set to the value of the ta
the SAM half which it is entering. If the tap has never been set or has been
cleared, that means that the serial pointer goes to the lowest address of the
half which it is entering. In this case, the serial pointer behaves like the SAM
single register mode.

If the parameter“write_per_bit” is true, then write-per-bit is enabled. In this
case, only those bits of the word in the SAM pointed to by the serial pointer t
have a ‘1’ in the corresponding bit position of the write-per-bit mask are modif

If the actual associated with the formal parameter“data” is a vector whose length
is less than the width of the memory, then the least significant bits of the me
locations are filled with the data and the most significant bits are set to ‘X’. If
actual associated with the formal parameter“data” is a vector whose length is
greater than the width of the memory, then only the least significant bits of th
vector are written to the memory. In either case, if the constant
MEM_WARNINGS_ON is true, then an assertion of severity WARNING is
made to alert the user to this condition.

REFRESH:

Since this procedure does not access the DRAM portion of a VRAM and sinc
SAM portion is static and does not require refreshing, this procedure does n
refresh any portion of the VRAM.

HANDLING OF ‘U’s AND ‘X’ IN DATA:

The data is converted to the X01 subtype before being written. No other spe
action is taken if the data contains ‘U’s or ‘X’s.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-81

Mem_Get_SPtr Std_Mempak

g the
Mem_Get_SPtr
Get The Serial Pointer : To get the current value of the serial pointer.

OVERLOADED DECLARATIONS:

Procedure Mem_Get_SPtr (
Variablemem_id:INOUT mem_id_type;
Variableserial_ptr:OUT Natural
);

Procedure Mem_Get_SPtr (
Variablemem_id:INOUT mem_id_type;
Variableserial_ptr:OUT std_logic_vector
);

Procedure Mem_Get_SPtr (
Variablemem_id:INOUT mem_id_type;
Variableserial_ptr:OUT std_ulogic_vector
);

Procedure Mem_Get_SPtr (
Variablemem_id:INOUT mem_id_type;
Variableserial_ptr:OUT bit_vector
);

DESCRIPTION:

This procedure returns the current value of the serial pointer.

ARGUMENTS

• mem_id

indicates the VRAM on which this procedure is to operate.

• serial_ptr

The actual associated with the parameter “serial_ptr” is returned containin
value of the serial pointer.

This procedure is primarily for use in modeling VRAMs in which the serial
pointer may not behave exactly as provided for in the Mem_RdSAM,
Std_DevelopersKit User’s Manual, V2.22-82

Std_Mempak Mem_Get_SPtr

inter.

ficant
eter
ress

er
erity
 is
y.

, an
Mem_Split_RdSAM, Mem_WrtSAM, and Mem_Split_WrtSAM routines. This
procedure allows the model developer to determine the value of the serial po

If the actual associated with the parameter“serial_ptr” is a vector whose length
is less than that required to address the entire SAM, then only the least signi
bits of the serial pointer are returned. If the actual associated with the param
“serial_pointer” is a vector whose length is greater than that required to add
the entire SAM, then the value of the serial pointer is placed in the least
significant bits of the actual and the most significant bits are set to ‘X’. In eith
case, if the constant MEM_WARNINGS_ON is true, then an assertion of sev
WARNING is made to alert the user to this condition. MEM_WARNINGS_ON
a constant whose value is globally defined in the Std_Mempak package bod

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-83

Mem_Set_SPtr Std_Mempak
Mem_Set_SPtr
Set The Serial Pointer : To set the current value of the serial pointer.

OVERLOADED DECLARATIONS:

Procedure Mem_Set_SPtr (
Variablemem_id:INOUT mem_id_type;
Constantserial_ptr:IN Natural
);

Procedure Mem_Set_SPtr (
Variablemem_id:INOUT mem_id_type;
Constantserial_ptr:IN std_logic_vector
);

Procedure Mem_Set_SPtr (
Variablemem_id:INOUT mem_id_type;
Constantserial_ptr: IN std_ulogic_vector
);

Procedure Mem_Set_SPtr (
Variablemem_id:INOUT mem_id_type;
Constantserial_ptr:IN bit_vector
);

ARGUMENTS

• mem_id

indicates the VRAM on which this procedure is to operate.

• serial_ptr

specifies the value to which the serial pointer is to be set.

DESCRIPTION:

This procedure sets the current value of the serial pointer.

This procedure is primarily for use in modeling VRAMs in which the serial
pointer may not behave exactly as provided for in the Mem_RdSAM,
Mem_Split_RdSAM, Mem_WrtSAM, and Mem_Split_WrtSAM routines. This
procedure allows the model developer to set the value of the serial pointer.
Std_DevelopersKit User’s Manual, V2.22-84

Std_Mempak Mem_Set_SPtr

x is
e
ighest

r. If
nt the
ficant
tant

‘U’s
ce of
e the
 the

e

de

f the
If the actual associated with the parameter“serial_ptr” is a vector, then the left
most index of the vector is considered to be the MSB and the right most inde
considered to be the LSB. If the serial pointer is specified by a vector and th
length of the vector is longer than the number of bits needed to access the h
address in the SAM portion of the VRAM, then if the constant
MEM_WARNINGS_ON is true, a warning assertion is issued and the least
significant bits of the vector are used to specify the value of the serial pointe
the length of the vector is shorter than the number of bits needed to represe
highest address in the SAM, then the vector is assumed to be the least signi
bits of the address and the remaining bits are assumed to be ‘X’s. If the cons
MEM_WARNINGS_ON is true, a warning assertion is issued.
MEM_WARNINGS_ON is a constant whose value is globally defined in the
Std_Mempak package body.

HANDLING OF ‘U’s AND ‘X’s IN THE SERIAL POINTER:

Any time the vector specifying the value of the serial pointer either contains
or ‘X’s or is shorter than what is necessary to access the entire address spa
the SAM it is necessary to map these values to bit values in order to determin
value of the serial pointer. The values they are mapped to are determined by
constants ADDRESS_X_MAP and ADDRESS_U_MAP. These constants ar
globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAP:

1. If an attempt is made to use this procedure on a memory other than a
VRAM, an error assertion is made and no operation is performed.

2. If the value specified for the serial pointer is out of the address range o
SAM then an error assertion is issued and no operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-85

To_Segment Std_Mempak

AM

iate
To_Segment
Convert a Vector to a Segment: To allow for the easy selection of a row of S
segment.

OVERLOADED DECLARATIONS:

Function To_Segment (
Constantaddress:IN std_logic_vector
) return segment_type;

Function To_Segment (
Constantaddress:IN std_ulogic_vector
) return segment_type;

Function To_Segment (
Constantaddress:IN bit_vector
) return segment_type;

Function To_Segment (
Constantaddress:IN std_ulogic
) return segment_type;

Function To_Segment (
Constantaddress:IN bit
) return segment_type;

DESCRIPTION:

To_Segment is meant to be used in conjunction with Mem_RdTrans,
Mem_Split_RdTrans, Mem_WrtTrans, or Mem_Split_WrtTrans. It simplifies
selecting a segment by allowing a vector or a single bit to select the appropr
segment. If the actual associated with the parameter“address” is a vector then
that vector must have a length of 1 or 2.
Std_DevelopersKit User’s Manual, V2.22-86

Std_Mempak To_Segment

that

values
d
ak
ion

hat is
The following table lists the valid values of the parameter“address” and the
corresponding segment_type values that are returned by the function. Note
the single bit values may also be vectors of length 1.

HANDLING OF ‘U’s AND ‘X’s IN THE ADDRESS:

Any time the parameter“address” either contains ‘U’s or ‘X’s it is necessary to
map these values to bit values in order to determine the segment value. The
they are mapped to are determined by the constants ADDRESS_X_MAP an
ADDRESS_U_MAP. These constants are globally defined in the Std_Memp
package body. If the constant MEM_WARNINGS_ON is true, then an assert
of severity WARNING is made when such a mapping occurs.
MEM_WARNINGS_ON is a constant whose value is globally defined in the
Std_Mempak package body.

BUILT IN ERROR TRAPS:

If the actual associated with the parameter“address” is a vector and its length is
something other than 1 or 2 then an error assertion is issued and the value t
returned is LOWER_HALF.

Table 2-7. To_Segment Values and segment_type

address return value

‘0’ LOWER_HALF

‘1’ UPPER_HALF

“00” QUARTER1

“01” QUARTER2

“10” QUARTER3

“11” QUARTER4
Std_DevelopersKit User’s Manual, V2.2 2-87

Mem_Active_SAM_Half Std_Mempak

 the
ial

’ if
er

, an
Mem_Active_SAM_Half
Get Active SAM Half: To indicate which half of the SAM is currently active.

OVERLOADED DECLARATIONS:

Procedure Mem_Active_SAM_Half (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variablehalf:OUT std_ulogic-- active half
);

Procedure Mem_Active_SAM_Half (
Variablemem_id:INOUT mem_id_type;-- VRAM
Variablehalf:OUT bit-- active half
);

DESCRIPTION:

This procedure indicates which half of the SAM is currently active. The half of
SAM that is active is the half that contains the SAM address to which the ser
pointer points.

ARGUMENTS

• mem_id

specifies the VRAM.

• half

The actual associated with the parameter “half” is returned containing a ‘0
the lower half of the SAM is active. It is returned containing a ‘1’ if the upp
half of the SAM is active.

BUILT IN ERROR TRAP:

If an attempt is made to use this procedure on a memory other than a VRAM
error assertion is made and no operation is performed.
Std_DevelopersKit User’s Manual, V2.22-88

Std_Mempak Common Procedures

pes
Common Procedures
The procedures described in this section are common to all of the memory ty
(ROMs, SRAMs, DRAMs, and VRAMs) except where noted.

This packages minimizes the amount of memory allocated on the machine
running the simulation by providing dynamic memory allocation.

Figure 2-7. Dynamic Allocation of Std_Mempak

The procedures Mem_Load and Mem_Dump provide file programmability.

Figure 2-8. Mem Load and Mem Dump Procedures

The operations provided by this package include:

Dynamic Allocation
Uses only the memory you address!

X"0000" X"FFFF"

Active Memory Pages U, X, 0, 1 data values

Unused Memory Pages Read as U values by default!

address

control

Full U, X, 0, 1 support for data

File programmable
 X
Trap
Std_DevelopersKit User’s Manual, V2.2 2-89

Common Procedures Std_Mempak

.

• Read a Word From Memory

• Write a Word to Memory

• Reset a Range of Memory

• Load Memory from a File

• Dump the Contents of Memory to a File

• Check the Validity of a Memory Location

In addition, the routines in this package handle all operations involved with
refreshing and determining data integrity of dynamic RAMs and Video RAMs
Std_DevelopersKit User’s Manual, V2.22-90

Std_Mempak Mem_Read
Mem_Read
Read from Memory: To read a word from a memory.

OVERLOADED DECLARATIONS:

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT std_ulogic-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT bit-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN bit_vector;-- address to read from
data:OUT bit-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_logic_vector;-- address to read from
data:OUT std_ulogic-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_ulogic_vector;-- address to read from
data:OUT std_ulogic-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT bit_vector-- contents of memory location
);
Std_DevelopersKit User’s Manual, V2.2 2-91

Mem_Read Std_Mempak

bit or

 to
Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT std_logic_vector-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN Natural;-- address to read from
data:OUT std_ulogic_vector-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN bit_vector;-- address to read from
data:OUT bit_vector-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_logic_vector;-- address to read from
data:OUT std_logic_vector-- contents of memory location
);

Procedure Mem_Read (
mem_id:INOUT mem_id_type;-- ptr to memory data structure
address:IN std_ulogic_vector;-- address to read from
data:OUT std_ulogic_vector-- contents of memory location
);

DESCRIPTION:

This procedure reads a word from memory. The word can be either a single
a vector.

ARGUMENTS

• mem_id

is the pointer to the memory data structure. It identifies the memory that is
be read.
Std_DevelopersKit User’s Manual, V2.22-92

Std_Mempak Mem_Read

e

e

 with

the
nger
e
re

n
ion.
e

as
 a
g

e data

ress

e of

ed by
ally

de
• address

specifies the address to be read. Note that if the actual associated with th
parameter “address” is a vector then the left most index of the vector is
considered to be the MSB and the right most index is considered to be th
LSB. Furthermore the vector is considered to be in an unsigned format.

• data

contains the data that is to be read from memory. If the actual associated
the parameter “data” is a vector whose length is less than the width of the
memory then only the least significant bits of the memory are returned. If
actual associated with the parameter “data” is a vector whose length is lo
than the width of memory then the word read from memory is placed in th
least significant bits of the parameter “data” and the most significant bits a
set to ‘X’. In either case if the constant MEM_WARNINGS_ON is true the
an assertion of severity WARNING is made to alert the user to this condit
MEM_WARNINGS_ON is a constant whose value is globally defined in th
Std_Mempak package body.

HANDLING OF DRAMs:

Whenever this procedure is called a check is made to see that the memory h
been “woken up”. If not, X’s are returned and if MEM_WARNINGS_ON is true
warning assertion is issued. If the refresh period has expired on the row bein
accessed (row = address mod number of columns) then ‘X’s are returned, th
in the row is invalidated, and if MEM_WARNINGS_ON is true a warning
assertion is made. This procedure also refreshes the row containing the add
being read.

HANDLING OF ‘U’s AND ‘X’s IN READING DATA:

If a ‘U’ or an ‘X’ is to be returned as the result of a read operation and the typ
the parameter“data” is either bit or bit_vector then the ‘U’ or ‘X’ must be
mapped to a valid bit value. The values that they are mapped to are determin
the constants DATA_X_MAP and DATA_U_MAP. These constants are glob
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
to inform the user of the mapping.
Std_DevelopersKit User’s Manual, V2.2 2-93

Mem_Read Std_Mempak

han
the

e
ress

mory it
ddress

de

rror
is filled
HANDLING OF ‘U’s AND ‘X’s IN ADDRESSES:

If the address is specified by a vector and the length of the vector is longer t
the number of bits needed to access the highest address in memory then, if
constant MEM_WARNINGS_ON is true, a warning assertion is issued. If the
length of the vector is shorter than the number of bits needed to represent th
address then the vector is assumed to be the least significant bits of the add
and the remaining bits are assumed to be ‘X’s. If the constant
MEM_WARNINGS_ON is true then a warning assertion is issued.

Any time the vector specifying the address either contains ‘U’s or ‘X’s or is
shorter than what is necessary to access the entire address space of the me
is necessary to map these values to bit values in order to determine which a
to read. The values they are mapped to are determined by the constants
ADDRESS_X_MAP and ADDRESS_U_MAP. These constants are globally
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAP:

If the specified address is out of the address range of the memory then an e
assertion is issued and the actual that is associated with the parameter data
with ‘X’s. If the actual is a bit or a bit_vector the ‘X’s is handled as described
above.
Std_DevelopersKit User’s Manual, V2.22-94

Std_Mempak Mem_Write
Mem_Write
Write to Memory: To write a word to memory.

OVERLOADED DECLARATIONS:

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN Natural;-- write address
data:IN std_ulogic;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN Natural;-- write address
data:IN bit;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN bit_vector;-- write address
data:IN bit;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN std_logic_vector;-- write address
data:IN std_ulogic;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN std_ulogic_vector;-- write address
data:IN std_ulogic;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);
Std_DevelopersKit User’s Manual, V2.2 2-95

Mem_Write Std_Mempak
Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN Natural;-- write address
data:IN bit_vector;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN Natural;-- write address
data:IN std_logic_vector;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN Natural;-- write address
data:IN std_ulogic_vector;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN std_logic_vector;-- write address
data:IN std_logic_vector;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN std_ulogic_vector;-- write address
data:IN std_ulogic_vector;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);

Procedure Mem_Write (
mem_id:INOUT mem_id_type;-- memory to be written to
address:IN bit_vector;-- write address
data:IN bit_vector;-- word to be written
write_per_bit:IN Boolean := FALSE-- VRAM wpb enable
);
Std_DevelopersKit User’s Manual, V2.22-96

Std_Mempak Mem_Write

 or a

ich

tual
ex of
ered

e
f the
et to
ngth
 of

tant

. If
must
SE
DESCRIPTION:

This procedure writes a word to memory. The word can be either a single bit
vector.

ARGUMENTS

• mem_id

is the pointer to the memory data structure. It identifies the memory to wh
the word is to be written.

• address

specifies the address to which the data is to be written. Note that if the ac
associated with the parameter “address” is a vector, then the left most ind
the vector is considered to be the MSB and the right most index is consid
to be the LSB. Furthermore the vector is considered to be in an unsigned
format.

• data

If the actual associated with the formal parameter “data” is a vector whos
length is less than the width of the memory then the least significant bits o
memory location are filled with the data and the most significant bits are s
‘X’. If the actual associated with the parameter “data” is a vector whose le
is greater than the width of the memory then only the least significant bits
this vector are written to memory. In either case if the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is
made to alert the user to this condition. MEM_WARNINGS_ON is a cons
whose value is globally defined in the Std_Mempak package body.

• write_per_bit

If the actual associated with the parameter “write_per_bit” is TRUE then
write-per-bit is enabled for VRAMs (see Handling of VRAMS - next page)
the memory is not a VRAM then the actual associated with this parameter
be FALSE. Since the “write_per_bit” parameter has a default value of FAL
this parameter may be omitted when not working with VRAMs. Since the
“write_per_bit” parameter has a default value of FALSE, when not
dealing with VRAMs, there is NO apparent or functional change to the
Mem_Write procedure. Existing calls to this procedure need not be
modified.
Std_DevelopersKit User’s Manual, V2.2 2-97

Mem_Write Std_Mempak

 of
ure

as

of
nd if

also
s a
ss to
f the
 that

t

ns
he
e

e not

ial

han
 if the
Note: If the constant EXTENDED_OPS is set to TRUE prior to the installation
Std_Mempak (prior to compilation of the package) then the write-per-bit feat
can be used with DRAMs and SRAMs.

HANDLING OF DRAMs:

Whenever this procedure is called a check is made to see that the memory h
been “woken up”. If not, no operation is performed and if
MEM_WARNINGS_ON is true a warning assertion is issued. If the refresh
period has expired on the row being accessed (row = address mod number
columns) then the data in the row is invalidated before the write takes place a
MEM_WARNINGS_ON is true a warning assertion is made. This procedure
refreshes the row containing the address to which the data is being written. A
result, even if the refresh period had expired for the row containing the addre
which data is being written, the address itself ends up containing valid data i
word being written to the address is valid. The remainder of the addresses in
row contains ‘X’s.

HANDLING OF VRAMs

When this procedure is used in conjunction with VRAMs, it operates on the
DRAM portion of the VRAM to which the data is being written. Everything tha
is described above for DRAMs is applicable to the use of this procedure with
VRAMs.

When the“write_per_bit” parameter is true, write-per-bit is enabled. This mea
that only those bits of the DRAM address being written to, that have a ‘1’ in t
corresponding bit position of the write-per-bit mask are modified. Note that th
entire row is refreshed regardless of whether or not some or all of the bits ar
modified because of the value of the write-per-bit mask.

HANDLING OF ‘U’s AND ‘X’s IN DATA:

The data is converted to the X01 subtype before being stored. No other spec
action is taken if the data contains ‘U’s or ‘X’s.

HANDLING OF ‘U’s AND ‘X’s IN ADDRESSES:

If the address is specified by a vector and the length of the vector is longer t
the number of bits needed to access the highest address in the memory then
constant MEM_WARNINGS_ON is true a warning assertion is issued. If the
Std_DevelopersKit User’s Manual, V2.22-98

Std_Mempak Mem_Write

e

If the

mory it
ddress

de

 an

 no
length of the vector is shorter than the number of bits needed to represent th
highest address in the memory then the vector is assumed to be the least
significant bits of the address and the remaining bits are assumed to be ‘X’s.
constant MEM_WARNINGS_ON is true then a warning assertion is issued.

Any time the vector specifying the address either contains ‘U’s or ‘X’s or is
shorter than what is necessary to access the entire address space of the me
is necessary to map these values to bit values in order to determine which a
to read. The values they are mapped to are determined by the constants
ADDRESS_X_MAP and ADDRESS_U_MAP. These constants are globally
defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAPS:

1. If the specified address is out of the address range of the memory then
error assertion is issued and no operation is performed.

2. If an attempt is made to write to a ROM an error assertion is made and
operation is performed.
Std_DevelopersKit User’s Manual, V2.2 2-99

Mem_Reset Std_Mempak

OT
be

e on
Mem_Reset
Reset Memory: To reset a range of memory to a given value.

DECLARATION:

Procedure Mem_Reset (
mem_id:INOUT mem_id_type;-- ptr to memory to be reset
reset_value:IN bit_vector;-- value to reset memory to
start_addr:IN Natural;-- starting address
end_addr:IN Natural-- ending address
);

Procedure Mem_Reset (
mem_id:INOUT mem_id_type;-- ptr to memory to be reset
reset_value:IN std_logic_vector;-- value to reset memory to
start_addr:IN Natural;-- starting address
end_addr:IN Natural-- ending address
);

Procedure Mem_Reset (
mem_id:INOUT mem_id_type;-- ptr to memory to be reset
reset_value:IN std_ulogic_vector;-- value to reset memory to
start_addr:IN Natural;-- starting address
end_addr:IN Natural-- ending address
);

DESCRIPTION:

This procedure resets a given range of a memory to a specified value. It is N
necessary to use this procedure each time a memory is initialized. It should
used to reset a range of memory to a uniform value. Note that the use of this
procedure may cause large blocks of memory to be allocated on the machin
which the simulation is being run.

ARGUMENTS

• mem_id

specifies the memory that is to be reset.
Std_DevelopersKit User’s Manual, V2.22-100

Std_Mempak Mem_Reset

d
ctor
then

.) The

ss

oses
dure.

 the

e
is
vided

d.
• reset_value

is the value to which the memory is to be reset. Each word in the specifie
range is set to the specified reset vector. Note that the elements of this ve
are converted to the X01 subtype. If the length of the reset vector is zero
the addresses in the specified range are filled with ‘U’s. The parameters
“start_addr” and “end_addr” specify the range of the memory that is to be
reset. Note that this range includes the end points. (i.e. The addresses
“start_addr” and “end_addr” are reset as well as all addresses in-between
following describes the default values of these parameters.

• If “start_addr” is not specified then the memory is reset starting from
address 0.

• If “end_addr” is not specified then the memory from the starting addre
to the highest address is reset.

• If both “start_addr” and“end_addr” are not specified then the entire
memory is reset.

It should be noted that this procedure is provided largely for debugging purp
since there is no hardware equivalent to the function performed by this proce

HANDLING OF DRAMs:

If this procedure accesses any rows whose refresh period has expired, then
data in the row is invalidated before the reset takes place and if
MEM_WARNINGS_ON is true, a warning assertion is issued. This procedur
causes the memory to be “woken up”. Also, any rows that are written to by th
procedure are refreshed as well. It should be noted that this procedure is pro
largely for debugging purposes since there is no hardware equivalent to the
function performed by this procedure.

BUILT IN ERROR TRAPS:

1. If the parameter“start_addr” is outside of the address space of the
memory then an error assertion is issued and no operation is performe

2. If the parameter“end_addr” is less than the parameter“start_addr” , then
an error assertion is issued and no operation is performed
Std_DevelopersKit User’s Manual, V2.2 2-101

Mem_Reset Std_Mempak

ory
he

e and

r

hich
3. If the parameter“end_addr” is outside of the address space of the mem
then an error assertion is made and the contents of the memory from t
address specified by the parameter“start_addr” to the end of the memory
are reset.

4. If an attempt is made to refresh a ROM then, an error assertion is mad
no operation is performed.

5. If the length actual associated with the formal parameter“reset_value”
does not match the width of the memory (and is non-zero) then an erro
assertion is made and the contents of memory are reset to all ‘U’s.

NOTE: When resetting a memory, if the parameter“reset_value” is equal to the
default word for the memory then no space is allocated on the machine on w
the simulation is being run.
Std_DevelopersKit User’s Manual, V2.22-102

Std_Mempak Mem_Load

the
ot
ee

on. If
data

” and
ired
r of
e and
Mem_Load
Load a memory from a file.

DECLARATION:

Procedure Mem_Load (
mem_id:INOUT mem_id_type;-- ptr to mem. data structure
file_name:IN string;-- file to load memory from
);

DESCRIPTION:

This procedure causes the memory specified by the parameter“mem_id” to be
loaded from the file whose file name is specified by the parameter “file_name” . If
the addresses specified by the file have already been loaded with data then
data in those previously loaded locations is overwritten. Addresses that are n
specified by the file are unaffected. For information on the format of the file s
section 4.7.

Care must be taken when the file contains a default memory word specificati
a file with such a specification is loaded into a memory that has already had
written to it is possible that addresses containing the initial default value is
changed to the new default value.

HANDLING OF DRAMs:

The use of this procedure causes the memory being loaded to be “woken up
the rows that are being written to are refreshed. If the refresh period has exp
on any of the rows to which data is being loaded (row = address mod numbe
columns) then the data in those rows is invalidated before the load takes plac
if MEM_WARNINGS_ON is true a warning assertion is made.
Std_DevelopersKit User’s Manual, V2.2 2-103

Mem_Load Std_Mempak

 of
y is
ed

to

into

 then

that

n-
ion
 into

r

BUILD IN ERROR TRAPS:

1. If the memory word width specified by the file does not match the width
the memory then an error assertion is made. If the width of the memor
larger than the width specified by the file then the data in the file is plac
into the least significant bits of memory and the remaining bits are set
‘X’. If the width specified by the file is larger than that of memory then
only the least significant bits of the data specified in the file are placed
memory.

2. If an address is specified that is outside of the memory’s address range
no action is taken and an error assertion is issued.

3. If a syntax error is found in a file then an error assertion is issued and
line of the file is ignored.

4. If the memory word width is not specified before the first non-blank, no
comment line of the file or if a syntax error is detected in the specificat
of the bit width then an error assertion is made and the file is not loaded
memory.

5. If the default memory value is specified after the first non-blank, non-
comment line of the file (excluding the width specification) then an erro
assertion is made and the default specification is ignored.
Std_DevelopersKit User’s Manual, V2.22-104

Std_Mempak Mem_Dump

r
of

,

file.

o

ss

 the
ory

ne of
Mem_Dump
Memory Dump: Dump the contents of the specified memory range to a file.

DECLARATION:

Procedure Mem_Dump (
mem_id:INOUT mem_id_type;-- memory to be dumped
file_name:IN string;-- name of file to write
start_addr:IN Natural;-- starting address
end_addr:IN Natural;-- ending address
header_flag:IN Boolean := TRUE-- if true header printed
);

DESCRIPTION:

This procedure is used to write the contents of a memory out to a file for late
examination or for use in initializing a memory to a known state. The format
the file that the data is written to is the same as that used by the procedure
Mem_load. Note that if the parameter“header_flag” is false then the name, size
width of the memory, and time of the dump are not written to the file. If this
parameter is true or if it is not specified then, this information is written to the
The parameter“mem_id” specifies the memory that is to be written to the file.
The parameter“file_name” specifies the name of the file to which the data is t
be written. The parameters“start_addr” and“end_addr” specify the range of
addresses that are to be written to the file. The range includes“start_addr” and
“end_addr” . The following describes the default values of these last two
parameters.

• If the parameter “start_addr” is not specified, it defaults to address 0.

• If the parameter“end_addr” is not specified, it defaults to the last addre
of the specified memory.

• If both of the parameters“start_addr” and“end_addr” are not specified
then the contents of the entire memory are written to the specified file.

For information on the format of the file see section 4.6. The first two lines of
file are comment lines. The first comment line contains the name of the mem
and the second comment line specifies the length of the memory. The third li
the file specifies the width of the memory.
Std_DevelopersKit User’s Manual, V2.2 2-105

Mem_Dump Std_Mempak

 be

as
f
 is
ddress
ted,

d.

ory
he
HANDLING OF ‘U’s AND ‘X’s IN DATA:

Since data is written to the file in hexadecimal format any ‘U’s and ‘X’s must
mapped to a valid bit value. This mapping is determined by the constants
DATA_X_MAP and DATA_U_MAP which are globally defined in the
Std_Mempak package body. When such a mapping is made, if the globally
defined constant MEM_WARNINGS_ON is true, then a warning assertion is
made.

HANDLING OF DRAMs:

Whenever this procedure is called a check is made to see that the memory h
been “woken up”. If not, the contents of the memory is taken to be ‘X’s and i
MEM_WARNINGS_ON is true a warning assertion is issued. If, as the dump
performed, the refresh period has expired on a row being accessed (row = a
mod number of columns) then ‘X’s are returned, the data in the row is invalida
and if MEM_WARNINGS_ON is true a warning assertion is made. This
procedure does not perform a refresh.

BUILT IN ERROR TRAPS:

1. If the parameter“start_addr” is outside of the address space of the
memory then an error assertion is issued and no operation is performe

2. If the parameter“end_addr” is less than the parameter“start_addr” , then
an error assertion is issued and no operation is performed.

3. If the parameter “end_addr” is outside of the address space of the mem
then an error assertion is made and the contents of the memory from t
address specified by the parameter“start_addr” to the end of the memory
are written to the file.
Std_DevelopersKit User’s Manual, V2.22-106

Std_Mempak Mem_Valid

ins

ress
al

t

Mem_Valid
Check if Contents of Memory are Valid: Check if the specified address conta
valid data (only ‘0’s and ‘1’s).

OVERLOADED DECLARATIONS:

Procedure Mem_Valid (
mem_id:INOUT mem_id_type;-- memory to be checked
address:IN Natural;-- address to check for validity
DataValid:OUT BOOLEAN-- valid data?
);

Procedure Mem_Valid (
mem_id:INOUT mem_id_type;-- memory to be checked
address:IN bit_vector;-- address to check for validity
DataValid:OUT BOOLEAN-- valid data?
);

Procedure Mem_Valid (
mem_id:INOUT mem_id_type;-- memory to be checked
address:IN std_logic_vector;-- address to check for validity
DataValid:OUT BOOLEAN-- valid data?
);

Procedure Mem_Valid (
mem_id:INOUT mem_id_type;-- memory to be checked
address:IN std_ulogic_vector;-- address to check for validity
DataValid:OUT BOOLEAN-- valid data?
);

DESCRIPTION:

This procedure checks the address (specified by the parameter“address”) of the
memory (specified by the parameter“mem_id”) to see if the word stored at that
address contains one or more ‘U’s or ‘X’s. If it does, then the word at that add
is considered to be invalid and the actual parameter associated with the form
parameter“DataValid” is set to FALSE. If there are no ‘U’s or ‘X’s in the word
then the actual parameter associated with“DataValid” is set to TRUE. Note that
if the actual associated with the parameter“address” is a vector then the left mos
index of the vector is considered to be the MSB and the right most index is
considered to be the LSB. Furthermore the vector is considered to be in an
Std_DevelopersKit User’s Manual, V2.2 2-107

Mem_Valid Std_Mempak

ction
y

as

 row
ameter

han
 if the

e
cant
tant

rder to
ined

ants

de

rror
unsigned format. This procedure is not meant to emulate some hardware fun
but, rather, is provided to aid the model designer in the design of the memor
model.

HANDLING OF DRAMs:

Whenever this procedure is called a check is made to see that the memory h
been “woken up”. If not, the actual parameter associated with the formal
parameter “DataValid” is returned set to FALSE and if MEM_WARNINGS_ON
is true a warning assertion is issued. If the refresh period has expired on the
being accessed (row = address mod number of columns) then the actual par
associated with the formal parameter“DataValid” is returned set to FALSE, the
data in the row is invalidated, and if MEM_WARNINGS_ON is true a warning
assertion is made. This procedure does not perform a refresh.

HANDLING OF ‘U’s AND ‘X’s IN ADDRESSES:

If the address is specified by a vector and the length of the vector is longer t
the number of bits needed to access the highest address in the memory then
constant MEM_WARNINGS_ON is true a warning assertion is issued. If the
length of the vector is shorter than the number of bits needed to represent th
highest address in memory then the vector is assumed to be the least signifi
bits of the address and the remaining bits are assumed to be ‘X’s. If the cons
MEM_WARNINGS_ON is true then a warning assertion is issued.

Any time the vector specifying the address either contains ‘U’s or ‘X’s or is
shorter than necessary it is necessary to map these values to bit values in o
determine which address to read. The values they are mapped to are determ
by the constants ADDRESS_X_MAP and ADDRESS_U_-MAP. These const
are globally defined in the Std_Mempak package body. If the constant
MEM_WARNINGS_ON is true then an assertion of severity WARNING is ma
when such a mapping occurs.

BUILT IN ERROR TRAP:

If the address specified is out of the address range of the memory then an e
assertion is issued and“DataValid” is set to FALSE.
Std_DevelopersKit User’s Manual, V2.22-108

Std_Mempak Memory Files

a file
rmat

ry

ses.

y

 a
r
nsist
r
ems.
hen
Memory Files

File Format

As previously described, it is possible to load the contents of a memory from
and to dump the contents of a memory to a file. This section describes the fo
used for these files.

The file format only has five types of statements. They are comments, memo
word width specification, default word specification, data specification for an
address, and the specification of a single piece of data for a range of addres
The file is an ASCII file and thus can be easily generated and easily viewed.

Comments

The format of a comment is simple. A comment starts with two dashes not
separated by any spaces (--). A comment may start anywhere on a line and an
characters following the dashes up until the end of the line are ignored.

Example:
-- this is a comment

Memory Word Width Specification

The memory word width specification consists of the word “width” followed by
colon followed by the width of the memory. The width (the number of bits pe
word of memory) should be specified in hexadecimal. All data words must co
of the number of hexadecimal digits required to form a word of this width. Fo
example, if the width is 6 then two hexadecimal digits are required for data it
If they are more or less than two digits in length an error assertion is made w
loading the file.This statement must be the first non-blank, non-comment line
in the file and is not optional.

Example:
width : 10 -- this line indicates that this file

-- contains data for a memory that is
-- 16 bits wide
Std_DevelopersKit User’s Manual, V2.2 2-109

Memory Files Std_Mempak

lon
e
 not be
 load
ritten
to be

imal),

it to

e
d any
e
y

ach
Default Word Specification

The default word specification consists of the word “default” followed by a co
followed by the default word specified in hexadecimal. The default word is th
word that is returned when an access is made to a memory location that has
previously loaded (or written to or reset). Note that care must be taken not to
a file that specifies a default if the memory being loaded has already been w
to. This could cause any memory locations that contain the old default word
changed to the default word specified in the file.This statement, if included,
must immediately follow the width statement.

Example:
default : FF -- this specifies a default word

-- of "11111111" assuming a memory
-- width of 8 bits

Data Specification for an Address

The data specification statement consists of an address (specified in hexadec
followed by a colon, followed by zero or more data items (specified in
hexadecimal) separated by one or more blank spaces or tabs. There is no lim
how many data words can go on the line, but the maximum length of a line is
specified by the constant MAX_STRING_LEN. This constant is defined in th
Std_IOpak package. If this constant is changed Std_IOpak, Std_Mempak, an
other packages that use Std_IOpak or Std_Mempak must be recompiled. Th
constant MAX_STR_LEN which is defined in the Std_Mempak package bod
must also be changed to match MAX_STRING_LEN.

The address specifies the address that the first word is to be written to and e
subsequent word is written to the next highest address in the memory. If the
memory word width is not a multiple of four then when it is converted to a bit
vector only the least significant bits are used to load the memory.

Example:
AEF109: 45FE 78FC 5478 FFFF 010C
Std_DevelopersKit User’s Manual, V2.22-110

Std_Mempak Memory Files

f
ds
ed by
 the
re
than
ified in

paces
ta
sses
ore

 bit
Data Specification for a Range of Addresses

The final statement is the specification of a single piece of data for a range o
addresses. It has the format of an address followed by two periods (the perio
should not be separated by any white spaces) followed by an address, follow
a colon, followed by the data item. All of the memory addresses starting from
first address going until the second address specified on the line, inclusive, a
filled with the data following the colon. The second address must be greater
or equal to the first address. The addresses and the data item must be spec
hexadecimal.

Example:
015F .. F105: 5E

Spaces and Tabs

Additional spaces and tabs are ignored. The only place where one or more s
or tabs is required is as data separators in separating the data words in a da
specification statement. The letters in the hexadecimal data items and addre
may be in either upper or lower case. If the data for an address is specified m
than once then the last specification supercedes all others.

Sample Memory File

The following is a sample memory file that can be used to load a ROM with 9
word widths.

-- This file specifies the data to be loaded
-- into a ROM with a 9 bit word width
width : 09 -- word width
default : 1FF -- set the default word to all 1's

00: 1FE FFF 753 891 354 971 901 E41
008: 789 923 AB3 DC4 4E3 654 9A3 8ea
010 .. 0153: 13F
0124 : 78F
002F : 653
Std_DevelopersKit User’s Manual, V2.2 2-111

Memory Files Std_Mempak
The following table shows the bit patterns that are actually loaded into the
memory. All unspecified addresses have ‘1’s stored in them.

Table 2-8. Bit Patterns Loaded Into Memory

Address (hex.) Data

0000 111111110

0001 111111111

0002 101010011

0003 010010001

0004 101010100

0005 101110001

0006 100000001

0007 001000001

0008 110001001

0009 100100011

000A 010110011

000B 111000100

000C 011100011

000D 001010100

000E 110100011

000F 011101010

0010 thru 002E 100111111

002F 001010011

0030 thru 0123 100111111

0124 110001111

0125 thru 0153 100111111
Std_DevelopersKit User’s Manual, V2.22-112

Std_Mempak Memory Models

at the

o
the

h

Memory Models
The purpose of this section is to show sample models of memory chips so th
model designer can have a “template” with which to build other models. The
models in this section are fully functional but timing consideration is limited t
the timing of the outputs. These models assume that the input signals meet
input timing requirements.

Intel 21010-06 Dynamic RAM with Page Mode

The Intel 21010-06 Dynamic RAM is a 1,048,576 X 1-bit DRAM with page
mode. It has 512 rows each with 2048 columns of 1 bit words. It has a refres
period of 8 ms. The pin configuration of the chip for a DIP package is shown
below.

Figure 2-9. Intel 21010-06 Pin Configuration

Each of the pins have the following functionality
D - data in
W - write select
Q - data out
RAS- row address strobe
CAS- column address strobe
TF - test function
A0 - A9-address inputs
VCC- power
VSS- ground

D

W

RAS

TF

A0

A1

A2

A3

VCC

VSS

Q

A8

A9

A7

A6

A5

A4

CAS
Std_DevelopersKit User’s Manual, V2.2 2-113

Memory Models Std_Mempak

formed

dress

n

ed

dress

.

lue to
s and

s is
Q
e

to

ry.
e
bed in
The subsequent paragraphs describe each of the operations that can be per
by the Intel 21010-06.

Read

A single word read operation is started by placing the row address on the ad
lines. TheRAS line is brought low to strobe in the address. TheW line is brought
high and the column address is now placed on the address lines. The colum
address is strobed in when theCAS line is brought low. After a delay the data
appears on the Q line. The delay depends on timing information not discuss
here.RAS andCAS can then be brought high. The Q line goes into a high
impedance state afterCAS is brought high.

Early Write

A single word write operation is started by placing the row address on the ad
lines. TheRAS line is brought low to strobe in the row address. TheW line is
brought low and the column address is now placed on the address lines. The
column address is strobed in when theCAS line is brought low. After an
appropriate amount of time theRAS andCAS lines can be brought back to high
The Q line remains in the high impedance state throughout this operation.

Read-Modify-Write

This operation first reads the contents of an address and then writes a new va
the address. This is done by first putting the row address on the address line
strobing it in by bringing theCAS line low. TheW line is then brought high and
the column address is then placed on the address lines. The column addres
strobed in by bringing theCAS line low. After a delay the data appears on the
line. The data to be written to the address can be placed on the D line and thW
line can be brought low after a delay. BringingW low causes a write to be
performed. TheW, RAS, andCAS lines can be brought high. The Q line goes in
a high impedance state after theCAS line is brought high.

Fast Page Mode

This mode of operation allows faster access to a particular row of the memo
Reads, writes, and read-modify-writes, can all be performed in this mode. Th
difference here is that the row address is placed on the address line and stro
Std_DevelopersKit User’s Manual, V2.22-114

Std_Mempak Memory Models

 in

s
e 512

isible
. The

ite
by bringing theRAS line low. Different column addresses can then be strobed
by keeping theRAS line low and toggling theCAS line while providing different
column addresses.

RAS-Only Refresh

This refresh operation refreshes a specified row of memory. A row address i
placed on address lines A0 - A8 (only 9 lines are needed to specify one of th
rows). TheRAS line is then toggled from high to low and back to high again.

CAS-before- RAS Refresh

This refresh operation refreshes a row of memory that is specified by a non-v
on-chip counter. The counter is incremented after the operation is performed
operation is initiated by bringing theCAS line low, followed by bringing theRAS
line low. TheCAS line is then brought high followed by theRAS line.

Hidden Refresh

A “hidden refresh” may be performed during a read, write, or read-modify-wr
operation by extending theCAS active time and toggling theRAS line. This
causes aCAS-before-RAS operation to be performed.

Other Refresh Methods

A refresh is also performed whenever a read, a write, or a read-modify-write
operation is performed.

Initialization

The Intel 21010-06 requires 8RAS cycles to initialize it (“wake it up”) upon
power up. Should 8 ms pass without any operation being performed on the
memory, 8RAS cycles are also required to re-initialize the memory. The Intel
21010-06 will not operate until these cycles are performed.
Std_DevelopersKit User’s Manual, V2.2 2-115

Memory Models Std_Mempak
Figure 2-10. Model Intel 21010-06 Using Std_Mempak Subroutines

-- INTEL : 4Meg x 1 DRAM

Library ieee;
Use ieee.STD_Logic_1164.all; -- Reference the STD_Logic system
LIBRARY std_developerskit;
USE std_developerskit.Std_Mempak.all;
use std_developerskit.Std_IOpak.all;
use std_developerskit.Std_Timing.all;

Entity INTEL21010 is

 port (A : IN std_logic_vector(9 downto 0); -- mux'd addr.
 RAS_N : IN std_logic; -- row address strobe
 CAS_N : IN std_logic; -- column address strobe
 WE_N : IN std_logic; -- '1' = READ, '0' = WRITE
 Q : OUT std_logic; -- data out
 D : IN std_logic -- data in
);
end INTEL21010;

Architecture Behavioral of INTEL21010 is
begin

 -- Address: The address is determined by latching in the first 10
 -- bits using RAS. The high order 10 bits of the address are then
 -- latched using CAS.
 -- WRITE CYCLE: D is latched on the falling edge of WE_N or CAS_N
 -- which ever occurs last.

 model : PROCESS
 variable address : std_logic_vector (19 downto 0);
 variable RAS_N_internal : std_logic;
 variable CAS_N_internal : std_logic;
 variable WE_N_internal : std_logic;
 variable A_internal : std_logic_vector (9 downto 0);
 variable D_internal : std_logic;
 variable Data : UX01;
 variable tf_RAS : time := -1.0 us;
 variable tf_CAS : time := -1.0 us;
 variable tf_WE : time := -1.0 us;
 variable tr_RAS : time := -1.0 us;
 variable tr_CAS : time := -1.0 us;
 variable t_addr : time := -1.0 us;
 variable dram1 : mem_id_type;
 variable t_rad : time;
 variable t_rcd, t_rac : time;
Std_DevelopersKit User’s Manual, V2.22-116

Std_Mempak Memory Models
 variable t_out_delay : time;
 variable init_count : integer := 0;

 -- output buffer turnoff delay time
 constant t_off_max : time := 20 ns;
 -- cas to output in low z
 constant t_clz_min : time := 0.0 ns;
 -- access time from cas
 constant t_cac_max : time := 20 ns;
 -- access time from column address
 constant t_aa_max : time := 30 ns;
 -- access time from ras
 constant t_rac_max : time := 60 ns
 -- ras to cas delay time
 constant t_rcd_max : time := 40 ns;
 -- ras to column address delay time
 constant t_rad_max : time := 30 ns;
 -- transistion time
 constant t_t : time := 5 ns;
 -- access time from cas precharge
 constant t_cpa_max : time :=40.0 ns;

 begin
 dram1 := DRAM_INITIALIZE(

name => "DRAM CHIP # 1",
rows => 512,
columns => 2048,
width => 1,
refresh_period => 8.0 ms,
default_word => std_logic_vector'("")
);

 Q <= 'Z';

 loop
 wait on RAS_N, CAS_N, WE_N, A;
 --
 -- strip the strength
 --
 A_internal := To__X01 (A);
 RAS_N_internal := To__X01 (RAS_N);
 CAS_N_internal := To__X01 (CAS_N);
 WE_N_internal := To__X01 (WE_N);
 D_internal := To__X01 (D);

 --
 -- Latch low address
 --
 if falling_edge (RAS_N) then
 address (19 downto 11) := A_internal(8 downto 0);
 address (10) := A_internal(9);
Std_DevelopersKit User’s Manual, V2.2 2-117

Memory Models Std_Mempak
 tf_ras := NOW;
 end if;

 --
 -- if no cycle in last 8 ms device must be reinitialized
 -- with 8 cycles
 -- therefore initialization count must start at 0 again
 --

 if (tf_ras < (NOW - 8.0 ms)) then
 init_count := 0;
 end if;

 --
 -- Latch high address
 --
 if falling_edge (CAS_N) then
 address (9 downto 0) := A_internal;
 tf_cas := NOW;
 end if;

 --
 -- record the time at which WE fell
 --
 if falling_edge (WE_N) then
 tf_WE := NOW;
 end if;

 --
 -- set output to 'Z'
 --
 if rising_edge (CAS_N) then
 tr_cas := NOW;
 q <= 'Z' after t_off_max;
 end if;

 --
 -- record the time in when the address changed
 --
 if (A’event and (RAS_N_internal = '0')) then
 t_addr := NOW;
 end if;

 -- ACCESS CYCLES

 if (rising_edge(RAS_N) and (CAS_N_internal=’1’) and
 (tf_CAS < tf_RAS) and
 (tr_CAS < tf_RAS)) then
 --
Std_DevelopersKit User’s Manual, V2.22-118

Std_Mempak Memory Models
 -- RAS ONLY Refresh
 --
 Mem_Row_Refresh (mem_id => dram1,
 row => address(19 downto 11)
);

 elsif (falling_edge RAS_N)and (CAS_N_internal='0')) then
 --
 -- CAS-BEFORE-RAS Refresh cycle and hidden refresh

 Mem_Refresh (mem_id => dram1);
 elsif (RAS_N_internal = '0') then
 if (WE_N_internal = '1') then
 --
 -- Read Cycle : regular and page-mode
 --
 t_rcd := tf_cas - tf_ras;
 t_rad := t_addr - tf_ras;
 t_rac := MAXIMUM (t_rcd - t_rcd_max,
 t_rad - t_rad_max
);
 if (t_rac > 0.0 fs) then
 t_rac := t_rac_max + t_rac;
 else
 t_rac := t_rac_max;
 end if;
 if falling_edge (CAS_N) then
 Mem_Read (mem_id => dram1,
 address => address,
 data => data
);
 Q <= transport ‘-’ after t_clz_min;
 if (t_rcd > t_rcd_max) then
 t_out_delay := t_cac_max;
 elsif (t_rad > t_rad_max) then
 t_out_delay := t_aa_max-(tf_cas-t_addr);
 else
 t_out_delay := t_rac - (tf_cas - tf_ras);
 end if;
 t_out_delay := MAXIMUM (

t_out_delay,
t_cpa_max - (tf_cas - tr_cas)

);
 -- drive the data
 Q <= transport data after t_out_delay;
 end if;
 elsif (WE_N_internal = ‘0’) then
 --
 -- Write Cycle : regular and page mode
 --
 if ((CAS_N_internal = ‘0’)
Std_DevelopersKit User’s Manual, V2.2 2-119

Memory Models Std_Mempak

bined
h the
ed in
th the
d.

t bits
 and (RAS_N_internal = ‘0’) and
 (falling_edge (CAS_N)
 or falling_edge(WE_N))) then
 -- write data to memory;
 Mem_Write (mem_id => dram1,
 address => address,
 data => D_internal
);
 end if;
 end if;
 end if;

 --
 -- wake up memory and increment wake up count
 --

 if (rising_edge(RAS_N) and (tf_ras > 0.0 fs)) then
 init_count := (init_count + 1) mod 8;
 if init_count = 0 then
 Mem_Wake_Up(mem_id => dram1);
 end if;
 end if;

 end loop;
 end process;
end Behavioral;

Description of Model

The model of the Intel 21010-06 implements all of the previously described
functions. In addition, it also implements timing of the output signals. This
includes the 8RAS cycles that are needed to “wake it up”.

One thing worth noting is that when the row and column addresses are com
to form the entire 20 bit address the MSB of the row address is swapped wit
least significant 9 bits of the row address. In addition, the row address is plac
the most significant 10 bits of the combined address. The swap has to do wi
fact that only bits A0 to A8 are used to determine what row is being accesse
Since Std_Mempak calculates the row as:

row = address div # of columns

this means that the bits that determine the row have to be the most significan
of the combined address.
Std_DevelopersKit User’s Manual, V2.22-120

Std_Mempak Memory Models

,

tion
oken
he

ts are
ata
.

It should be noted that when performing 8RAS cycles to “wake up” the memory
the model tries to perform some operation. (If only theRAS line is cycled, this is a
RAS-only refresh.) Since the Std_Mempak procedures give a warning asser
when attempting to perform an operation on a memory that has not been “w
up”, a minimum of 8 warning assertions are made when trying to “wake up” t
memory. This is unavoidable (except by setting the constant
MEM_WARNINGS_ON to false) and does not cause any problems in the
functionality of the model.

INTEL 51256S/L-07 Static RAM

The Intel 51256S/L-07 Static RAM is a 32,768 word X 8 bit SRAM. It can
perform both read and write operations and can be disabled so that its outpu
in a high impedance state. The same pins are used for both data input and d
output. The following is the list of pins and their corresponding functionalities

VCC- power
GND- ground
CS - chip select
OE - output enable
WE - write enable
DQ0 - DQ7-data input/output
A0 - A14-address

The following table shows the possible control line settings along with the
corresponding modes of operation and the state of the IO pins.

In order to enter read mode,CS must be low andWE must be high. Once the
address lines become stable the data is output after a delay of TAA.

Table 2-9. Control Line Settings for 51256-07 Static RAM

CS WE OE Mode I/O

H X X Standby High Z

L H H Read High Z

L H L Read DOUT

L L X Write DIN
Std_DevelopersKit User’s Manual, V2.2 2-121

Memory Models Std_Mempak

n

d

There are two basic write modes. These areWE controlled write mode andCS
controlled write mode. In both modes theWE line and theCS line must be high
when the address changes. In aWE controlled write cycle theCS line is brought
low first. Then theWE line is brought low. This latches the write address. Whe
WE is brought high the data is written to the memory. In aCS controlled write
cycle, theWE line is first brought low. Then theCS line is brought low. This
latches the write address. WhenCS is brought high the data is written to the
memory.

The following table shows the various timing parameters, their meanings, an
their values. These parameters correspond to the timing diagrams on the
subsequent pages.

Table 2-10. Read Cycle Data

Symbol Parameter Min Max

tRC Read Cycle Time 70 ns

tAA Address Access Time 70 ns

tACS Chip Select Access Time 70 ns

tOH Output Hold from Address Change 10 ns

tCLZ Chip Selection to Output in Low Z 5 ns

tCHZ Chip Deselection to Output in High Z 0 ns 35 ns

tOE Output Enable Access Time 40 ns

tOLZ Output Enable to Output in Low Z 5 ns

tOHZ Output Disable to Output in High Z 0 ns 35 ns

tWC Write Cycle Time 70 ns

tCW Chip Selection to End of Write 45 ns

tAW Address Valid to End of Write 65 ns

tAS Address Set-Up Time 0 ns

tWP Write Pulse Width 45 ns

tWR Write Recovery Time 5 ns
Std_DevelopersKit User’s Manual, V2.22-122

Std_Mempak Memory Models
• WE is high for read cycles.

Figure 2-11. READ CYCLE 2

• WE is high for read cycles.

• CS andOE are low.

Figure 2-12. READ CYCLE 3

• WE is high for read cycles.

tDW Data Valid to End of Write 30 ns

tDH Data Hold Time 0 ns

tWHZ Write Enable to Output in High Z 0 ns 40 ns

tOW Output Disable to Output in High Z 5 ns

Table 2-10. Read Cycle Data

Symbol Parameter Min Max

ADDR.

OE

CS

DOUT

tRC

tAA

tOE

tOLZ

tOH

tACS

tCLZ

tOHZ
tCHZ

ADDR.

DOUT

tRC

tAAtOH
tOH
Std_DevelopersKit User’s Manual, V2.2 2-123

Memory Models Std_Mempak
• Address must be valid prior to or coincident with the falling ofCS.

• OE is low.

Figure 2-13. Write Cycle 1

• tWR is measured from the earlier ofCS orWE going high to the end of the
write cycle.

Figure 2-14. Write Cycle 2

• tWR is measured from the earlier ofCS orWE going high to the end of the
write cycle.

• OE is low.

CS

DOUT

tACS
tCLZ

tCHZ

ADDR.

OE

CS

WE

DOUT

DIN

tWC

tWR

tCW

tAW

tOHZ tWP

tDW
tDH

tAS
Std_DevelopersKit User’s Manual, V2.22-124

Std_Mempak Memory Models
• The data on DOUT after TOW is the same as the data that was written.

• * Timing diagrams and timing parameters have been obtained from the
1991 Intel Memory Products Data Book.

Figure 2-15. Model of INTEL 51256S/L-07 Static RAM Using
Std_Mempak Subroutines

-- INTEL : 32K X 8 SRAM

Library ieee;
Use ieee.STD_Logic_1164.all; -- Reference the STD_Logic system
LIBRARY std_developerskit;
USE std_developerskit.Std_Mempak.all;
use std_developerskit.Std_IOpak.all;
use std_developerskit.Std_Timing.all;

Entity INTEL51256SL is

 port (A : IN std_logic_vector (14 downto 0); -- address
 DQ : INOUT std_logic_vector (7 downto 0); -- I/O data
 CS_N : IN std_logic; -- chip select
 WE_N : IN std_logic; -- ‘1’ = READ, ‘0’ = WRITE
 OE_N : IN std_logic -- output enable
);
end INTEL51256SL;

Architecture Behavioral of INTEL51256SL is
begin
 model : PROCESS
 constant SPACESTR : string(1 to 12) := “ “;

ADDR.

CS

WE

DOUT

DIN

tWC

tWC
tWR

tAW

tWP

tAS tWHZ

TOH

tOW

tDW tDH
Std_DevelopersKit User’s Manual, V2.2 2-125

Memory Models Std_Mempak

-- timing data

 constant T_AA : time := 70.0 ns; -- address access time
 constant T_ACS : time := 70.0 ns; -- chip select access time
 constant T_OH : time := 10.0 ns; -- output hold from addr. change
 constant T_CLZ : time := 5.0 ns; -- chip select to output in low Z
 constant T_CHZ : time := 35.0 ns; -- chip deselect to out. in high Z
 constant T_OE : time := 40.0 ns; -- output enable access time
 constant T_OLZ : time := 5.0 ns; -- output enable to out. in low Z
 constant T_OHZ : time := 35.0 ns; -- output enable to out. in high Z
 constant T_CW : time := 45.0 ns; -- chip select to end of write
 constant T_AW : time := 65.0 ns; -- address valid to end of write
 constant T_WP : time := 45.0 ns; -- write pulse width
 constant T_WR : time := 5.0 ns; -- write recovery time
 constant T_DW : time := 30.0 ns; -- data valid to end of write
 constant T_DH : time := 0.0 ns; -- data hold time
 constant T_WHZ : time := 40.0 ns; -- write enable to out. in high Z
 constant T_OW : time := 5.0 ns; -- output active from end of write

-- memory data structure pointer
 variable sram1 : mem_id_type;
 -- holds current cs_n value
 variable cs_n_internal : std_logic;
 -- holds current we_n value
 variable we_n_internal : std_logic;
 -- holds current oe_n value
 variable oe_n_internal : std_logic;
 -- holds address to be written to
 variable latch_addr : std_logic_vector (14 downto 0);
 -- holds data to be written
 variable latch_data : std_logic_vector (7 downto 0);

variable t_delay, t2_delay : time;
-- data to be output

 variable data_out : std_logic_vector (7 downto 0);
-- time we_n fell

 variable tf_we_n : time := 0.0 ns;
-- time cs_n fell

 variable tf_cs_n : time := 0.0 ns;
-- time write occured

 variable write_end : time := -T_WR;
-- time of last event on DQ

 variable dq_event : time := 0.0 ns;
-- time of previous event on DQ

 variable dq_last_event : time := 0.0 ns;
 -- time data to be written was placed on DQ
 variable dq_change : time;
 -- true if we_n cntrld write cycle
 variable we_n_cntrld : boolean := FALSE;
Std_DevelopersKit User’s Manual, V2.22-126

Std_Mempak Memory Models
 -- true of cs_n cntrld write cycle
 variable cs_n_cntrld : boolean := FALSE;

 begin
 sram1 := SRAM_INITIALIZE (name => “SRAM CHIP # 1”,
 length => 32768,
 width => 8,
 default_word => std_logic_vector’(““)
);

 -- initialize output to either high impedance state or ‘X’
 cs_n_internal := To_X01(CS_N);
 we_n_internal := To_X01(WE_N);
 oe_n_internal := To_X01(OE_N);
 if ((cs_n_internal = ‘0’) and (we_n_internal = ‘1’)
 and (oe_n_internal = ‘0’)) then
 DQ <= (others => ‘X’);
 else
 DQ <= (others => ‘Z’);
 end if;

 loop
 -- wait for a change to occur on A, CS_N, WE_N, or OE_N
 wait on A, CS_N, WE_N, OE_N;

 -- convert control line to X01 format
 cs_n_internal := To_X01(CS_N);
 we_n_internal := To_X01(WE_N);
 oe_n_internal := To_X01(OE_N);

 -- keep track of when we_n or cs_n fell
 if falling_edge(we_n) then
 tf_we_n := NOW;
 end if;
 if falling_edge(cs_n) then
 tf_cs_n := NOW;
 end if;

 -- keep track of the time of the last 2 events on DQ
 if dq’event then
 dq_last_event := dq_event;
 dq_event := NOW;
 end if;

 -- checks timing errors on input to device
 assert NOT (A’event and we_n_internal = ‘0’)
 report “INTEL 51256S/L-07 ERROR: Address changed while WE_N”
 & “was low”
 severity ERROR;
 assert NOT (A’event and ((NOW - write_end) < T_WR))
 report “INTEL 51256S/L-07 ERROR: Address changed before end “
Std_DevelopersKit User’s Manual, V2.2 2-127

Memory Models Std_Mempak
 & “of write recovery time”
 severity ERROR;

 assert NOT (falling_edge(oe_n) and ((NOW - write_end) < T_WR))
 report “INTEL 51256S/L-07 ERROR: oe_n fell befor end of write”
 & “recovery time”
 severity ERROR;

 if (cs_n_internal = ‘0’) and falling_edge(we_n) then
 -- start of we_n controlled write
 -- DQ goes to Z and current address is latched if
 -- cs_n is also falling then it may be a cs_n controlled write
 we_n_cntrld := TRUE;
 if falling_edge(cs_n) then
 cs_n_cntrld := TRUE;
 end if;
 latch_addr := A;
 if oe_n_internal = ‘0’ then
 DQ <= transport (others => ‘Z’) after T_WHZ;
 end if;
 elsif ((cs_n_internal = ‘0’) or rising_edge(cs_n))
 and rising_edge(we_n) and we_n_cntrld then
 -- end of we_n controlled write
 -- write data and check for timing errors on input lines
 -- at end of write data that was written is output if
 -- oe_n is low
 write_end := NOW;
 assert NOT ((NOW - tf_we_n) < T_WP)
 report “INTEL 51256S/L-07 ERROR: Minimum pulse width of we_n”
 & “ during” & LF & SPACESTR
 & “a write has been violated”
 severity ERROR;
 assert (A’last_event >= T_AW)
 report “INTEL 51256S/L-07 ERROR: Address not valid to end”
 & “ of write”
 severity ERROR;
 if DQ’event then
 dq_change := dq_last_event;
 else
 dq_change := dq_event;
 end if;
 assert ((NOW - dq_change) >= T_DW)
 report “INTEL 51256S/L-07 ERROR: Data hold time for write “
 & “violated”
 severity ERROR;
 if DQ’event then
 latch_data := DQ’last_value;
 else
 latch_data := DQ;
 end if;
 Mem_Write (mem_id => sram1,
Std_DevelopersKit User’s Manual, V2.22-128

Std_Mempak Memory Models
 address => latch_addr,
 data => latch_data
);
 cs_n_cntrld := FALSE;
 we_n_cntrld := FALSE;
 if oe_n_internal = ‘0’ then
 DQ <= latch_data after T_OW;
 end if;
 elsif (we_n_internal = ‘0’) and falling_edge(cs_n) then
 -- start of cs_n controlled write
 -- latch current address
 -- if we_n is falling it may also be a we_n controlled write
 latch_addr := A;
 cs_n_cntrld := TRUE;
 if falling_edge(we_n) then
 we_n_cntrld := TRUE;
 end if;
 elsif ((we_n_internal = ‘0’) or rising_edge(we_n))
 and rising_edge (cs_n) and cs_n_cntrld then
 -- end of cs_n controlled write
 -- write data an dcheck for timing errors on input lines
 write_end := NOW;
 assert NOT ((NOW - tf_cs_n) < T_CW)
 report “INTEL 51256S/L-07 ERROR: Minimum pulse width of "
 & “cs_n during” & LF & SPACESTR
 & “a write has been violated”
 severity ERROR;
 assert (A’last_event >= T_AW)
 report “INTEL 51256S/L-07 ERROR: Address not valid to end “
 & “of write”
 severity ERROR;
 if DQ’event then
 dq_change := dq_last_event;

 else
 dq_change := dq_event;

 end if;
 assert ((NOW - dq_change) >= T_DW)
 report “INTEL 51256S/L-07 ERROR: Data hold time for write “
 & “violated”
 severity ERROR;
 if DQ’event then
 latch_data := DQ’last_value;
 else
 latch_data := DQ;
 end if;
 Mem_Write (mem_id => sram1,
 address => latch_addr,
 data => latch_data
);
 cs_n_cntrld := FALSE;
 we_n_cntrld := FALSE;
Std_DevelopersKit User’s Manual, V2.2 2-129

Memory Models Std_Mempak
 elsif (cs_n_internal = ‘1’) or ((oe_n_internal = ‘1’)
 and (we_n_internal = ‘1’)) then

 -- no operation being performed
 -- output should go to high Z state

 t_delay := time’high;
 if cs_n’event then
 t_delay := minimum(t_delay, T_CHZ);
 end if;
 if oe_n’event then
 t_delay := minimum(t_delay, T_OHZ);

 end if;
 if we_n’event then
 t_delay := minimum(t_delay, T_WHZ);
 end if;
 if cs_n’event or oe_n’event or we_n’event then
 DQ <= transport (others => ‘Z’) after t_delay;
 end if;
 elsif (cs_n_internal = ‘0’) and (oe_n_internal = ‘0’)
 and (we_n_internal = ‘1’) then
 -- read operation
 t_delay := time’low;
 -- wait maximum amount of time between chip enable low and
 -- output enable low before setting dq to X’s. This takes
 -- priority over address changes
 t_delay := maximum(t_delay, T_CLZ - cs_n’last_event);
 t_delay := maximum(t_delay, T_OLZ - oe_n’last_event);
 if (t_delay >= 0.0 ns)
 and (cs_n’event or oe_n’event or A’event or we_n’event) then
 DQ <= transport (others => ‘X’) after t_delay;
 end if;
 t2_delay := T_OH - A’last_event;
 if (t2_delay >= 0.0 ns) and (t2_delay > t_delay)
 and (cs_n’event or oe_n’event or A’event or we_n’event) then
 DQ <= transport (others => ‘X’) after t2_delay;
 end if;
 t_delay := time’low;
 t_delay := maximum(t_delay, T_ACS - cs_n’last_event);
 t_delay := maximum(t_delay, T_OE - oe_n’last_event);
 t_delay := maximum(t_delay, T_AA - A’last_event);
 if (t_delay >= 0.0 ns)
 and (cs_n’event or oe_n’event or A’event or we_n’event) then
 Mem_Read(mem_id => sram1,
 address => A,
 data => data_out
);
 DQ <= transport data_out after t_delay;
 end if;
 end if;
 end loop;
 end process;
end Behavioral;
Std_DevelopersKit User’s Manual, V2.22-130

Std_Mempak Memory Models

ory.
is
e read

ode,
utput
low,
 the

 used
um
INTEL 2716 EPROM

The Intel 2716 is a 2048 word X 8-bit erasable programmable read only mem
The model described in this section only implements the read capability of th
chip. It assumes that the chip has already been programmed and that only th
operation needs to be modelled.

The following is a list of the chip’s pins and their functionalities.

A0 - A10-Address
CE - Chip Enable
OE - Output Enable
O0 - O7-Output
Vcc- Power
GND- Ground
Vpp- Program

When the chip is not being programmed, the Vpp pin is kept at 5 V. In this m
the either the Chip Enable pin or the Output Enable pin or both are high the o
is in a high Z state. When both the Output Enable and Chip Enable pins are
the chip is placed in Read Mode. In this case the contents of the address on
address lines are placed on the output lines after a delay of tACC from the time that
the address becomes stable. The following table gives the timing parameters
in the timing diagram on the following page, their meanings, and their maxim
and minimum values.

Table 2-11. Read Cycle Data

Symbol Parameter Min Max

tACC Address to Output Delay 450 ns

tCE Chip Enable to Output Delay 450 ns

tOE Output Enable to Output Delay 120 ns

tDF CE orOE High to Output in High Z State 0 ns 100 ns

tOH Output Hold from Address,CE, orOE -
whichever occurs first

0 ns
Std_DevelopersKit User’s Manual, V2.2 2-131

Memory Models Std_Mempak

he
 is
• tDF is measured from the rising edge of eitherOE orCE, whichever occurs
first.

Notes on the Model

Note that since, in effect, the Intel 2716 is being modelled as a ROM, the
ROM_Initialize subroutine is used. That subroutine loads the memory from t
specified file. Since, the contents of the memory are determined by the file it
possible to change them by simply changing the file and re-running the
simulation. It is not necessary to recompile the model.

• * Timing diagrams and timing parameters have been obtained from the
1991 Intel Memory Products Data Book.

Figure 2-16. Model of INTEL 2716 Using Std_Mempak Subroutines

-- INTEL : 2K X 8 EPROM

Library ieee;
Use ieee.STD_Logic_1164.all; -- Reference the STD_Logic system
LIBRARY std_developerskit;
USE std_developerskit.Std_Mempak.all;
use std_developerskit.Std_IOpak.all;
use std_developerskit.Std_Timing.all;

Entity INTEL2716 is

 port (A : IN std_logic_vector (10 downto 0); -- address
 Q : OUT std_logic_vector (7 downto 0); -- output data
 CE_N : IN std_logic; -- chip enable
 OE_N : IN std_logic -- output enable
);
end INTEL2716;

ADDR.

CE

OE

O

Valid Address

Valid Output

tCE
tOE

tACC

tDF

tOH
Std_DevelopersKit User’s Manual, V2.22-132

Std_Mempak Memory Models
Architecture Behavioral of INTEL2716 is
begin
 model : PROCESS

 --
 -- timing data
 --

 constant T_ACC : time := 450 ns;-- address to output delay
 constant T_CE : time := 450 ns; -- ce_n to output delay
 constant T_OE : time := 120 ns; -- out enable to out delay
 constant T_DF : time := 100 ns; -- ce_n or oe_n hi to out Z
 constant T_OH : time := 0 ns; -- output hold from address,
 -- ce_n, or oe_n occurs first
 variable rom1 : mem_id_type; -- memory data structure ptr
 variable ce_n_internal : std_logic;-- holds current ce_n val
 variable oe_n_internal : std_logic;-- holds current oe_n val
 variable data_out : std_logic_vector (7 downto 0);-- out data
 variable tf_ce_n : time := -T_CE; -- time that ce_n fell
 variable tf_oe_n : time := -T_OE; -- time that oe_n fell
 variable q_to_x : time; -- when reading, time from
 -- change in address, ce_n, or oe_n until Q goes to X
 variable q_to_valid : time; -- reading time from change in
 -- address, ce_n, or oe_n til Q
 -- gets valid data

 begin
 rom1 := ROM_INITIALIZE (name => “ROM CHIP # 1”,
 length => 2048,
 width => 8,
 default_word => std_logic_vector’(““),
 file_name => “rom1.dat”
);
 ce_n_internal := To_X01(CE_N);
 oe_n_internal := To_X01(OE_N);
 if (ce_n_internal = ‘0’) or (oe_n_internal = ‘0’) then
 Q <= (others => ‘X’);
 else
 Q <= (others => ‘Z’);
 end if;

 loop
 wait on A, CE_N, OE_N; -- wait for change to occur on A,
 -- CS_N, or OE_N

 -- convert control line to X01 format
 ce_n_internal := To_X01(CE_N);
 oe_n_internal := To_X01(OE_N);

 -- determine when control lines fell
Std_DevelopersKit User’s Manual, V2.2 2-133

Memory Models Std_Mempak
 if falling_edge(ce_n) then
 tf_ce_n := NOW;
 end if;
 if falling_edge(oe_n) then
 tf_oe_n := NOW;
 end if;

 if ((ce_n_internal = ‘1’) or (oe_n_internal = ‘1’)) then
 -- if both ce_N and oe_n rising or one is low and the
 -- other is rising then output should go to high Z state
 if (rising_edge(CE_N) and rising_edge(OE_N))
 or (rising_edge(CE_N) and (oe_n_internal = ‘0’))
 or (rising_edge(OE_N) and (ce_n_internal = ‘0’)) then
 Q <= transport (others => ‘X’) after T_OH,
 (others => ‘Z’) after T_DF;
 end if;
 elsif (ce_n_internal=‘0’) and (oe_n_internal=‘0’) then
 -- ce_n low and oe_n low means that memory is being read
 -- q_to_x is time from control lines low to low Z - NOW
 q_to_x :=maximum(tf_ce_n+T_CE, tf_oe_n+T_OE) - NOW;
 -- q_to_valid is time until valid data is output
 q_to_valid := maximum(NOW + T_ACC - A’last_event,
 tf_ce_n + T_CE,
 tf_oe_n + T_OE,
 time’low
) - NOW;
 if (q_to_x >= 0 ns) and (q_to_x < q_to_valid) then
 -- if control lines changed then Q should go to X
 -- if q_to_x > 0 ns
 Q <= transport (others => ‘X’) after q_to_X;
 elsif A’event then
 -- if address changed then Q gets X after T_OH
 Q <= transport (others => ‘X’) after T_OH;
 end if;
 if q_to_valid >= 0 ns then
 -- if q_to_valid data > 0 then put data onto Q
 -- after q_to_valid data
 Mem_Read (mem_id => rom1,
 address => A,
 data => data_out
);
 Q <= transport data_out after q_to_valid;
 end if;
 end if;
 end loop;
 end process;
end Behavioral;
Std_DevelopersKit User’s Manual, V2.22-134

re of
n.
Chapter 3
Std_Regpak

Using Std_Regpak
As shown in the diagram, Std_Regpak is most often utilized in the architectu
a model. Referencing the package is as easy as making a Library declaratio

Figure 3-1. Three-stage Model and Applicable Packages

Entity

Functional
Architecture

Std_Regpak

Timing
Verification

Input

Delays

Out-
put

Delays

+

Load
Depen-
dency
Std_DevelopersKit User’s Manual, V2.2 3-1

Introduction Std_Regpak

e”
ity to
es

re
nly
s,

e

-in
ivided

se

rators
pes
ons
ilt-in
 same
ch
 one
Referencing the Std_Regpak Package

In order to reference the Std_Regpak package you need to include a Library
clause in the VHDL source code file either immediately before an Entity,
Architecture or Configuration, or within any declarative region. The “Library”
clause declares that a library of the name Std_DevelopersKit exists. The “Us
clause enables the declarative region following the Use clause to have visibil
the declarations contained within each package. The example below illustrat
how to make the Std_Regpak package visible.

LIBRARY Std_DevelopersKit;
USE Std_DevelopersKit.Std_Regpak.all;

Introduction
Std_Regpak consists of various arithmetic and conversion subroutines that a
designed to provide the VHDL model designer with a wide variety of commo
implemented, mathematical functions. This collection of procedures, function
and overloaded operators eases the designer’s task of creating models by
eliminating the need for the designer to create and verify the models for thes
basic functions.

Std_Regpak is divided into two general categories, namely, overloaded built
functions and general subroutines. The general subroutines are further subd
into two sub-categories; arithmetic/logical subroutines and conversion
subroutines. The following subsections gives brief descriptions of each of the
categories.

Overloaded Built-In Functions

Std_Regpak contains overloaded functions designed to expand upon the ope
that are built into the VHDL language. These routines operate on the data ty
defined in the IEEE STD_LOGIC_1164 package. They include implementati
of the comparison operators (=, /=, >, >=, <, and <=). Whereas, the VHDL bu
functions for these operators operate only on pairs of operands that have the
type, the overloaded functions in this package allow comparison between su
dissimilar types as integers and bit_vectors. Furthermore, when operating on
Std_DevelopersKit User’s Manual, V2.23-2

Std_Regpak Introduction

 to
tors,

t,

f
to the

es.

sfer

tions

ibed

s of
,

ore
dimensional arrays, the standard VHDL-1076 built-in operators function only
compare strings. The operators in this package allow comparisons of bit vec
std_ulogic_vectors, and std_logic_vectors according to the rules for their
appropriate arithmetic representations (two’s complement, one’s complemen
sign-magnitude, and unsigned).

Also included in the overloaded built-in functions are the basic arithmetic
functions such as addition, subtraction, multiplication, division, remainder,
modulus, absolute value, negation, and exponentiation. These operate on
bit_vectors, std_logic_vectors, std_ulogic_vectors, or a combination of one o
these three vectors and an integer. Operations are all carried out according
rules for the specified arithmetic representation.

Arithmetic and Logical Functions

Standard VHDL provides arithmetic operators over integer and real data typ
While these operators are required for certain levels of abstract modeling,
additional operators are needed to model digital hardware at the register tran
level.

Std_Regpak provides overloaded subroutines which perform arithmetic func
on combinations of bit_vectors, integers, std_logic_vectors, and
std_ulogic_vectors. In addition, two’s complement (TwosComp), one’s
complement (OnesComp), sign-magnitude (SignMagnitude), and unsigned
(Unsigned) data representations are fully supported.

These arithmetic subroutines implement the same arithmetic functions descr
for the overloaded built-in functions. The difference is that here the model
designer is given more flexibility with the sizes and arithmetic representation
the vector inputs and outputs. These subroutines operate only on bit_vectors
std_logic_vectors, and std_ulogic_vectors. In addition, functions such as
increment and decrement operations are provided

Also included in this grouping are the basic comparison operations. Here, m
flexibility over the overloaded built in functions is given in regard to the input
types and return types that are available.
Std_DevelopersKit User’s Manual, V2.2 3-3

Introduction Std_Regpak

t a

 type
 these
 or a

sa-

stants
in

the
ode
gth
hine
are

e
ault
Other functions included in this grouping implement such operations as sign
extension and vector extension. Finally, a procedure is provided to implemen
bidirectional barrel-shifter.

Overloaded logic operators are provided which complement the existing
overloaded operators built into VHDL.

Conversion Functions

The model designer often finds it necessary to convert information from one
to another. Functions are provided to make these conversions easy. Among
are functions to convert from an integer to a bit_vector or a std_logic_vector
std_ulogic_vector and visa-versa. Also, conversion functions are provided to
convert from a bit_vector to a std_logic_vector or a std_ulogic_vector and vi
versa. Finally, functions are available to convert vectors from one arithmetic
representation to another.

Globally Defined Constants

Three globally defined constants are associated with this package. These con
are defined once (at compile time) in the Std_Regpak body and enable certa
functions within the subroutines in this package. The constants are:
DefaultRegMode, WarningsOn and IntegerBitLength.

The default values can be changed by changing the values shown below in
Std_Regpak body. WarningsOn can be either TRUE or FALSE. DefaultRegM
can be TwosComp, OnesComp, SignMagnitude, or Unsigned. IntegerBitLen
can be any positive integer but should match the size of integers on the mac
on which the VHDL compiler and simulator is running. Once these changes
made Std_Regpak must be recompiled followed by any packages that were
developed using Std_Regpak.

Selecting the Arithmetic Data Representation

DefaultRegMode:A deferred constant namedDefaultRegMode is declared in the
Std_Regpak package and the deferred value of this constant is defined in th
Std_Regpak package body. The purpose of this constant is to define the def
Std_DevelopersKit User’s Manual, V2.23-4

Std_Regpak Introduction

ectors,
s
e.

You
erred

 are

 of
L

dify
data representation for values expressed as std_logic_vectors, std_ulogic_v
or bit_vectors. All of the functions within Std_Regpak refer to the value of thi
constant and perform their mathematical operations dependent upon its valu

As provided, the DefaultRegMode is set equal to TwosComp. Therefore, all
additions, comparisons, etc. treats the operands as two’s complement data.
may change this default data representation by modifying the value of the def
DefaultRegMode constant in the package body as shown:

-- two’s complement representation
Constant DefaultRegMode : regmode_type := TwosComp;
-- one’s complement representation
Constant DefaultRegMode : regmode_type := OnesComp;
-- sign-magnitude representation
Constant DefaultRegMode : regmode_type:=SignMagnitude;
-- unsigned representation
Constant DefaultRegMode : regmode_type := Unsigned;

Selecting the Level of Error Checking

WarningsOn: The constantWarningsOn enables or disables “Note” and
“Warning” severity_level assertions. If WarningsOn is TRUE, then assertions
enabled, otherwise assertions are disabled.

-- Warnings
Constant WarningsOn : BOOLEAN := TRUE;

Setting the System’s Integer Length

IntegerBitLength : IntegerBitLength is a constant which specifies the number
bits which your VHDL simulator uses to represent an integer data type. VHD
defines this to be a minimum of 32, but certain machines or software
implementations may accommodate larger formats. As a default, the
IntegerBitLength has been set to 32 bits. If you need to change this, then mo
the value of the deferred constant in the Std_Regpak body as shown below.

-- Machine’s Integer Length
Constant IntegerBitLength : NATURAL := 32;
Std_DevelopersKit User’s Manual, V2.2 3-5

Introduction Std_Regpak

ctor
eft
are

 the
f the
r to or
e but
igner
Vector Parameters

When passing vectors to one of the Std_Regpak routines the range of the ve
does not affect which bit position is the most significant bit. In all cases, the l
most index in the definition (or slice) is the most significant bit. The following
examples show various vector definitions and the corresponding MSBs:

Variable v1 : std_logic_vector (7 downto 0);
-- position 7 holds the MSB
Variable v2 : bit_vector (0 to 7);
-- position 0 holds the MSB
Variable v3 : bit_vector (15 downto 8);
-- position 15 holds the MSB

The following examples show various slices and the corresponding MSBs:

v1(5 downto 2) -- position 5 holds the MSB
v2(2 to 6) -- position 2 holds the MSB

When ever a Std_Regpak routine returns a vector the vector is returned with
following range: vector(m-1 downto 0) where m is the number of elements o
vector. This does not prevent the designer from assigning the returned vecto
comparing the returned vector with another vector of the same length and typ
of a different range. The only place this becomes significant is when the des
attempts to use a slice of a returned vector as shown in the example below:

Variable c : std_logic_vector (63 downto 0);
c(31 downto 16) :=

SignExtend(
SrcReg => c,-- all of it
DstLength => 64,-- bigger than needed
SignBitPos => 7,-- sign extend lowest

 -- byte
SrcRegMode => TwosComp
)(15 downto 0); -- slice
Std_DevelopersKit User’s Manual, V2.23-6

Std_Regpak Function Dictionary

se.
tion

ut

t

d

ne

al

f

Function Dictionary

Function Summary

Table3-1 contains a summary of commands that the digital simulators can u
Each Function Name entry in the table is hyperlinked to the appropriate func
description in this document.

Table 3-1. Std_Regpak Function Summary

Function Name Description

Overload Built-in Functions

abs Absolute Value: Determines the absolute value of the inp

+ Register Addition: Add two inputs

- (Unary
Operator)

Register Negation: Negate the input vector

- (binary
operator)

Register Subtraction: Subtract two inputs

* Register Multiplication: Multiply two inputs

/ Register Division: Divide two inputs and return the quotien

mod Modulus Operator: Divide two inputs and return the
remainder with the sign of the divisor

rem Remainder Operator: Divide two inputs and return the
remainder with the sign of the dividend

** Register Exponentiation: Calculate result from a base raise
to the power of an exponent

= Equality Operator: Compare two expressions and determi
the equality of the left and the right expressions

/= Inequality Operator: Compare two expressions and
determine if the left and the right expressions are not equ

> Greater Than: Compare two expressions and determine i
the left expression is greater than the right expression
Std_DevelopersKit User’s Manual, V2.2 3-7

Function Dictionary Std_Regpak

e

ut

put

g

g

>= Greater Than Or Equal: Compare two expressions and
determine if the left expression is greater than or equal to
the right expression

< Less Than: Compare two expressions and determine if th
left expression is less than the right expression

<= Less Than Or Equal: Compare two expressions and
determine if the left expression is less than or equal to the
right expression

Arithmetic, Logical and Conversion Subroutines

ConvertMode Change Arithmetic Representations: To convert a vector
from one type of arithmetic representation to another type
of arithmetic representation.

RegAbs Absolute Value: Determines the absolute value of the inp

SRegAbs Absolute Value: Determines the absolute value of the in

RegAdd Register Addition: Add two inputs and detect any resultin
overflow

SRegAdd Register Addition: Add two inputs and detect any resultin
overflow

RegDec Register Decrement: Decrement the input vector

RegDiv Register Division: Divide two inputs and generate a
quotient and a remainder

SRegDiv Register Division: Divide two inputs and generate a
quotient and a remainder

RegEqual Equality Operator: Compare two inputs and determine if
the left input is equal to the right input

RegExp Register Exponentiation: Calculate a result from a base
raised to the power of an exponent

SRegExp Register Exponentiation: Calculate a result from a base
raised to the power of an exponent

Table 3-1. Std_Regpak Function Summary

Function Name Description
Std_DevelopersKit User’s Manual, V2.23-8

Std_Regpak Function Dictionary

ine

d

e if

 if
RegFill Register Fill: To increase the bit width of the input by
adding bits of a given value

RegGreaterThan Greater Than Operator: Compare two inputs and determ
if the left input is greater than the right input

RegGreaterThan
OrEqual

Greater Than Or Equal Operator: Compare two inputs an
determine if the left input is greater than or equal to the
right input

RegInc Register Increment: Increment the input vector

RegLessThan Less Than Operator: Compare two inputs and determin
the left input is less than the right input

RegLessThanOr
Equal

Less Than Or Equal Operator: Compare two inputs and
determine if the left input is less than or equal to the right
input

RegMod Modulus Operator: Perform the arithmetic modulus
operation

SRegMod Modulus Operator: Perform the arithmetic modulus
operation

RegMult Register Multiplication: Multiply two inputs and detect any
resulting overflow

SRegMult Register Multiplication: Multiply two inputs and detect any
resulting overflow

RegNegate Register Negation: Determine the negation of the input
vector for the proper register mode

RegNotEqual Inequality Operator: Compare two inputs and determine
the left input does not equal the right input

RegRem Remainder of Division: Divide two inputs and generate
remainder

SRegRem Remainder of Division: Divide two inputs and generate
remainder

Table 3-1. Std_Regpak Function Summary

Function Name Description
Std_DevelopersKit User’s Manual, V2.2 3-9

Function Dictionary Std_Regpak

ile

 a

n

e

RegShift Register Shift: Perform a bidirectional logical shift
operation

SRegShift Register Shift: Perform a bidirectional logical shift
operation

RegSub Register Subtraction: Subtract two inputs and detect any
resulting underflow

SRegSub Register Subtraction: Subtract two inputs and detect any
resulting underflow

SignExtend Sign Extension: To increase the bit width of the input wh
maintaining the appropriate sign

To_BitVector Convert an Integer to a Bit_Vector: Converts an integer to
bit_vector of the specified length.

To_Integer Convert a Vector to an Integer: Converts a
std_logic_vector, a std_ulogic_vector, or a bit_vector to a
integer

To_OnesComp Convert a Vector to OnesComp: Converts a vector from
one type of arithmetic representation to OnesComp

To_SignMag Convert a Vector to SignMagnitude: Converts a vector
from one type of arithmetic representation to
SignMagnitude

To_StdLogicVec
tor

Convert an Integer to a Std_Logic_Vector: Converts an
integer to a std_logic_vector of the specified length

To_StdULogicV
ector

Convert an Integer to a Std_ULogic_Vector: Converts an
integer to a std_ulogic_vector of the specified length

To_TwosComp Convert a Vector to TwosComp: Converts a vector from
one type of arithmetic representation to TwosComp

To_Unsign Convert a Vector to Unsigned: Converts a vector from on
type of arithmetic representation to Unsigned

Table 3-1. Std_Regpak Function Summary

Function Name Description
Std_DevelopersKit User’s Manual, V2.23-10

Std_Regpak abs

he

pes.

 be

hich
ging

nd

e

de
tor
abs
Absolute Value: Determines the absolute value of the input

SYNTAX:
abs expression

whereexpression corresponds to one of the valid overloaded types shown in t
parameter table below.

PARAMETER TYPES:

The following table gives the valid parameter types for this overloaded
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and the output types must be uniquely determinable by
context.

DESCRIPTION:

This procedure returns the absolute value of the input vector. The input may
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as determined by DefaultRegMode. DefaultRegMode is a constant w
can be globally set to any one of the four arithmetic representations by chan
its defined value in the Std_Regpak body.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has the same length as th
vector that was passed into the function. The range of the returned vector is
always defined asexpression’length - 1 downto 0. Note that this does not preclu
the user from assigning the returned vector to or comparing the returned vec
with another vector of the same length and type but of a different range.

Table 3-2. abs Valid Parameter Types

expression returned value

bit_vector bit_vector

std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-11

abs Std_Regpak

hoed

iately
 there
once

l

ange
X HANDLING:

For OnesComp, SignMagnitude, and Unsigned vectors any X’s are simply ec
in the result. For TwosComp, if the vector is positive then any X’s are simply
echoed in the output. If the vector is negative the X’s are propagated appropr
when the bits are inverted and the vector is incremented by one. Note that if
is an X in the sign bit the vector is assumed to be negative and the vector is
again negated.

BUILT IN ERROR TRAP:

If the input vector is of zero length then an error assertion is made and a nul
vector is returned.

EXAMPLE:

Given the variable definitions:

variable signed_vector : bit_vector(7 downto 0);
variable non_neg_vector : bit_vector(8 to 23);

then the following line assigns the absolute value of signed_vector to the bit r
8 to 15 of the vector non_neg_vector:

non_neg_vector(8 to 15) := abs signed_vector;
Std_DevelopersKit User’s Manual, V2.23-12

Std_Regpak +

he

d
pes.
+
Register Addition: Add two inputs

SYNTAX:
l_expression + r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and the output types must be uniquely determinable by
context.

Table 3-3. ‘+’ Overloaded Subroutine Valid Parameters

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

bit_vector bit bit_vector

bit bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_logic_vector std_ulogic std_logic_vector

std_ulogic std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-13

+ Std_Regpak

d

h can
 its
ame

d
puts
 is

e
re

of the

 that
aring
DESCRIPTION:

This function performs arithmetic addition on the addend and the augend an
returns the result. Any carry out or overflow is ignored. The input may be
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by DefaultRegMode. DefaultRegMode is a constant whic
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body. The result that is returned is in this s
arithmetic representation.

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they need not have the same range or length. The shorter input
always sign extended to the length of the longer of the two inputs.

Result: The vector that is returned by the function has the same length as th
longer of the two vectors that were passed into the function if two vectors we
used or the length of the vector input if only one vector was used. The range
returned vector is always defined asexpression’length - 1 downto 0 where
expression‘length is the length of the longer of the input vectors if two vectors
were used or the length of the only vector input if one vector was used. Note
this does not preclude the user from assigning the returned vector to or comp
the returned vector with another vector of the same length and type but of a
different range.

std_ulogic_vector std_ulogic std_ulogic_vector

std_ulogic std_ulogic_vector std_ulogic_vector

Table 3-3. ‘+’ Overloaded Subroutine Valid Parameters

l_expression r_expression returned value
Std_DevelopersKit User’s Manual, V2.23-14

Std_Regpak +

te
tire
f

ade

e and

 and
X HANDLING:

All X’s in the inputs are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample addition o
two TwosComp std_logic_vectors:

01000111
+00X0000X

01X0XXXX

BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is m
and the input of zero length is treated as a vector filled with zeros.

2. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

EXAMPLE:

Given the following variable declarations:

variable in_1 : bit_vector(7 downto 0);
variable in_2 : bit_vector (0 to 15);
variable sum : bit_vector(8 to 23);

sum := in_1 + in_2;

The above line sign extends in_1 to the length of in_2, adds the two vectors,
places the result of the addition in sum.
Std_DevelopersKit User’s Manual, V2.2 3-15

- (Unary Operator) Std_Regpak

he

pes.
text

eg
p,

 any

ply
 by

ber,
f the

nd
- (Unary Operator)
Register Negation: Negate the input vector

SYNTAX:
- expression

whereexpression corresponds to one of the valid overloaded types shown in t
parameter table below.

PARAMETER TYPES:

The following table gives the valid parameter types for this overloaded
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con.

DESCRIPTION:

This function negates the value of the actual parameter associated with SrcR
and returns this new value. The input may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as determined by
DefaultRegMode. DefaultRegMode is a constant which can be globally set to
one of the four arithmetic representations by changing its defined value in
Std_Regpak body.

The negation of a TwosComp input is equivalent to inverting all the bits and
incrementing by one. The negation of a OnesComp input is performed by sim
inverting all the bits. The negation of a SignMagnitude number is carried out
simply inverting the sign bit. If an attempt is made to negate an Unsigned num
the value that is returned is the bit wise complement (e.g. the OnesComp) o
number.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Table 3-4. ‘-’ Valid Parameters

expression returned value

bit_vector bit_vector

std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.23-16

Std_Regpak - (Unary Operator)

e
lways

with

w

te the
 By
e

bled.
e

the

istent

ions.
Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined asexpression’length - 1 downto 0. Note that this does not preclude the
user from assigning the returned vector to or comparing the returned vector
another vector of the same length and type but of a different range.

Overflow: When negating a TwosComp number it is possible that an overflo
condition occurs. TwosComp allows the representation of one more negative
number than positive numbers. As a result, when an attempt is made to nega
maximum negative number, for the bit width of the input, an overflow occurs.
convention, the TwosComp of that maximum negative number is itself and th
original vector is returned. A warning assertion is issued if warnings are ena
Warnings are enabled globally by the WarningsOn flag which is defined in th
Std_Regpak body.

X HANDLING:

For TwosComp and SignMagnitude numbers all X’s are propagated so that
vector that is returned has X’s in the appropriate places. For Unsigned and
OnesComp any X’s in the input are simply echoed to the output. This is cons
with hardware implementations of negation units. The following table shows
examples of std_logic_vectors in the various register modes and their negat

Table 3-5. Examples of std_logic_vectors in Register Modes

TwosComp OnesComp Unsigned SignMag-
nitude

vector 100100X0 10X01X11 10X01X11 001101X1

negation 011XXXX0 01X10X00 01X10X00 101101X1
Std_DevelopersKit User’s Manual, V2.2 3-17

- (Unary Operator) Std_Regpak

o

n for
BUILT IN ERROR TRAP:

If the vector input is of zero length then an error assertion is made and a zer
length vector is returned.

EXAMPLE:

Given the variable declaration:

variable stat_line:std_logic_vector(7 downto 0);

then the following line negates stat_line using the appropriate form of negatio
the DefaultRegMode:

stat_line := -stat_line;
Std_DevelopersKit User’s Manual, V2.23-18

Std_Regpak - (binary operator)

he

d
pes.
text.
- (binary operator)
Register Subtraction: Subtract two inputs

SYNTAX:
l_expression - r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-6. ‘-’ (binary) Valid Parameter Types

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

bit_vector bit bit_vector

bit bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_logic_vector std_ulogic std_logic_vector

std_ulogic std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector

std_ulogic_vector std_ulogic std_ulogic_vector

std_ulogic std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-19

- (binary operator) Std_Regpak

 is

four
body.

d
puts
 is

e
 used

 that
aring

te
tire
 of
DESCRIPTION:

This function performs arithmetic subtraction ofr_expression from l_expression
and returns the result. Any borrow or overflow that results from the operation
ignored. The input may be represented in either OnesComp, TwosComp,
SignMagnitude, or Unsigned format as determined by DefaultRegMode.
DefaultRegMode is a a constant which can be globally set to any one of the
arithmetic representations by changing its defined value in the Std_Regpak
The output is also in this same arithmetic representation.

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they need not have the same range or length. The shorter input
always sign extended to the length of the longer of the two inputs.

Result: The vector that is returned by the function has the same length as th
longer of the two vectors that were passed to the function if two vectors were
or the length the vector input if only one vector was used. The range of the
returned vector is always defined asexpression’length - 1 downto 0 where
expression‘length is the length of the longer of the input vectors if two vectors
were used or the length of the only vector input if one vector was used. Note
this does not preclude the user from assigning the returned vector to or comp
the returned vector with another vector of the same length and type but of a
different range.

X HANDLING:

All X’s in the inputs are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample subtraction
two TwosComp std_logic_vectors:

01000111
-000X010X

0XXX001X
Std_DevelopersKit User’s Manual, V2.23-20

Std_Regpak - (binary operator)

s.

e
d the

e and

it
BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is
made and the input of zero length is treated as a vector filled with zero

2. If both inputs are vectors of zero length then an error assertion is mad
and the o inputs is a vector of zero length an error assertion is made an
input of zero length is treated as a vector filled with zeros.

3. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

EXAMPLE:

Given the following variable declarations:

variable in_1 : bit_vector(7 downto 0);
variable in_2 : bit_vector(0 to 15);
variable difference : bit_vector(31 downto 0);

then the following line subtracts in_2 from in_1 and stores the result in the b
range 23 downto 8 of the variable difference:

difference(23 downto 8) := in_1 - in_2;
Std_DevelopersKit User’s Manual, V2.2 3-21

* Std_Regpak

he

d
pes.
text.

 in

ion.
*
Register Multiplication: Multiply two inputs

SYNTAX:
l_expression * r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

DESCRIPTION:

This subroutine performs arithmetic multiplication ofl_expression and
r_expression. Any resulting overflow is ignored. The input may be represented
either OnesComp, TwosComp, SignMagnitude, or Unsigned format as
determined by DefaultRegMode. The output is also in this same representat

Table 3-7. ‘*’ Valid Parameter Types

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.23-22

Std_Regpak *

ur
body.

ith

d
puts

e
 used
eded
s bits
tor is

nput
ing
f the

hifts
s are
n X’s
 for
ese
ctors,
gain,
ted
on is
adds.
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak

The multiplication is carried out as follows:

1. The sign of the result is determined.

2. The two inputs are converted to Unsigned representation.

3. The multiplication is carried out in a repeated shift and add manner.

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign.

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they need not have the same range or length.

Result: The vector that is returned by the function has the same length as th
longer of the two vectors that were passed to the function if two vectors were
or the length the vector input if only one vector was used. If more bits are ne
to represent the product then only the least significant bits are returned. If les
are needed then the product is sign extended. The range of the returned vec
always defined asexpression’length - 1 downto 0 whereexpression is the longer
of the input vectors if two vectors were used or the length of the only vector i
if one vector was used. Note that this does not preclude the user from assign
the returned vector to or comparing the returned vector with another vector o
same length and type but of a different range.

X HANDLING:

All X’s in the inputs are propagated in the appropriate manner for repeated s
and adds. When the inputs are converted to unsigned representation, the X’
handled as follows. For all of the representations if the number is positive the
are simply echoed in the Unsgined vector that is generated. This is also true
negative SignMagnitude and OnesComp vectors. If the sign bit is an X for th
representations then the negation is performed. For negative TwosComp ve
X’s are propagated as appropriate for negating a TwosComp vector. Once a
if the sign bit is X the negation is performed. The sign of the result is calcula
assuming an X in the sign bit represents a negative number. The multiplicati
then carried out propagating the X’s as appropriate for a series of shifts and
Std_DevelopersKit User’s Manual, V2.2 3-23

* Std_Regpak

e
 the
d

ade

e and

nge
This is shown in the example given below. In converting the result back to th
appropriate arithmetic representation the X’s are propagated as described in
corresponding conversion functions (i.e. To_OnesComp, To_TwosComp, an
To_SignMag).

10X1
* 1101

10X1partial product 1

010X1partial product 2
1XX1X1partial product 3

XXXXX1X1result

BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is m
and the input of zero length is treated as a vector filled with zeros.

2. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

EXAMPLE:

Given the following variable declarations:

variable in_1, in_2 : bit_vector(7 downto 0);
variable prod: bit_vector(0 to 15);

then the following line multiplies in_1 by in_2 and store the result in the bit ra
8 to 15 of the variable prod:

prod(8 to 15) := in_1 * in_2 ;
Std_DevelopersKit User’s Manual, V2.23-24

Std_Regpak /

he

d
pes.
text.

be

ny
/
Register Division: Divide two inputs and return the quotient

SYNTAX:
l_expression / r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

DESCRIPTION:

This subroutine performs the arithmetic division of l_expression by r_expression
and returns the quotient. Any resulting remainder is ignored. The input may
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as determined by DefaultRegMode. The output is also in this same
representation. DefaultRegMode is a constant which can be globally set to a

Table 3-8. ‘/’ Valid Parameter Types

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-25

/ Std_Regpak

e

hm.

ith

d
puts

e
re
ient
ed. If
opied
ge of

 that
aring
one of the four arithmetic representations by changing its defined value in th
Std_Regpak body.

The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign.

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they need not have the same range or length.

Result: The vector that is returned by the function has the same length as th
longer of the two vectors that were passed into the function if two vectors we
used or the length of the vector input if only one vector was used. If the quot
requires less bits than the length of the returned vector, then it is sign extend
the result requires more bits, then only that portion of the result that can be c
(the least significant portion) is copied to the vector that is returned. The ran
the returned vector is always defined asexpression’length - 1 downto 0 where
expression‘length is the length of the longer of the input vectors if two vectors
were used or the length of the only vector input if one vector was used. Note
this does not preclude the user from assigning the returned vector to or comp
the returned vector with another vector of the same length and type but of a
different range.
Std_DevelopersKit User’s Manual, V2.23-26

Std_Regpak /

and

led as
ply

and

 as
 the
the
oring
nd
 in
etic
 (i.e.
CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to unsigned representation, the X’s are hand
follows.For all of the representations if the number is positive then X’s are sim
echoed in the unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0, an X
the sign bit is treated as a 1. In the conversion back to the appropriate arithm
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-27

/ Std_Regpak

ade

e and

6 to
BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is m
and the input of zero length is treated as a vector filled with zeros

2. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

3. If an attempt is made to divide by zero an error assertion is made.

EXAMPLE:

Given the following variable declarations:

variable in_1 : bit_vector(15 downto 0);
variable in_2 : bit_vector(0 to 7);
variable quo : bit_vector(0 to 31);

then the following line divides in_1 by in_2 and return the result in bit range 1
31 of the variable quo:

quo(16 to 31) := in_1 / in_2;
Std_DevelopersKit User’s Manual, V2.23-28

Std_Regpak mod

of

he

d
pes.
text.

 The
 or
mod
Modulus Operator: Divide two inputs and return the remainder with the sign
the divisor

SYNTAX:
l_expression mod r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

DESCRIPTION:

This function performs the arithmetic modulus operation. The dividend
(l_expression) is divided by the modulus (r_expression) and the result is the
remainder. In this case, the result has the same sign as that of the modulus.
input may be represented in either OnesComp, TwosComp, SignMagnitude,

Table 3-9. ‘mod’ Valid Parameter Types

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-29

mod Std_Regpak

is
et to
n the

hm.

 with
.

d
puts

e
 used
 less

ult
 least

 that
aring
Unsigned format as determined by DefaultRegMode. The output is also in th
same representation. DefaultRegMode is a constant which can be globally s
any one of the four arithmetic representations by changing its defined value i
Std_Regpak body.

The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The results are converted into the appropriate arithmetic representation
the appropriate signs. The sign of the remainder is that of the dividend

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they needed not have the same range or length.

Result: The vector that is returned by the function has the same length as th
longer of the two vectors that were passed to the function if two vectors were
or the length the vector input if only one vector was used. If the result requires
bits than the length of the returned vector, then it is sign extended. If the res
requires more bits, then only that portion of the result that can be copied (the
significant portion) is copied to the vector that is returned. The range of the
returned vector is always defined asexpression’length - 1 downto 0 where
expression’length is the length of the longer of the input vectors if two vectors
were used or the length of the only vector input if one vector was used. Note
this does not preclude the user from assigning the returned vector to or comp
the returned vector with another vector of the same length and type but of a
different range.
Std_DevelopersKit User’s Manual, V2.23-30

Std_Regpak mod

and

led as
ply

 and

 as
 the
the
oring
nd
in the

 (i.e.
CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to unsigned representation, the X’s are hand
follows.For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0 an X
sign bit is treated as a 1. In the conversion back to the appropriate arithmetic
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-31

mod Std_Regpak

ade

e and
BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is m
and the input of zero length is treated as a vector filled with zeros.

2. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

3. If an attempt is made to divide by zero an error assertion is made.

EXAMPLE:

Given the following variable declarations:

variable in_1 : bit_vector(15 downto 0);
variable in_2 : bit_vector(0 to 7);
variable modu : bit_vector(0 to 31);

then the following line divides in_1 by in_2 and return the remainder, with the
same sign as that of in_2, in bit range 16 to 31 of the variable modu:

modu(16 to 31) := in_1 mod in_2;
Std_DevelopersKit User’s Manual, V2.23-32

Std_Regpak rem

n

he

d
pes.
text.
rem
Remainder Operator: Divide two inputs and return the remainder with the sig
of the dividend

SYNTAX:
l_expression rem r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-10. ‘rem’ Valid Parameter Types

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-33

rem Std_Regpak

f the

ich
ging

hm.

 with
.

d
puts

e
re

ed. If
opied
ge of

 that
aring
DESCRIPTION:

This function performs the arithmetic remainder operation. The dividend
(l_expression) is divided by the divisor (r_expression) and the result is the
remainder of the division. In this case, the result has the same sign as that o
dividend. The input may be represented in either OnesComp, TwosComp,
SignMagnitude, or Unsigned format as determined by DefaultRegMode. The
output is also in this same representation. DefaultRegMode is a constant wh
can be globally set to any one of the four arithmetic representations by chan
its defined value in the Std_Regpak body.

The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The results are converted into the appropriate arithmetic representation
the appropriate signs. The sign of the remainder is that of the dividend

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they need not have the same range or length.

Result: The vector that is returned by the function has the same length as th
longer of the two vectors that were passed into the function if two vectors we
used or the length the vector input if only one vector was used. If the result
requires less bits than the length of the returned vector, then it is sign extend
the result requires more bits, then only that portion of the result that can be c
(the least significant portion) is copied to the vector that is returned. The ran
the returned vector is always defined asexpression’length - 1 downto 0 where
expression’length is the length of the longer of the input vectors if two vectors
were used or the length of the only vector input if one vector was used. Note
this does not preclude the user from assigning the returned vector to or comp
the returned vector with another vector of the same length and type but of a
different range.
Std_DevelopersKit User’s Manual, V2.23-34

Std_Regpak rem

and

led as
ply

 and

 as
 the
the
oring
nd
in the

 (i.e.
CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to unsigned representation, the X’s are hand
follows. For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0 an X
sign bit is treated as a 1. In the conversion back to the appropriate arithmetic
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-35

rem Std_Regpak

ade

e and
BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is m
and the input of zero length is treated as a vector filled with zeros.

2. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

3. If an attempt is made to divide by zero an error assertion is made.

EXAMPLE:

Given the following variable declarations:

variable in_1 : bit_vector(15 downto 0);
variable in_2 : bit_vector(0 to 7);
variable remainder: bit_vector(0 to 31);

then the following line divides in_1 by in_2 and return the remainder, with the
same sign as that of in_1, in bit range 16 to 31 of the variable remainder:

remainder(16 to 31) := in_1 rem in_2;
Std_DevelopersKit User’s Manual, V2.23-36

Std_Regpak **

an

he

d
pes.
text.

es

ed
**
Register Exponentiation: Calculate result from a base raised to the power of
exponent

SYNTAX:
l_expression ** r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

DESCRIPTION:

This function performs the arithmetic exponentiation operation. That is, it tak
the base (l_expression) and raises it to the power specified by the exponent
(r_expression). Any resulting overflow is ignored. The input may be represent
in either OnesComp, TwosComp, SignMagnitude, or Unsigned format as

Table 3-11. ‘**’ Valid Parameter Types

l_expression r_expression returned value

bit_vector bit_vector bit_vector

bit_vector INTEGER bit_vector

INTEGER bit_vector bit_vector

std_logic_vector std_logic_vector std_logic_vector

std_logic_vector INTEGER std_logic_vector

INTEGER std_logic_vector std_logic_vector

std_ulogic_vector std_ulogic_vector std_ulogic_vector

std_ulogic_vector INTEGER std_ulogic_vector

INTEGER std_ulogic_vector std_ulogic_vector
Std_DevelopersKit User’s Manual, V2.2 3-37

** Std_Regpak

ion.
ur
body.

d
puts

ength
gth

to
ts are
lways

nly
 from
er

ade

e and

 bits
determined by DefaultRegMode. The output is also in this same representat
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak

Vector Lengths: A vector input may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. If both in
are vectors, they need not have the same range or length.

Result: If the base is a vector then the vector that is returned has the same l
as the base. If the base is an INTEGER then the returned vector has the len
specified by IntegerBitLength. IntegerBitLength is the integer length of the
machine on which the VHDL simulator is being run. If more bits are needed
represent the result then only the least significant bits are returned. If less bi
needed then the result is sign extended. The range of the returned vector is a
defined asexpression’length - 1 downto 0 whereexpression’length is the length of
the longer of the input vectors if two vectors were used or the length of the o
vector input if one vector was used. Note that this does not preclude the user
assigning the returned vector to or comparing the returned vector with anoth
vector of the same length and type but of a different range.

X HANDLING:

This procedure performs the exponentiation operation through repeated
multiplications. As a result, X’s are propagated during the repeated
multiplications as described for RegMult.

BUILT IN ERROR TRAPS:

1. If one of the two inputs is a vector of zero length an error assertion is m
and the input of zero length is treated as a vector filled with zeros.

2. If both inputs are vectors of zero length then an error assertion is mad
the result is a null vector.

EXAMPLE:

Given the following variable declarations:
variable b_1, e_2 : bit_vector(7 downto 0);
variable power: bit_vector(0 to 15);

the following line raises b_1 to the power e_2 and return the least significant
of the result in the bit range 8 to 15 of power.

power(8 to 15) := b_1 ** e_2;
Std_DevelopersKit User’s Manual, V2.23-38

Std_Regpak =

the

he

d
pes.
text.
=
Equality Operator: Compare two expressions and determine the equality of
left and the right expressions

SYNTAX:
l_expression = r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-12. ‘=’ Valid Parameter Types

l_expression r_expression return value

bit_vector bit_vector bit

bit_vector INTEGER BOOLEAN

INTEGER bit_vector BOOLEAN

bit_vector INTEGER bit

INTEGER bit_vector bit

std_logic_vector std_logic_vector std_ulogic

std_logic_vector INTEGER BOOLEAN

INTEGER std_logic_vector BOOLEAN

std_logic_vector INTEGER std_ulogic

INTEGER std_logic_vector std_ulogic

std_ulogic_vector std_ulogic_vector std_ulogic

std_ulogic_vector INTEGER BOOLEAN

INTEGER std_ulogic_vector BOOLEAN
Std_DevelopersKit User’s Manual, V2.2 3-39

= Std_Regpak

e
 type
tor
uce

p,

ur
body.
me

d
o
e or

 is

d out

 the

chine

n is
NOTE: When this operator is used where both operands are of the same typ
(either both bit_vector, std_logic_vector, or std_ulogic_vector) and the return
is boolean then the actual VHDL built-in operator is used. This built-in opera
functions somewhat differently than the Std_Regpak operator and may prod
unexpected results.

DESCRIPTION:

This function comparesl_expression andr_expression and decides whether
l_expression is equal tor_expression. The comparison is done in a short circuit
fashion. An input vector may be represented in either OnesComp, TwosCom
SignMagnitude, or Unsigned format as selected by DefaultRegMode.
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak
If two vectors are used as inputs to this function then, they must have the sa
register mode or the comparison is not carried out properly.

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

Whenl_expression andr_expression are both vectors, the comparison operation
carried out in the following manner. The shorter of the two vectors is sign
extended to the length of the longer of the two. The comparison is then carrie
in a short circuit fashion taking into account the sign of the numbers and the
register mode. Note that for OnesComp and SignMagnitude representations
existence of two zeros is taken into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

std_ulogic_vector INTEGER std_ulogic

INTEGER std_ulogic_vector std_ulogic

Table 3-12. ‘=’ Valid Parameter Types

l_expression r_expression return value
Std_DevelopersKit User’s Manual, V2.23-40

Std_Regpak =

he

ition
he

 form
y
d,

n is
s an
ay
tion,
 most
rison
ed

ic. If
alue
e
ings
pak

e

 The
uts.
Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

DON‘T CARE HANDLING:

This function handles don’t cares in a special manner. A don’t care in any pos
in any of the input vectors match any value in the corresponding position in t
other vector.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted. 0 is equal to 0, 1 is equal to 1, but comparing 0 or 1 to an X yield
indeterminate answer. The comparison can be completed whenever any arr
element indicates a successful comparison. This is called short circuit opera
where the remaining elements of the arrays need not be compared if the left
elements have already determined the comparison result. Anytime the compa
reaches an index that has an X as an array element, the comparison is deem
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made.
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors are of zero length an error assertion is
made. The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-41

= Std_Regpak

E

son
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable equ : BOOLEAN;

the following line sets equ to TRUE if a_result is equal to b_result and FALS
otherwise. Both operands are represented in the DefaultRegMode:

equ := a_result = b_result;

The following table gives some sample inputs and the results of the compari
operation.

Table 3-13. ‘=’ Comparison Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN TRUE

10111111 01110101 OnesComp bit 0

0110X001 01110000 TwosComp std_ulogic 0

01X01110 01111111 TwosComp std_ulogic X

00X10110 256 TwosComp BOOLEAN FALSE
Std_DevelopersKit User’s Manual, V2.23-42

Std_Regpak /=

the

he

d
pes.
text.
/=
Inequality Operator: Compare two expressions and determine if the left and
right expressions are not equal

SYNTAX:
l_expression /= r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-14. ‘/=’ Valid Parameter Types

l_expression r_expression return value

bit_vector bit_vector bit

bit_vector INTEGER BOOLEAN

INTEGER bit_vector BOOLEAN

bit_vector INTEGER bit

INTEGER bit_vector bit

std_logic_vector std_logic_vector std_ulogic

std_logic_vector INTEGER BOOLEAN

INTEGER std_logic_vector BOOLEAN

std_logic_vector INTEGER std_ulogic

INTEGER std_logic_vector std_ulogic

std_ulogic_vector std_ulogic_vector std_ulogic

std_ulogic_vector INTEGER BOOLEAN

INTEGER std_ulogic_vector BOOLEAN
Std_DevelopersKit User’s Manual, V2.2 3-43

/= Std_Regpak

e
 type
tor
uce

ode.
ur
body.
me

d
o
e or

 is

d out

 the

chine

n is
NOTE: When this operator is used where both operands are of the same typ
(either both bit_vector, std_logic_vector, or std_ulogic_vector) and the return
is boolean then the actual VHDL built-in operator is used. This built-in opera
functions somewhat differently than the Std_Regpak operator and may prod
unexpected results.

DESCRIPTION:

This function comparesl_expression andr_expression and decides whether
l_expression is not equal tor_expression. The comparison is done in a short
circuit fashion. An input vector may be represented in either OnesComp,
TwosComp, SignMagnitude, or Unsigned format as selected by DefaultRegM
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak
If two vectors are used as inputs to this function then, they must have the sa
register mode or the comparison will not be carried out properly.

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

Whenl_expression andr_expression are both vectors, the comparison operation
carried out in the following manner. The shorter of the two vectors is sign
extended to the length of the longer of the two. The comparison is then carrie
in a short circuit fashion taking into account the sign of the numbers and the
register mode. Note that for OnesComp and SignMagnitude representations
existence of two zeros is taken into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

std_ulogic_vector INTEGER std_ulogic

INTEGER std_ulogic_vector std_ulogic

Table 3-14. ‘/=’ Valid Parameter Types

l_expression r_expression return value
Std_DevelopersKit User’s Manual, V2.23-44

Std_Regpak /=

he

ition
he

 form
y
d,

n is
s an
ay
tion,
 most
rison
ed

ic. If
alue
e
ings
pak

e

. The
uts.

de.
Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

DON‘T CARE HANDLING:

This function handles don’t cares in a special manner. A don’t care in any pos
in any of the input vectors match any value in the corresponding position in t
other vector.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted. 0 is equal to 0, 1 is equal to 1, but comparing 0 or 1 to an X yield
indeterminate answer. The comparison can be completed whenever any arr
element indicates a successful comparison. This is called short circuit opera
where the remaining elements of the arrays need not be compared if the left
elements have already determined the comparison result. Anytime the compa
reaches an index that has an X as an array element, the comparison is deem
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-45

/= Std_Regpak

LSE

son
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable neq : BOOLEAN;

the following line sets neq to TRUE if a_result is not equal to b_result and FA
otherwise. Both operands are represented in the DefaultRegMode:

neq := a_result /= b_result;

The following table gives some sample inputs and the results of the compari
operation.

Table 3-15. ‘/=’ Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN FALSE

10111111 01110101 OnesComp bit 1

0110X001 01110000 TwosComp std_ulogic 1

01X01110 01111111 TwosComp std_ulogic X

00X10110 256 TwosComp BOOLEAN TRUE
Std_DevelopersKit User’s Manual, V2.23-46

Std_Regpak >

 is

he

d
pes.
text.
>
Greater Than: Compare two expressions and determine if the left expression
greater than the right expression

SYNTAX:
l_expression > r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-16. ‘>’ Valid Parameter Types

l_expression r_expression return value

bit_vector bit_vector bit

bit_vector INTEGER BOOLEAN

INTEGER bit_vector BOOLEAN

bit_vector INTEGER bit

INTEGER bit_vector bit

std_logic_vector std_logic_vector std_ulogic

std_logic_vector INTEGER BOOLEAN

INTEGER std_logic_vector BOOLEAN

std_logic_vector INTEGER std_ulogic

INTEGER std_logic_vector std_ulogic

std_ulogic_vector std_ulogic_vector std_ulogic

std_ulogic_vector INTEGER BOOLEAN

INTEGER std_ulogic_vector BOOLEAN
Std_DevelopersKit User’s Manual, V2.2 3-47

> Std_Regpak

e
 type
tor
uce

ode.
ur
body.
me

d
o
e or

 is

d out

 the

chine

n is
NOTE: When this operator is used where both operands are of the same typ
(either both bit_vector, std_logic_vector, or std_ulogic_vector) and the return
is boolean then the actual VHDL built-in operator is used. This built-in opera
functions somewhat differently than the Std_Regpak operator and may prod
unexpected results.

DESCRIPTION:

This function comparesl_expression andr_expression and decides whether
l_expression is greater thanr_expression. The comparison is done in a short
circuit fashion. An input vector may be represented in either OnesComp,
TwosComp, SignMagnitude, or Unsigned format as selected by DefaultRegM
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak
If two vectors are used as inputs to this function then, they must have the sa
register mode or the comparison will not be carried out properly.

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

Whenl_expression andr_expression are both vectors, the comparison operation
carried out in the following manner. The shorter of the two vectors is sign
extended to the length of the longer of the two. The comparison is then carrie
in a short circuit fashion taking into account the sign of the numbers and the
register mode. Note that for OnesComp and SignMagnitude representations
existence of two zeros is taken into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

std_ulogic_vector INTEGER std_ulogic

INTEGER std_ulogic_vector std_ulogic

Table 3-16. ‘>’ Valid Parameter Types

l_expression r_expression return value
Std_DevelopersKit User’s Manual, V2.23-48

Std_Regpak >

he

 form
y
d,

n is

ay
tion,
 most
rison
ed

ic. If
alue
e
ings
pak

e

. The
uts.

de.
Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted.1 is greater than 0, but comparing 0 or 1 to an X yields an
indeterminate answer. The comparison can be completed whenever any arr
element indicates a successful comparison. This is called short circuit opera
where the remaining elements of the arrays need not be compared if the left
elements have already determined the comparison result. Anytime the compa
reaches an index that has an X as an array element, the comparison is deem
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-49

> Std_Regpak

d

son
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable greater : BOOLEAN;

the following line sets greater to TRUE if a_result is greater than b_result an
FALSE otherwise. Both operands are represented in the DefaultRegMode:

greater:= a_result > b_result;

The following table gives some sample inputs and the results of the compari
operation.

Table 3-17. ‘>’ Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN FALSE

10111111 01110101 OnesComp bit 0

0110X001 01110000 TwosComp std_ulogic 0

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN FALSE
Std_DevelopersKit User’s Manual, V2.23-50

Std_Regpak >=

he

d
pes.
text.
>=
Greater Than Or Equal: Compare two expressions and determine if the left
expression is greater than or equal to the right expression

SYNTAX:
l_expression >= r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-18. ‘>=’ Valid Parameter Types

l_expression r_expression return value

bit_vector bit_vector bit

bit_vector INTEGER BOOLEAN

INTEGER bit_vector BOOLEAN

bit_vector INTEGER bit

INTEGER bit_vector bit

std_logic_vector std_logic_vector std_ulogic

std_logic_vector INTEGER BOOLEAN

INTEGER std_logic_vector BOOLEAN

std_logic_vector INTEGER std_ulogic

INTEGER std_logic_vector std_ulogic

std_ulogic_vector std_ulogic_vector std_ulogic

std_ulogic_vector INTEGER BOOLEAN

INTEGER std_ulogic_vector BOOLEAN
Std_DevelopersKit User’s Manual, V2.2 3-51

>= Std_Regpak

e
 type
tor
uce

p,
ode.
ur
body.
me

d
o
e or

 is

d out

 the

chine

n is
NOTE: When this operator is used where both operands are of the same typ
(either both bit_vector, std_logic_vector, or std_ulogic_vector) and the return
is boolean then the actual VHDL built-in operator is used. This built-in opera
functions somewhat differently than the Std_Regpak operator and may prod
unexpected results.

DESCRIPTION:

This function comparesl_expression andr_expression and decides whether
l_expression is greater than or equal tor_expression. The comparison is done in a
short circuit fashion. An input vector may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as selected by DefaultRegM
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak
If two vectors are used as inputs to this function then, they must have the sa
register mode or the comparison will not be carried out properly.

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

Whenl_expression andr_expression are both vectors, the comparison operation
carried out in the following manner. The shorter of the two vectors is sign
extended to the length of the longer of the two. The comparison is then carrie
in a short circuit fashion taking into account the sign of the numbers and the
register mode. Note that for OnesComp and SignMagnitude representations
existence of two zeros is taken into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

std_ulogic_vector INTEGER std_ulogic

INTEGER std_ulogic_vector std_ulogic

Table 3-18. ‘>=’ Valid Parameter Types

l_expression r_expression return value
Std_DevelopersKit User’s Manual, V2.23-52

Std_Regpak >=

he

 form
y
d,

n is
r 1 to
never
cuit
 if the
the
rison is

AN

rtion
ined

ave

. The
uts.

de.
Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted.1 is greater than 0, 0 equals 0, and 1 equals 1, but comparing 0 o
an X yields an indeterminate answer. The comparison can be completed whe
any array element indicates a successful comparison. This is called short cir
operation, where the remaining elements of the arrays need not be compared
left most elements have already determined the comparison result. Anytime
comparison reaches an index that has an X as an array element, the compa
deemed indeterminate and results in an X being returned if the return type is
std_ulogic. If the comparison is indeterminate and the return type is BOOLE
then the value FALSE is returned.When an X results in an indeterminate
comparison and the return type is BOOLEAN if warnings are enabled an asse
is made. Warnings are enabled globally by the WarningsOn flag which is def
in the Std_Regpak body. An X in the sign position always results in the
comparison being indeterminate. NOTE that if two vectors are identical but h
X’s in the same positions (i.e. 0XX0 and 0XX0) then the comparison is
considered to be indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-53

>= Std_Regpak

esult

son
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable geq : BOOLEAN;

the following line sets geq to TRUE if a_result is greater than or equal to b_r
and FALSE otherwise with both operands being represented in the
DefaultRegMode:

geq:= a_result >= b_result;

The following table gives some sample inputs and the results of the compari
operation.

Table 3-19. ‘>=’ Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN TRUE

10111111 01110101 OnesComp bit 0

0110X001 01110000 TwosComp std_ulogic 0

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN FALSE
Std_DevelopersKit User’s Manual, V2.23-54

Std_Regpak <

less

he

d
pes.
text.
<
Less Than:Compare two expressions and determine if the left expression is
than the right expression

SYNTAX:
l_expression < r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-20. ‘<‘ Valid Parameter Types

l_expression r_expression return value

bit_vector bit_vector bit

bit_vector INTEGER BOOLEAN

INTEGER bit_vector BOOLEAN

bit_vector INTEGER bit

INTEGER bit_vector bit

std_logic_vector std_logic_vector std_ulogic

std_logic_vector INTEGER BOOLEAN

INTEGER std_logic_vector BOOLEAN

std_logic_vector INTEGER std_ulogic

INTEGER std_logic_vector std_ulogic

std_ulogic_vector std_ulogic_vector std_ulogic

std_ulogic_vector INTEGER BOOLEAN

INTEGER std_ulogic_vector BOOLEAN
Std_DevelopersKit User’s Manual, V2.2 3-55

< Std_Regpak

e
 type
tor
uce

p,

ur
body.
me

d
o
e or

 is

d out

 the

chine

n is
NOTE: When this operator is used where both operands are of the same typ
(either both bit_vector, std_logic_vector, or std_ulogic_vector) and the return
is boolean then the actual VHDL built-in operator is used. This built-in opera
functions somewhat differently than the Std_Regpak operator and may prod
unexpected results.

DESCRIPTION:

This function comparesl_expression andr_expression and decides whether
l_expression is less thanr_expression. The comparison is done in a short circuit
fashion. An input vector may be represented in either OnesComp, TwosCom
SignMagnitude, or Unsigned format as selected by DefaultRegMode.
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak
If two vectors are used as inputs to this function then, they must have the sa
register mode or the comparison will not be carried out properly.

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

Whenl_expression andr_expression are both vectors, the comparison operation
carried out in the following manner. The shorter of the two vectors is sign
extended to the length of the longer of the two. The comparison is then carrie
in a short circuit fashion taking into account the sign of the numbers and the
register mode. Note that for OnesComp and SignMagnitude representations
existence of two zeros is taken into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

std_ulogic_vector INTEGER std_ulogic

INTEGER std_ulogic_vector std_ulogic

Table 3-20. ‘<‘ Valid Parameter Types

l_expression r_expression return value
Std_DevelopersKit User’s Manual, V2.23-56

Std_Regpak <

he

 form
y
d,

n is
nate
icates

ents
ches

ic. If
alue
e
ings
pak

e

. The
uts.

de.
Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted. 0 is less than 1, but comparing 0 or 1 to an X yields an indetermi
answer. The comparison can be completed whenever any array element ind
a successful comparison. This is called short circuit operation, where the
remaining elements of the arrays need not be compared if the left most elem
have already determined the comparison result. Anytime the comparison rea
an index that has an X as an array element, the comparison is deemed
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-57

< Std_Regpak

SE

son
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable less : BOOLEAN;

the following line sets less to TRUE if a_result is less than b_result and FAL
otherwise. Both operands are represented in the DefaultRegMode:

less := a_result < b_result;

The following table gives some sample inputs and the results of the compari
operation.

Table 3-21. ‘<‘ Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN FALSE

10111111 01110101 OnesComp bit 1

0110X001 01110000 TwosComp std_ulogic 1

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN TRUE
Std_DevelopersKit User’s Manual, V2.23-58

Std_Regpak <=

he

d
pes.
text.
<=
Less Than Or Equal: Compare two expressions and determine if the left
expression is less than or equal to the right expression

SYNTAX:
l_expression <= r_expression

wherel_expression and r_expression are expressions corresponding to one of t
valid pairs of overloaded types shown in the parameter table below.

PARAMETER TYPES:

The following table gives the pairs of valid parameter types for this overloade
subroutine. This subroutine is overloaded for input types as well as output ty
Both the input types and output types must be uniquely determinable by con

Table 3-22. ‘<=’ Valid Parameter Types

l_expression r_expression return value

bit_vector bit_vector bit

bit_vector INTEGER BOOLEAN

INTEGER bit_vector BOOLEAN

bit_vector INTEGER bit

INTEGER bit_vector bit

std_logic_vector std_logic_vector std_ulogic

std_logic_vector INTEGER BOOLEAN

INTEGER std_logic_vector BOOLEAN

std_logic_vector INTEGER std_ulogic

INTEGER std_logic_vector std_ulogic

std_ulogic_vector std_ulogic_vector std_ulogic

std_ulogic_vector INTEGER BOOLEAN

INTEGER std_ulogic_vector BOOLEAN
Std_DevelopersKit User’s Manual, V2.2 3-59

<= Std_Regpak

e
 type
tor
uce

p,
ode.
ur
body.
me

d
o
e or

 is

d out

 the

chine

n is
NOTE: When this operator is used where both operands are of the same typ
(either both bit_vector, std_logic_vector, or std_ulogic_vector) and the return
is boolean then the actual VHDL built-in operator is used. This built-in opera
functions somewhat differently than the Std_Regpak operator and may prod
unexpected results.

DESCRIPTION:

This function comparesl_expression andr_expression and decides whether
l_expression is less than or equal tor_expression. The comparison is done in a
short circuit fashion. An input vector may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as selected by DefaultRegM
DefaultRegMode is a constant which can be globally set to any one of the fo
arithmetic representations by changing its defined value in the Std_Regpak
If two vectors are used as inputs to this function then, they must have the sa
register mode or the comparison will not be carried out properly.

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

Whenl_expression andr_expression are both vectors, the comparison operation
carried out in the following manner. The shorter of the two vectors is sign
extended to the length of the longer of the two. The comparison is then carrie
in a short circuit fashion taking into account the sign of the numbers and the
register mode. Note that for OnesComp and SignMagnitude representations
existence of two zeros is taken into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

std_ulogic_vector INTEGER std_ulogic

INTEGER std_ulogic_vector std_ulogic

Table 3-22. ‘<=’ Valid Parameter Types

l_expression r_expression return value
Std_DevelopersKit User’s Manual, V2.23-60

Std_Regpak <=

he

 form
y
d,

n is
g 0 or

d
 be
result.
t, the
e
pe is

gsOn
ys

. The
uts.

de.
Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted. 0 is less than 1, 0 is equal to 0, and 1 is equal to 1, but comparin
1 to an X yields an indeterminate answer. The comparison can be completed
whenever any array element indicates a successful comparison. This is calle
short circuit operation, where the remaining elements of the arrays need not
compared if the left most elements have already determined the comparison
Anytime the comparison reaches an index that has an X as an array elemen
comparison is deemed indeterminate and results in an X being returned if th
return type is std_ulogic. If the comparison is indeterminate and the return ty
BOOLEAN then the value FALSE is returned.When an X results in an
indeterminate comparison and the return type is BOOLEAN if warnings are
enabled an assertion is made. Warnings are enabled globally by the Warnin
flag which is defined in the Std_Regpak body. An X in the sign position alwa
results in the comparison being indeterminate. NOTE that if two vectors are
identical but have X’s in the same positions (i.e. 0XX0 and 0XX0) then the
comparison is considered to be indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-61

<= Std_Regpak

t and

son
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable leq : BOOLEAN;

the following line sets leq to TRUE if a_result is less than or equal to b_resul
FALSE otherwise. Both operands are represented in the DefaultRegMode:

leq := a_result <= b_result;

The following table gives some sample inputs and the results of the compari
operation.

Table 3-23. ‘<=’ Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN TRUE

10111111 01110101 OnesComp bit 1

0110X001 01110000 TwosComp std_ulogic 1

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN TRUE
Std_DevelopersKit User’s Manual, V2.23-62

Std_Regpak ConvertMode

an
 its

sign,
rting

nd

e
lways
ConvertMode
Change Arithmetic Representations: To convert a vector from one type of
arithmetic representation to another type of arithmetic representation.

OVERLOADED DECLARATIONS:

Function ConvertMode(
SrcReg:IN bit_vector;-- vector to be converted
SrcRegMode:IN regmode_type;-- input vector reg. mode
DstRegMode:IN regmode_type-- returned vector reg. mode
) return bit_vector;

Function ConvertMode(
SrcReg:IN std_logic_vector;-- vector to be converted
SrcRegMode:IN regmode_type;-- input vector reg. mode
DstRegMode:IN regmode_type-- returned vector reg. mode
) return std_logic_vector;

Function ConvertMode(
SrcReg:IN std_ulogic_vector;-- vector to be converted
SrcRegMode:IN regmode_type;-- input vector reg. mode
DstRegMode:IN regmode_type-- returned vector reg. mode
) return std_ulogic_vector;

DESCRIPTION:

This function converts the input vector from the arithmetic representation
(TwosComp, OnesComp, Unsigned, or SignMagnitude) specified by
SrcRegMode to the arithmetic representation specified by DstRegMode. The
default value for SrcRegMode and DstRegMode is DefaultRegMode which c
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body.

See the descriptions of the functions To_TwosComp, To_OnesComp, To_Un
and To_SignMag for a description of how this function operates when conve
to the appropriate mode.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
Std_DevelopersKit User’s Manual, V2.2 3-63

ConvertMode Std_Regpak

user

sign,

or is

s

defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.

X HANDLING:

See the descriptions of the functions To_TwosComp, To_OnesComp, To_Un
and To_SignMag for a description of how this function handles X’s when
converting to the appropriate mode.

BUILT IN ERROR TRAP:

If the input vector is of zero length an error assertion is made and a null vect
returned.

EXAMPLE:

Given the variable declarations:

variable ones_out: std_logic_vector(7 downto 0);
variable usgn: std_logic_vector(8 to 15);

then the following line assigns usgn the Unsigned representation of the one’
complement ones_out.

usgn := ConvertMode(ones_out,OnesComp,Unsigned);
Std_DevelopersKit User’s Manual, V2.23-64

Std_Regpak RegAbs

 be

 four
body.

nd

y be
put
 the
ult is
e
hich
st
RegAbs
Absolute Value: Determines the absolute value of the input

OVERLOADED DECLARATIONS:

Procedure RegAbs (
VARIABLEresult:INOUT bit_vector;
CONSTANTSrcReg:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegAbs (
VARIABLEresult:INOUT std_logic_vector;
CONSTANTSrcReg:IN std_logic_vector;
CONSTANTSrcRegmode:IN regmode_type
);

Procedure RegAbs (
VARIABLEresult:INOUT std_ulogic_vector;
CONSTANTSrcReg:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This procedure returns the absolute value of the input vector. The input may
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by the SrcRegMode parameter. The default value for
SrcRegMode is DefaultRegMode which can be globally set to any one of the
arithmetic representations by changing its defined value in the Std_Regpak

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The actual parameter associated with the formal parameter result ma
of any length and may have any range. It need not match the range of the in
vector. It is recommended, however, that the actual have the same length as
input vector. If the actual parameter associated with the formal parameter res
shorter than the input vector then the least significant portion is returned in th
actual. If the actual is longer than the input vector then the absolute value, w
consists of the same number of bits as the input vector, is returned in the lea
Std_DevelopersKit User’s Manual, V2.2 3-65

RegAbs Std_Regpak

hoed

iately
 there

ctor

f zero

omp
significant bits of the actual parameter associated with the formal parameter
result. The remaining bits of the actual are left unchanged.

X HANDLING:

For OnesComp, SignMagnitude, and Unsigned vectors any X’s are simply ec
in the result. For TwosComp, if the vector is positive then any X’s are simply
echoed in the output. If the vector is negative the X’s are propagated appropr
when the bits are inverted and the vector is incremented by one. Note that if
is an X in the sign bit the vector is assumed to be negative and the vector is
negated.

BUILT IN ERROR TRAPS:

1. If the input vector is of zero length an error assertion is made and a ve
filled with zeros is returned.

2. If the actual parameter associated with the formal parameter result is o
length an error assertion is made.

EXAMPLE:

Given the variable definitions

variable signed_vector : bit_vector(7 downto 0);
variable non_neg_vector : bit_vector(8 to 23);

then the following line assigns the absolute value of signed_vector (in TwosC
representation) to the bit range 16 to 23 of the vector non_neg_vector:

RegAbs(non_neg_vector, signed_vector, TwosComp);
Std_DevelopersKit User’s Manual, V2.23-66

Std_Regpak SRegAbs

 be

 four
body.

nd

y be
put
 the
ult is
e
hich
st
SRegAbs
Absolute Value: Determines the absolute value of the input

OVERLOADED DECLARATIONS:

Procedure SRegAbs (
SIGNALresult:INOUT bit_vector;
CONSTANTSrcReg:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegAbs (
SIGNALresult:INOUT std_logic_vector;
CONSTANTSrcReg:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegAbs (
SIGNALresult:INOUT std_ulogic_vector;
CONSTANTSrcReg:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This procedure returns the absolute value of the input vector. The input may
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by the SrcRegMode parameter. The default value for
SrcRegMode is DefaultRegMode which can be globally set to any one of the
arithmetic representations by changing its defined value in the Std_Regpak

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The actual parameter associated with the formal parameter result ma
of any length and may have any range. It need not match the range of the in
vector. It is recommended, however, that the actual have the same length as
input vector. If the actual parameter associated with the formal parameter res
shorter than the input vector then the least significant portion is returned in th
actual. If the actual is longer than the input vector then the absolute value, w
consists of the same number of bits as the input vector, is returned in the lea
Std_DevelopersKit User’s Manual, V2.2 3-67

SRegAbs Std_Regpak

hoed

iately
 there

ctor

f zero

omp
significant bits of the actual parameter associated with the formal parameter
result. The remaining bits of the actual are left unchanged.

X HANDLING:

For OnesComp, SignMagnitude, and Unsigned vectors any X’s are simply ec
in the result. For TwosComp, if the vector is positive then any X’s are simply
echoed in the output. If the vector is negative the X’s are propagated appropr
when the bits are inverted and the vector is incremented by one. Note that if
is an X in the sign bit the vector is assumed to be negative and the vector is
negated.

BUILT IN ERROR TRAPS:

1. If the input vector is of zero length an error assertion is made and a ve
filled with zeros is returned.

2. If the actual parameter associated with the formal parameter result is o
length an error assertion is made.

EXAMPLE:

Given the signal definitions

signal signed_vector : bit_vector(7 downto 0);
signal non_neg_vector : bit_vector(8 to 23);

then the following line assigns the absolute value of signed_vector (in TwosC
representation) to the bit range 16 to 23 of the vector non_neg_vector:

SRegAbs(non_neg_vector,signed_vector, TwosComp);
Std_DevelopersKit User’s Manual, V2.23-68

Std_Regpak RegAdd

 the
ed in
ed by
The
to
RegAdd
Register Addition: Add two inputs and detect any resulting overflow

OVERLOADED DECLARATIONS:

Procedure RegAdd (
VARIABLEresult:INOUT bit_vector;
VARIABLEcarry_out:OUT bit;
VARIABLEoverflow:OUT bit;
CONSTANTaddend:IN bit_vector;
CONSTANTaugend:IN bit_vector;
CONSTANTcarry_in:IN bit;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegAdd (
VARIABLEresult:INOUT std_logic_vector;
VARIABLEcarry_out:OUT std_ulogic;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTaddend:IN std_logic_vector;
CONSTANTaugend:IN std_logic_vector;
CONSTANTcarry_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegAdd (
VARIABLEresult:INOUT std_ulogic_vector;
VARIABLEcarry_out:OUT std_ulogic;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTaddend:IN std_ulogic_vector;
CONSTANTaugend:IN std_ulogic_vector;
CONSTANTcarry_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic addition on the addend, the augend, and
carry_in and produces a result and a carry_out. The input may be represent
either OnesComp, TwosComp, SignMagnitude, or Unsigned format as select
the SrcRegMode parameter. The output is also in this same representation.
default value for SrcRegMode is DefaultRegMode which can be globally set
Std_DevelopersKit User’s Manual, V2.2 3-69

RegAdd Std_Regpak

n the

n

lt
puts).

d

ent

nger

l
s long

 a
ght
. (i.e.
ted
ult).
rtion

te
tire
f

any one of the four arithmetic representations by changing its defined value i
Std_Regpak body.

Carry_out: Carry_out is set if there is a carry out of the most significant
numerical bit position, which, for SignMagnitude representation, is the positio
just below the sign bit.

Overflow: Overflow is set if either overflow or underflow occurs (i.e. the resu
cannot be represented in the same number of bits as the longer of the two in

Carry_in: If the carry_in is set, the result of the addition of the addend and
augend is incremented by one. Carry_in is only operational in TwosComp an
Unsigned modes.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual be at least a
as the longer of the two input vectors (i.e. the larger of addend’length or
augend’length). If the actual associated with the formal parameter result has
longer length than that of the longer of the two input vectors, then only the ri
most bits of the actual associated with the result is affected by the procedure
If the returned length of the procedure is 8 bits and a 14 bit actual is associa
with the result, then only the right most 8 bits of the actual will contain the res
If the actual associated with result is shorter than required, then only that po
of the result which can be copied (the least significant bits) is copied.

X HANDLING:

All X’s in the inputs are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample addition o
two TwosComp std_logic_vectors:

01000111
+00X0000X

01X0XXXX
Std_DevelopersKit User’s Manual, V2.23-70

Std_Regpak RegAdd

de

 and
mp
tion

ed on
 bits

s (55
wnto
rflow
BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros. If the mode is either Unsigned or TwosCo
and the carry_in is set, then the result is filled with zeros with the excep
of the least significant bit which is a ‘1’.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following variable declarations:

variable in_1, in_2 : bit_vector(7 downto 0);
variable sum : bit_vector(8 to 15);
variable c_out, ovf, c_in : bit;

and the following procedure call:

RegAdd(sum,c_out,ovf,in_1,in_2,c_in,TwosComp);

The above procedure call causes a two’s complement addition to be perform
in_1, in_2, and c_in. The result is returned in sum and the carry and overflow
is returned in c_out and ovf, respectively.

RegAdd (
result=>i_bus (63 downto 32),
carry_out =>OPEN,
overflow=>OPEN,
addend=>j_bus (15 downto 0),
augend=>k_bus (1 to 24),
carry_in=>‘0’,
SrcRegMode=>Unsigned

);

In this case since the longest of the two vector inputs is 24 bits in length, i_bu
downto 32) is assigned the sum that results from the addition of j_bus (15 do
0) and k_bus(1 to 24) as well as the carry. Note that since carry_out and ove
are left open, they are ignored.
Std_DevelopersKit User’s Manual, V2.2 3-71

SRegAdd Std_Regpak

 the
ed in
ed by
The
to
SRegAdd
Register Addition: Add two inputs and detect any resulting overflow

OVERLOADED DECLARATIONS:

Procedure SRegAdd (
SIGNALresult:INOUT bit_vector;
SIGNALcarry_out:OUT bit;
SIGNALoverflow:OUT bit;
CONSTANTaddend:IN bit_vector;
CONSTANTaugend:IN bit_vector;
CONSTANTcarry_in:IN bit;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegAdd (
SIGNALresult:INOUT std_logic_vector;
SIGNALcarry_out:OUT std_ulogic;
SIGNALoverflow:OUT std_ulogic;
CONSTANTaddend:IN std_logic_vector;
CONSTANTaugend:IN std_logic_vector;
CONSTANTcarry_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegAdd (
SIGNALresult:INOUT std_ulogic_vector;
SIGNALcarry_out:OUT std_ulogic;
SIGNALoverflow:OUT std_ulogic;
CONSTANTaddend:IN std_ulogic_vector;
CONSTANTaugend:IN std_ulogic_vector;
CONSTANTcarry_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic addition on the addend, the augend, and
carry_in and produces a result and a carry_out. The input may be represent
either OnesComp, TwosComp, SignMagnitude, or Unsigned format as select
the SrcRegMode parameter. The output is also in this same representation.
default value for SrcRegMode is DefaultRegMode which can be globally set
Std_DevelopersKit User’s Manual, V2.23-72

Std_Regpak SRegAdd

n the

n

lt
puts).

d

ent

nger

l
s long

 a
ght
. (i.e.
ted
ult).
rtion

te
tire
f

any one of the four arithmetic representations by changing its defined value i
Std_Regpak body.

Carry_out: Carry_out is set if there is a carry out of the most significant
numerical bit position, which, for SignMagnitude representation, is the positio
just below the sign bit.

Overflow: Overflow is set if either overflow or underflow occurs (i.e. the resu
cannot be represented in the same number of bits as the longer of the two in

Carry_in: If the carry_in is set, the result of the addition of the addend and
augend is incremented by one. Carry_in is only operational in TwosComp an
Unsigned modes.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual be at least a
as the longer of the two input vectors (i.e. the larger of addend’length or
augend’length). If the actual associated with the formal parameter result has
longer length than that of the longer of the two input vectors, then only the ri
most bits of the actual associated with the result is affected by the procedure
If the returned length of the procedure is 8 bits and a 14 bit actual is associa
with the result, then only the right most 8 bits of the actual will contain the res
If the actual associated with result is shorter than required, then only that po
of the result which can be copied (the least significant bits) is copied.

X HANDLING:

All X’s in the inputs are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample addition o
two TwosComp std_logic_vectors:

01000111
+00X0000X

01X0XXXX
Std_DevelopersKit User’s Manual, V2.2 3-73

SRegAdd Std_Regpak

de

 and
mp
tion

ed on
 bits

s (55
wnto
rflow
BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros. If the mode is either Unsigned or TwosCo
and the carry_in is set, then the result is filled with zeros with the excep
of the least significant bit which is a ‘1’.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following signal declarations:

signal in_1, in_2 : bit_vector(7 downto 0);
signal sum : bit_vector(8 to 15);
signal c_out, ovf, c_in : bit;

and the following procedure call:

SRegAdd(sum,c_out,ovf,in_1,in_2,c_in,TwosComp);

The above procedure call causes a two’s complement addition to be perform
in_1, in_2, and c_in. The result is returned in sum and the carry and overflow
is returned in c_out and ovf, respectively.

SRegAdd (
result=>i_bus (63 downto 32),
carry_out =>OPEN,
overflow=>OPEN,
addend=>j_bus (15 downto 0),
augend=>k_bus (1 to 24),
carry_in=>‘0’,
SrcRegMode=>Unsigned

);

In this case since the longest of the two vector inputs is 24 bits in length, i_bu
downto 32) is assigned the sum that results from the addition of j_bus (15 do
0) and k_bus(1 to 24) as well as the carry. Note that since carry_out and ove
are left open, they are ignored.
Std_DevelopersKit User’s Manual, V2.23-74

Std_Regpak RegDec

 either
the
 this

y

nd

e

e the
with

umber
led.
RegDec
Register Decrement: Decrement the input vector

OVERLOADED DECLARATIONS:

Function RegDec (
SrcReg :IN bit_vector;-- input to be decremented
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function RegDec (
SrcReg:IN std_logic_vector;-- input to be decremented
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function RegDec (
SrcReg:IN std_ulogic_vector;-- input to be decremented
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

This function decrements the value of the actual parameter associated with
SrcReg by one and returns this new value. The input may be represented in
OnesComp, TwosComp, SignMagnitude or Unsigned format as selected by
SrcRegMode parameter. The value that is returned by the function is also in
same representation. The default value for SrcRegMode is DefaultRegMode
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has the same length as th
vector that was passed into the function. The range of the returned vector is
always defined as SrcReg’length - 1 downto 0. Note that this does not preclud
user from assigning the returned vector to or comparing the returned vector
another vector of the same length and type but of a different range.

Overflow: Should an overflow condition occur (i.e. the result cannot be
represented in the same number of bits as the input vector or an Unsigned n
is decremented past zero) a warning assertion is made if warnings are enab
Std_DevelopersKit User’s Manual, V2.2 3-75

RegDec Std_Regpak

 For

rned.
f
nt

y by

te
tire

o

The vector that is returned depends upon the value passed in SrcRegMode.
TwosComp and OnesComp the maximum positive number that can fit in the
range of the input vector is returned. For Unsigned, a vector of all ones is retu
For SignMagnitude, the count returns to the SignMagnitude representation o
negative one. This is consistent with the way in which a register with increme
capability would be implemented in hardware. Warnings are enabled globall
the WarningsOn flag which is defined in the Std_Regpak body.

X HANDLING:

All X’s in the input are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation, an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample
decrementation of a TwosComp std_logic_vector:

0110X000
-00000001

01XXX111

BUILT IN ERROR TRAP:

If the vector input is of zero length then an error assertion is made and a zer
length vector is returned.

EXAMPLE:

Given the following variable declarations:

variable count : bit_vector(1 to 5);
variable new_count : bit_vector(7 downto 3);

The following statement results in a SignMagnitude value of count - 1 being
assigned to new_count.

new_count := RegDec(count, SignMagnitude);
Std_DevelopersKit User’s Manual, V2.23-76

Std_Regpak RegDiv

r

e
 or
lso in
ode

y
set if
RegDiv
Register Division: Divide two inputs and generate a quotient and a remainde

OVERLOADED DECLARATIONS:

Procedure RegDiv (
VARIABLEresult:OUT bit_vector;
VARIABLEremainder:OUT bit_vector;
VARIABLEZeroDivide:OUT bit;
CONSTANTdividend:IN bit_vector;
CONSTANTdivisor:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegDiv (
VARIABLEresult:OUT std_logic_vector;
VARIABLEremainder:OUT std_logic_vector;
VARIABLEZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_logic_vector;
CONSTANTdivisor:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegDiv (
VARIABLEresult:OUT std_ulogic_vector;
VARIABLEremainder:OUT std_ulogic_vector;
VARIABLEZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_ulogic_vector;
CONSTANTdivisor:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic division of the dividend by the divisor. Th
input may be represented in either OnesComp, TwosComp, SignMagnitude,
Unsigned format as selected by the SrcRegMode parameter. The output is a
this same representation. The default value for SrcRegMode is DefaultRegM
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body. Note that ZeroDivide is
an attempt to divide by zero is made.
Std_DevelopersKit User’s Manual, V2.2 3-77

RegDiv Std_Regpak

hm.

 with
.

ent

nger

 to
ended
d
 these

se
cant
The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The results are converted into the appropriate arithmetic representation
the appropriate signs. The sign of the remainder is that of the dividend

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: Actual parameters of any length may be associated with the formal
parameters result and remainder. The two actual parameters corresponding
result and remainder need not have the same ranges or lengths. It is recomm
that the length of the actuals associated with the formal parameters result an
remainder be the same as that of the dividend. If the actuals associated with
formal parameters are longer than the length required, then the quotient and
remainder are sign extended to fit into the actual parameters. If the actuals
associated with result and remainder are shorter than required, then only tho
portions of the quotient and remainder which can be copied (the least signifi
bits) are copied into the appropriate actual parameter.
Std_DevelopersKit User’s Manual, V2.23-78

Std_Regpak RegDiv

and

led as
ply

 and

 as
n X
 in

r than
iate
e

CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to Unsigned representation, the X’s are hand
follows.For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is a
the negation is performed. The sign of the result is calculated assuming an X
the sign bit represents a negative number. During the implementation of the
restoring algorithm, X’s are propagated as would be expected for unsigned
addition and subtraction. When determining whether the remainder is greate
0 an X in the sign bit is treated as a 1. In the conversion back to the appropr
arithmetic representation X’s are propagated as described for the appropriat
functions (i.e. To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-79

RegDiv Std_Regpak

de

 and

as a
BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If either of the actual parameters associated with result or remainder h
zero length then an error assertion is made.

4. If an attempt is made to divide by zero an error assertion is made.

EXAMPLES:

Given the following variable declarations:

variable in_1, in_2 : bit_vector(7 downto 0);
variable quo, rem : bit_vector(0 to 7);

and the following procedure call:

RegDiv (quo, rem, in_1, in_2, TwosComp);

The above procedure call causes in_1 to be divided by in_2. The quotient is
returned in quo and the remainder is returned in rem.

RegDiv (
result=>i_bus (70 downto 32),
remainder=>j_bus (4 downto 0),
dividend=>k_bus (1 to 24),
divisor=>l_bus (1 to 12),
SrcRegMode=>Unsigned

);

In this case k_bus(1 to 24) is divided by l_bus(1 to 12). The quotient is sign
extended to 39 bits and returned in i_bus(70 downto 32). The remainder is
truncated and the least significant 5 bits are returned in j_bus(4 downto 0).
Std_DevelopersKit User’s Manual, V2.23-80

Std_Regpak SRegDiv

r

e
 or
lso in
ode

y
set if
SRegDiv
Register Division: Divide two inputs and generate a quotient and a remainde

OVERLOADED DECLARATIONS:

Procedure SRegDiv (
SIGNALresult:OUT bit_vector;
SIGNALremainder:OUT bit_vector;
SIGNALZeroDivide:OUT bit;
CONSTANTdividend:IN bit_vector;
CONSTANTdivisor:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegDiv (
SIGNALresult:OUT std_logic_vector;
SIGNALremainder:OUT std_logic_vector;
SIGNALZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_logic_vector;
CONSTANTdivisor:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegDiv (
SIGNALresult:OUT std_ulogic_vector;
SIGNALremainder:OUT std_ulogic_vector;
SIGNALZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_ulogic_vector;
CONSTANTdivisor:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic division of the dividend by the divisor. Th
input may be represented in either OnesComp, TwosComp, SignMagnitude,
Unsigned format as selected by the SrcRegMode parameter. The output is a
this same representation. The default value for SrcRegMode is DefaultRegM
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body. Note that ZeroDivide is
an attempt to divide by zero is made.
Std_DevelopersKit User’s Manual, V2.2 3-81

SRegDiv Std_Regpak

hm.

 with
.

ent

nger

 to
ended
d
 these

se
cant
The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The results are converted into the appropriate arithmetic representation
the appropriate signs. The sign of the remainder is that of the dividend

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: Actual parameters of any length may be associated with the formal
parameters result and remainder. The two actual parameters corresponding
result and remainder need not have the same ranges or lengths. It is recomm
that the length of the actuals associated with the formal parameters result an
remainder be the same as that of the dividend. If the actuals associated with
formal parameters are longer than the length required, then the quotient and
remainder are sign extended to fit into the actual parameters. If the actuals
associated with result and remainder are shorter than required, then only tho
portions of the quotient and remainder which can be copied (the least signifi
bits) are copied into the appropriate actual parameter.
Std_DevelopersKit User’s Manual, V2.23-82

Std_Regpak SRegDiv

and

led as
ply

 and

 as
n X
 in

r than
iate
e

CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to Unsigned representation, the X’s are hand
follows.For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is a
the negation is performed. The sign of the result is calculated assuming an X
the sign bit represents a negative number. During the implementation of the
restoring algorithm, X’s are propagated as would be expected for unsigned
addition and subtraction. When determining whether the remainder is greate
0 an X in the sign bit is treated as a 1. In the conversion back to the appropr
arithmetic representation X’s are propagated as described for the appropriat
functions (i.e. To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-83

SRegDiv Std_Regpak

de

 and

as a
BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If either of the actual parameters associated with result or remainder h
zero length then an error assertion is made.

4. If an attempt is made to divide by zero an error assertion is made.

EXAMPLES:

Given the following signal declarations:

signal in_1, in_2 : bit_vector(7 downto 0);
signal quo, rem : bit_vector(0 to 7);

and the following procedure call:

SRegDiv (quo, rem, in_1, in_2, TwosComp);

The above procedure call causes in_1 to be divided by in_2. The quotient is
returned in quo and the remainder is returned in rem.

SRegDiv (
result=>i_bus (70 downto 32),
remainder=>j_bus (4 downto 0),
dividend=>k_bus (1 to 24),
divisor=>l_bus (1 to 12),
SrcRegMode=>Unsigned

);

In this case k_bus(1 to 24) is divided by l_bus(1 to 12). The quotient is sign
extended to 39 bits and returned in i_bus(70 downto 32). The remainder is
truncated and the least significant 5 bits are returned in j_bus(4 downto 0).
Std_DevelopersKit User’s Manual, V2.23-84

Std_Regpak RegEqual

l to
RegEqual
Equality Operator : Compare two inputs and determine if the left input is equa
the right input

OVERLOADED DECLARATIONS:

Function RegEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;
Std_DevelopersKit User’s Manual, V2.2 3-85

RegEqual Std_Regpak
Function RegEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;
Std_DevelopersKit User’s Manual, V2.23-86

Std_Regpak RegEqual

ides
short

ode
 be

his
l not
Function RegEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

DESCRIPTION:

This function compares the left and right inputs (l and r, respectively) and dec
whether the left input is equal to the right input. The comparison is done in a
circuit fashion. An input vector may be represented in either OnesComp,
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The default value for SrcRegMode is DefaultRegMode which can
globally set to any one of the four arithmetic representations by changing its
defined value in the Std_Regpak body. If two vectors are used as inputs to t
function then, they must have the same register mode or the comparison wil
be carried out properly.
Std_DevelopersKit User’s Manual, V2.2 3-87

RegEqual Std_Regpak

d
o
e or

 the
th of
hion
 for
 taken

chine

n is

he

ion in
 the

 form
y
d,

n is
elds
array
tion,
 most
rison
ed

ic. If
alue
Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

When the inputs are both vectors, the comparison operation is carried out in
following manner. The shorter of the two vectors is sign extended to the leng
the longer of the two. The comparison is then carried out in a short circuit fas
taking into account the sign of the numbers and the register mode. Note that
OnesComp and SignMagnitude representations the existence of two zeros is
into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

DON‘T CARE HANDLING:

RegEqual handles don’t cares in a special manner. A don’t care in any posit
any of the input vectors will match any value in the corresponding position in
other vector.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted.0 is equal to 0, 1 is equal to 1, but comparing 0, 1, or X to an X yi
an indeterminate answer. The comparison can be completed whenever any
element indicates a successful comparison. This is called short circuit opera
where the remaining elements of the arrays need not be compared if the left
elements have already determined the comparison result. Anytime the compa
reaches an index that has an X as an array element, the comparison is deem
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
Std_DevelopersKit User’s Manual, V2.23-88

Std_Regpak RegEqual

e
ings
pak

e

. The
uts.

de.
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.
Std_DevelopersKit User’s Manual, V2.2 3-89

RegEqual Std_Regpak

on
EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable equal_to: BOOLEAN;

the following line sets equal_to to TRUE if a_result is equal to b_result and
FALSE otherwise with both operands being represented in OnesComp:

equal_to:= RegEqual(a_result,b_result,OnesComp);

The following table gives some sample inputs and the result of the comparis
operation.

Table 3-24. RegEqual Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN TRUE

10111111 01110101 OnesComp bit 0

0110X001 01110000 TwosComp std_ulogic 0

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN FALSE
Std_DevelopersKit User’s Manual, V2.23-90

Std_Regpak RegExp

f an

akes
y be

 same
 can
 its

 in
RegExp
Register Exponentiation: Calculate a result from a base raised to the power o
exponent

OVERLOADED DECLARATIONS:

Procedure RegExp (
VARIABLEresult:OUT bit_vector;
VARIABLEoverflow:OUT bit;
CONSTANTbase:IN bit_vector;
CONSTANTexponent:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegExp (
VARIABLEresult:OUT std_logic_vector;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTbase:IN std_logic_vector;
CONSTANTexponent:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegExp (
VARIABLEresult:OUT std_ulogic_vector;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTbase:IN std_ulogic_vector;
CONSTANTexponent:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs the arithmetic exponentiation operation. That is, it t
the base and raises it to the power specified by the exponenet. The input ma
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by the SrcRegMode parameter. The output is also in this
representation. The default value for SrcRegMode is DefaultRegMode which
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body.

Overflow: Overflow is set if the base raised to the exponent is too large to fit
the actual parameter that is associated with the formal parameter result.
Std_DevelopersKit User’s Manual, V2.2 3-91

RegExp Std_Regpak

ent

l
s a

tual
ed
can

de

 and

umbers
is

If the
ed in
Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending.

Result: An actual parameter of any length may be associated with the forma
parameter result. If the actual associated with the formal parameter result ha
longer length than required, then the product is sign extended to fit in the ac
parameter associated with the formal parameter result. If the actual associat
with result is shorter than required, then only that portion of the result which
be copied (the least significant bits) is copied.

X HANDLING:

This procedure performs the exponentiation operation through repeated
multiplications. As a result, X’s are propagated during the repeated
multiplications as described for RegMult.

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a zero input.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following variable declarations:
variable b_1, e_2 : bit_vector(7 downto 0);
variable power: bit_vector(0 to 15);
variable ovf : bit;

and procedure call:
RegExp(power, ovf, b_1, e_2, TwosComp);

The above procedure call causes b_1 to be raised to the power e_2. These n
are in TwosComp and the result is calculated in the same representation. It
likely that, in this case, the result will not fit in the variable power. If this is the
case, the least significant bits of the result is returned in the variable power.
result will fit in the variable power, then the result is sign extended and return
that variable.
Std_DevelopersKit User’s Manual, V2.23-92

Std_Regpak SRegExp

f an

akes
y be

 same
 can
 its

 in
SRegExp
Register Exponentiation: Calculate a result from a base raised to the power o
exponent

OVERLOADED DECLARATIONS:

Procedure SRegExp (
SIGNALresult:OUT bit_vector;
SIGNALoverflow:OUT bit;
CONSTANTbase:IN bit_vector;
CONSTANTexponent:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegExp (
SIGNALresult:OUT std_logic_vector;
SIGNALoverflow:OUT std_ulogic;
CONSTANTbase:IN std_logic_vector;
CONSTANTexponent:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegExp (
SIGNALresult:OUT std_ulogic_vector;
SIGNALoverflow:OUT std_ulogic;
CONSTANTbase:IN std_ulogic_vector;
CONSTANTexponent:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs the arithmetic exponentiation operation. That is, it t
the base and raises it to the power specified by the exponenet. The input ma
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by the SrcRegMode parameter. The output is also in this
representation. The default value for SrcRegMode is DefaultRegMode which
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body.

Overflow: Overflow is set if the base raised to the exponent is too large to fit
the actual parameter that is associated with the formal parameter result.
Std_DevelopersKit User’s Manual, V2.2 3-93

SRegExp Std_Regpak

ent

l
s a

tual
ed
can

de

 and

umbers
is
se,

the
d

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending.

Result: An actual parameter of any length may be associated with the forma
parameter result. If the actual associated with the formal parameter result ha
longer length than required, then the product is sign extended to fit in the ac
parameter associated with the formal parameter result. If the actual associat
with result is shorter than required, then only that portion of the result which
be copied (the least significant bits) is copied.

X HANDLING:

This procedure performs the exponentiation operation through repeated
multiplications. As a result, X’s are propagated during the repeated
multiplications as described for SRegMult.

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a zero input.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following signal declarations:
signal b_1, e_2 : bit_vector(7 downto 0);
signal power: bit_vector(0 to 15);
signal ovf : bit;

and procedure call:
SRegExp(power, ovf, b_1, e_2, TwosComp);

The above procedure call causes b_1 to be raised to the power e_2. These n
are in TwosComp and the result is calculated in the same representation. It
likely that, in this case, the result will not fit in the signal power. If this is the ca
the least significant bits of the result is returned through the signal power. If
result will fit in the signal power, then the result is sign extended and returne
through that signal.
Std_DevelopersKit User’s Manual, V2.23-94

Std_Regpak RegFill

lue

ter
ctor
lVal

nd

d by
 as
ning
f the
RegFill
Register Fill: To increase the bit width of the input by adding bits of a given va

OVERLOADED DECLARATIONS:

Function RegFill(
SrcReg:IN bit_vector;-- vector to be extended
DstLength:IN NATURAL;-- the bit width of the output
FillVal:IN bit-- fill value for new position
) return bit_vector;

Function RegFill(
SrcReg:IN std_logic_vector;-- vector to be extended
DstLength:IN NATURAL;-- the bit width of the output
FillVal:IN std_ulogic-- fill value for new positions
) return std_logic_vector;

Function RegFill(
SrcReg:IN std_ulogic_vector;-- vector to be extended
DstLength:IN NATURAL;-- the bit width of the output
FillVal:IN std_ulogic-- fill value for new positions
) return std_ulogic_vector;

DESCRIPTION:

This function returns a vector that is a copy of the input vector but is of an
increased width. The length of the returned vector is specified by the parame
DstLength. The original vector is copied into the least significant bits of the ve
to be returned and the remaining bits are filled with the value specified by Fil
which has a default value of zero.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has a length that is specifie
the parameter DstLength. The range of the returned vector is always defined
DstLength - 1 downto 0. Note that this does not preclude the user from assig
the returned vector to or comparing the returned vector with another vector o
same length and type but of a different range.

DstLength: This specifies the length of the vector that is to be returned.
DstLength must be greater than or equal to the length of the input vector.
Std_DevelopersKit User’s Manual, V2.2 3-95

RegFill Std_Regpak

s

d the

value
X HANDLING:

This function handles X’s in an identical manner to the way in which it handle
any other value.

BUILT IN ERROR TRAPS:

1. If the input vector has a zero length, then an error assertion is made an
vector that is returned is filled with the value specified by FillVal.

2. If DstLength is zero, then an error assertion is made and a zero length
vector is returned.

3. If DstLength is less than the length of the input vector then an error is
issued and the original vector is returned.

EXAMPLE:

Given the declarations:

variable read_data : bit_vector(14 downto 7) :=
B"10111010";

variable extended_data : bit_vector (3 to 14);

then the following statement causes extended_data to be assigned a binary
of: 00010111010.

extended_data := RegFill(read_data, 11, '0');
Std_DevelopersKit User’s Manual, V2.23-96

Std_Regpak RegGreaterThan
RegGreaterThan
Greater Than Operator: Compare two inputs and determine if the left input is
greater than the right input

OVERLOADED DECLARATIONS:

Function RegGreaterThan (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegGreaterThan (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegGreaterThan (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;
Std_DevelopersKit User’s Manual, V2.2 3-97

RegGreaterThan Std_Regpak
Function RegGreaterThan (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThan (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThan (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThan (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;
Std_DevelopersKit User’s Manual, V2.23-98

Std_Regpak RegGreaterThan

ides
 in a
p,
ode
 be

his
l not
Function RegGreaterThan (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThan (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThan (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThan (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

DESCRIPTION:

This function compares the left and right inputs (l and r, respectively) and dec
whether the left input is greater than the right input. The comparison is done
short circuit fashion. An input vector may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The default value for SrcRegMode is DefaultRegMode which can
globally set to any one of the four arithmetic representations by changing its
defined value in the Std_Regpak body. If two vectors are used as inputs to t
function then, they must have the same register mode or the comparison wil
be carried out properly.
Std_DevelopersKit User’s Manual, V2.2 3-99

RegGreaterThan Std_Regpak

d
o
e or

 the
th of
hion
 for
 taken

chine

n is

he

 form
y
d,

n is

ay
tion,
 most
rison
ed

ic. If
alue
e
ings
pak

e

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

When the inputs are both vectors, the comparison operation is carried out in
following manner. The shorter of the two vectors is sign extended to the leng
the longer of the two. The comparison is then carried out in a short circuit fas
taking into account the sign of the numbers and the register mode. Note that
OnesComp and SignMagnitude representations the existence of two zeros is
into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted.1 is greater than 0, but comparing 0 or 1 to an X yields an
indeterminate answer. The comparison can be completed whenever any arr
element indicates a successful comparison. This is called short circuit opera
where the remaining elements of the arrays need not be compared if the left
elements have already determined the comparison result. Anytime the compa
reaches an index that has an X as an array element, the comparison is deem
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
Std_DevelopersKit User’s Manual, V2.23-100

Std_Regpak RegGreaterThan

. The
uts.

de.

LSE

on
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.

EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable gtr : BOOLEAN;

the following line sets gtr to TRUE if a_result is greater than b_result and FA
otherwise with both operands being represented in OnesComp:

gtr:=RegGreaterThan(a_result,b_result,OnesComp);

The following table gives some sample inputs and the result of the comparis
operation.

Table 3-25. RegGreaterThan Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN FALSE

10111111 01110101 OnesComp bit 0

0110X001 01110000 TwosComp std_ulogic 0

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN FALSE
Std_DevelopersKit User’s Manual, V2.2 3-101

RegGreaterThanOrEqual Std_Regpak

ft
RegGreaterThanOrEqual
Greater Than Or Equal Operator: Compare two inputs and determine if the le
input is greater than or equal to the right input

OVERLOADED DECLARATIONS:

Function RegGreaterThanOrEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegGreaterThanOrEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegGreaterThanOrEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;
Std_DevelopersKit User’s Manual, V2.23-102

Std_Regpak RegGreaterThanOrEqual
Function RegGreaterThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;
Std_DevelopersKit User’s Manual, V2.2 3-103

RegGreaterThanOrEqual Std_Regpak

ides
on is

 the
ode
y
s

Function RegGreaterThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegGreaterThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegGreaterThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

DESCRIPTION:

This function compares the left and right inputs (l and r, respectively) and dec
whether the left input is greater than or equal to the right input. The comparis
done in a short circuit fashion. An input vector may be represented in either
OnesComp, TwosComp, SignMagnitude, or Unsigned format as selected by
SrcRegMode parameter. The default value for SrcRegMode is DefaultRegM
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body. If two vectors are used a
inputs to this function then, they must have the same register mode or the
comparison will not be carried out properly.
Std_DevelopersKit User’s Manual, V2.23-104

Std_Regpak RegGreaterThanOrEqual

d
o
e or

 the
th of
hion
 for
 taken

chine

n is

he

 form
y
d,

n is
ring 0
ted
d

 be
result.
t, the
e
pe is

gsOn
ys
Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

When the inputs are both vectors, the comparison operation is carried out in
following manner. The shorter of the two vectors is sign extended to the leng
the longer of the two. The comparison is then carried out in a short circuit fas
taking into account the sign of the numbers and the register mode. Note that
OnesComp and SignMagnitude representations the existence of two zeros is
into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted.1 is greater than 0, 0 is equal to 0, and 1 is equal to 1, but compa
or 1 to an X yields an indeterminate answer. The comparison can be comple
whenever any array element indicates a successful comparison. This is calle
short circuit operation, where the remaining elements of the arrays need not
compared if the left most elements have already determined the comparison
Anytime the comparison reaches an index that has an X as an array elemen
comparison is deemed indeterminate and results in an X being returned if th
return type is std_ulogic. If the comparison is indeterminate and the return ty
BOOLEAN then the value FALSE is returned.When an X results in an
indeterminate comparison and the return type is BOOLEAN if warnings are
enabled an assertion is made. Warnings are enabled globally by the Warnin
flag which is defined in the Std_Regpak body. An X in the sign position alwa
results in the comparison being indeterminate. NOTE that if two vectors are
Std_DevelopersKit User’s Manual, V2.2 3-105

RegGreaterThanOrEqual Std_Regpak

. The
uts.

de.

on
identical but have X’s in the same positions (i.e. 0XX0 and 0XX0) then the
comparison is considered to be indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.

EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable gtreq : BOOLEAN;

the following line sets gtreq to TRUE if a_result is greater than or equal to
b_result and FALSE otherwise with both operands being represented in
OnesComp:

gtreq:= RegGreaterThanOrEqual(a_result,
b_result, OnesComp);

The following table gives some sample inputs and the result of the comparis
operation.

Table 3-26. RegGreaterThanOrEqual Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN TRUE

10111111 01110101 OnesComp bit 0

0110X001 01110000 TwosComp std_ulogic 0

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN FALSE
Std_DevelopersKit User’s Manual, V2.23-106

Std_Regpak RegInc

rcReg

the
 this

y

nd

e
lways
user

tion is
 value
RegInc
Register Increment: Increment the input vector

OVERLOADED DECLARATIONS:

Function RegInc(
SrcReg :IN bit_vector;-- input to be incremented
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function RegInc
SrcReg:IN std_logic_vector;-- input to be incremented
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function RegInc
SrcReg:IN std_ulogic_vector;-- input to be incremented
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

This function increments the value of the actual parameter associated with S
by one and returns this new value. The input may be represented in either
OnesComp, TwosComp, SignMagnitude or Unsigned format as selected by
SrcRegMode parameter. The value that is returned by the function is also in
same representation. The default value for SrcRegMode is DefaultRegMode
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.

Overflow: Should an overflow condition occur (i.e. the result cannot be
represented in the same number of bits as the input vector) a warning asser
made if warnings are enabled. The vector that is returned depends upon the
Std_DevelopersKit User’s Manual, V2.2 3-107

RegInc Std_Regpak

on
e of

re
.
e

te
tire

o

passed in SrcRegMode. For OnesComp and TwosComp an overflow conditi
results in the maximum negative number that can be represented in the rang
SrcReg being returned. For Unsigned, a vector of all zeros is returned. For
SignMagnitude, the count restarts at one. This is consistent with the hardwa
implementations of registers with increment capability for the various modes
Warnings are enabled globally by the WarningsOn flag which is defined in th
Std_Regpak body.

X HANDLING:

All X’s in the input are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation, an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample
incrementation of a TwosComp std_logic_vector:

0101X111
+00000001

01XXX000

BUILT IN ERROR TRAP:

If the vector input is of zero length then an error assertion is made and a zer
length vector is returned.

EXAMPLE:

Given the following variable declarations:

variable count : bit_vector(1 to 5);
variable new_count : bit_vector(7 downto 3);

The following statement results in a SignMagnitude value of count + 1 being
assigned to new_count.

new_count := RegInc(count, SignMagnitude);
Std_DevelopersKit User’s Manual, V2.23-108

Std_Regpak RegLessThan

s

RegLessThan
Less Than Operator: Compare two inputs and determine if the left input is les
than the right input

OVERLOADED DECLARATIONS:

Function RegLessThan (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegLessThan (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegLessThan (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;
Std_DevelopersKit User’s Manual, V2.2 3-109

RegLessThan Std_Regpak
Function RegLessThan (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThan (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThan (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThan (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;
Std_DevelopersKit User’s Manual, V2.23-110

Std_Regpak RegLessThan

ides
a
p,
ode
 be

his
l not
Function RegLessThan (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThan (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThan (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThan (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

DESCRIPTION:

This function compares the left and right inputs (l and r, respectively) and dec
whether the left input is less than the right input. The comparison is done in
short circuit fashion. An input vector may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The default value for SrcRegMode is DefaultRegMode which can
globally set to any one of the four arithmetic representations by changing its
defined value in the Std_Regpak body. If two vectors are used as inputs to t
function then, they must have the same register mode or the comparison wil
be carried out properly.
Std_DevelopersKit User’s Manual, V2.2 3-111

RegLessThan Std_Regpak

d
o
e or

 the
th of
hion
 for
 taken

chine

n is

he

 form
y
d,

n is
nate
icates

ents
ches

ic. If
alue
e
ings
pak

e

Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

When the inputs are both vectors, the comparison operation is carried out in
following manner. The shorter of the two vectors is sign extended to the leng
the longer of the two. The comparison is then carried out in a short circuit fas
taking into account the sign of the numbers and the register mode. Note that
OnesComp and SignMagnitude representations the existence of two zeros is
into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted. 0 is less than 1, but comparing 0 or 1 to an X yields an indetermi
answer. The comparison can be completed whenever any array element ind
a successful comparison. This is called short circuit operation, where the
remaining elements of the arrays need not be compared if the left most elem
have already determined the comparison result. Anytime the comparison rea
an index that has an X as an array element, the comparison is deemed
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned.When an X results in an indeterminate comparison and th
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
Std_DevelopersKit User’s Manual, V2.23-112

Std_Regpak RegLessThan

. The
uts.

de.

SE

on
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the input is a vector of zero length an error assertion is made
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.

EXAMPLES:

Given the variable declarations:

variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable less : BOOLEAN;

the following line sets less to TRUE if a_result is less than b_result and FAL
otherwise with both operands being represented in OnesComp:

less := RegLessThan(a_result,b_result,OnesComp);

The following table gives some sample inputs and the result of the comparis
operation.

Table 3-27. RegLessThan Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN FALSE

10111111 01110101 OnesComp bit 1

0110X001 01110000 TwosComp std_ulogic 1

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN TRUE
Std_DevelopersKit User’s Manual, V2.2 3-113

RegLessThanOrEqual Std_Regpak
RegLessThanOrEqual
Less Than Or Equal Operator: Compare two inputs and determine if the left
input is less than or equal to the right input

OVERLOADED DECLARATIONS:

Function RegLessThanOrEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegLessThanOrEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegLessThanOrEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;
Std_DevelopersKit User’s Manual, V2.23-114

Std_Regpak RegLessThanOrEqual
Function RegLessThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;
Std_DevelopersKit User’s Manual, V2.2 3-115

RegLessThanOrEqual Std_Regpak

ides
 is

 the
ode
y
s

Function RegLessThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegLessThanOrEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegLessThanOrEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

DESCRIPTION:

This function compares the left and right inputs (l and r, respectively) and dec
whether the left input is less than or equal to the right input. The comparison
done in a short circuit fashion. An input vector may be represented in either
OnesComp, TwosComp, SignMagnitude, or Unsigned format as selected by
SrcRegMode parameter. The default value for SrcRegMode is DefaultRegM
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body. If two vectors are used a
inputs to this function then, they must have the same register mode or the
comparison will not be carried out properly.
Std_DevelopersKit User’s Manual, V2.23-116

Std_Regpak RegLessThanOrEqual

d
o
e or

 the
th of
hion
 for
 taken

chine

n is

he

 form
y
d,

n is
g 0 or

d
 be
result.
t, the
e
pe is

gsOn
ys
Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

When the inputs are both vectors, the comparison operation is carried out in
following manner. The shorter of the two vectors is sign extended to the leng
the longer of the two. The comparison is then carried out in a short circuit fas
taking into account the sign of the numbers and the register mode. Note that
OnesComp and SignMagnitude representations the existence of two zeros is
into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

X HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted. 0 is less than 1, 0 is equal to 0, and 1 is equal to 1, but comparin
1 to an X yields an indeterminate answer. The comparison can be completed
whenever any array element indicates a successful comparison. This is calle
short circuit operation, where the remaining elements of the arrays need not
compared if the left most elements have already determined the comparison
Anytime the comparison reaches an index that has an X as an array elemen
comparison is deemed indeterminate and results in an X being returned if th
return type is std_ulogic. If the comparison is indeterminate and the return ty
BOOLEAN then the value FALSE is returned.When an X results in an
indeterminate comparison and the return type is BOOLEAN if warnings are
enabled an assertion is made. Warnings are enabled globally by the Warnin
flag which is defined in the Std_Regpak body. An X in the sign position alwa
results in the comparison being indeterminate. NOTE that if two vectors are
Std_DevelopersKit User’s Manual, V2.2 3-117

RegLessThanOrEqual Std_Regpak

e.
o

de.

t and

on
identical but have X’s in the same positions (i.e. 0XX0 and 0XX0) then the
comparison is considered to be indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vectors of zero length an error assertion is mad
The zero length vector is always considered to be the smaller of the tw
inputs.

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.

EXAMPLES:

Given the variable declarations:
variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable leq : BOOLEAN;

the following line sets leq to TRUE if a_result is less than or equal to b_resul
FALSE otherwise with both operands being represented in OnesComp:

leq := RegLessThanOrEqual(a_result,
b_result,
OnesComp);

The following table gives some sample inputs and the result of the comparis
operation.

Table 3-28. RegLessThanOrEqual Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN TRUE

10111111 01110101 OnesComp bit 1

0110X001 01110000 TwosComp std_ulogic 1

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN TRUE
Std_DevelopersKit User’s Manual, V2.23-118

Std_Regpak RegMod

case,
sented
ected
n. The
to
n the
tor.
RegMod
Modulus Operator: Perform the arithmetic modulus operation

OVERLOADED DECLARATIONS:

Procedure RegMod (
VARIABLEresult:OUT bit_vector;
VARIABLEZeroDivide:OUT bit;
CONSTANTdividend:IN bit_vector;
CONSTANTmodulus:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegMod (
VARIABLEresult:OUT std_logic_vector;
VARIABLEZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_logic_vector;
CONSTANTmodulus:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegMod (
VARIABLEresult:OUT std_ulogic_vector;
VARIABLEZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_ulogic_vector;
CONSTANTmodulus:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs the arithmetic modulus operation. The dividend is
divided by the modulus and the result is the remainder of the division. In this
the result has the same sign as that of the modulus. The input may be repre
in either OnesComp, TwosComp, SignMagnitude, or Unsigned format as sel
by the SrcRegMode parameter. The output is also in this same representatio
default value for SrcRegMode is DefaultRegMode which can be globally set
any one of the four arithmetic representations by changing its defined value i
Std_Regpak body. Note that ZeroDivide is set if the modulus is the zero vec

The division is carried out as follows:
Std_DevelopersKit User’s Manual, V2.2 3-119

RegMod Std_Regpak

hm.

ith

ent

nger

l
 with
he
d,
er. If
on of
pied
1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign. The sign of the result is that of the modulus.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual associated
the formal parameter result have the same length as that of the dividend. If t
actual associated with this formal parameter is longer than the length require
then the result of the operation is sign extended to fit into the actual paramet
the actual associated with result is shorter than required, then only that porti
the result of the operation which can be copied (the least significant bits) is co
into the actual parameter.
Std_DevelopersKit User’s Manual, V2.23-120

Std_Regpak RegMod

and

led as
ply

 as
 the
the
oring
nd
in the

 (i.e.
CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to Unsigned representation, the X’s are hand
follows.For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned. This is also true for negative SignMagnitude and
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0 an X
sign bit is treated as a 1. In the conversion back to the appropriate arithmetic
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-121

RegMod Std_Regpak

de

 and

lt is

n

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

4. If an attempt is made to divide by zero an error assertion is made.

EXAMPLES:

Given the following variable declarations:

variable in_1, in_2 : bit_vector(7 downto 0);
variable modu : bit_vector(0 to 7);

and the following procedure call:

RegMod (modu, in_1, in_2, TwosComp);

The above procedure call causes a in_1 mod in_2 to be calculated. The resu
returned in modu.

RegMod (
result=>i_bus (70 downto 32),
dividend=>k_bus (1 to 24),
modulus=>l_bus (1 to 12),
SrcRegMode=>Unsigned

);

In this case k_bus(1 to 24) mod l_bus(1 to 12) is calculated. The result is sig
extended to 39 bits and returned in i_bus(70 downto 32).
Std_DevelopersKit User’s Manual, V2.23-122

Std_Regpak SRegMod

case,
sented
ected
n. The
to
n the
tor.
SRegMod
Modulus Operator: Perform the arithmetic modulus operation

OVERLOADED DECLARATIONS:

Procedure SRegMod (
SIGNALresult:OUT bit_vector;
SIGNALZeroDivide:OUT bit;
CONSTANTdividend:IN bit_vector;
CONSTANTmodulus:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegMod (
SIGNALresult:OUT std_logic_vector;
SIGNALZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_logic_vector;
CONSTANTmodulus:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegMod (
SIGNALresult:OUT std_ulogic_vector;
SIGNALZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_ulogic_vector;
CONSTANTmodulus:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs the arithmetic modulus operation. The dividend is
divided by the modulus and the result is the remainder of the division. In this
the result has the same sign as that of the modulus. The input may be repre
in either OnesComp, TwosComp, SignMagnitude, or Unsigned format as sel
by the SrcRegMode parameter. The output is also in this same representatio
default value for SrcRegMode is DefaultRegMode which can be globally set
any one of the four arithmetic representations by changing its defined value i
Std_Regpak body. Note that ZeroDivide is set if the modulus is the zero vec

The division is carried out as follows:
Std_DevelopersKit User’s Manual, V2.2 3-123

SRegMod Std_Regpak

hm.

ith

ent

nger

l
 with
he
d,
er. If
on of
pied
1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign. The sign of the result is that of the modulus.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual associated
the formal parameter result have the same length as that of the dividend. If t
actual associated with this formal parameter is longer than the length require
then the result of the operation is sign extended to fit into the actual paramet
the actual associated with result is shorter than required, then only that porti
the result of the operation which can be copied (the least significant bits) is co
into the actual parameter.
Std_DevelopersKit User’s Manual, V2.23-124

Std_Regpak SRegMod

and

led as
ply

 as
 the
the
oring
nd
in the

 (i.e.
CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to Unsigned representation, the X’s are hand
follows.For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned. This is also true for negative SignMagnitude and
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0 an X
sign bit is treated as a 1. In the conversion back to the appropriate arithmetic
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.2 3-125

SRegMod Std_Regpak

de

 and

lt is

n

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

4. If an attempt is made to divide by zero an error assertion is made.

EXAMPLES:

Given the following signal declarations:

signal in_1, in_2 : bit_vector(7 downto 0);
signal modu : bit_vector(0 to 7);

and the following procedure call:

SRegMod (modu, in_1, in_2, TwosComp);

The above procedure call causes a in_1 mod in_2 to be calculated. The resu
returned in modu.

SRegMod (
result=>i_bus (70 downto 32),
dividend=>k_bus (1 to 24),
modulus=>l_bus (1 to 12),
SrcRegMode=>Unsigned

);

In this case k_bus(1 to 24) mod l_bus(1 to 12) is calculated. The result is sig
extended to 39 bits and returned in i_bus(70 downto 32).
Std_DevelopersKit User’s Manual, V2.23-126

Std_Regpak RegMult

ter.
Mode
ic
RegMult
Register Multiplication : Multiply two inputs and detect any resulting overflow

OVERLOADED DECLARATIONS:

Procedure RegMult (
VARIABLEresult:OUT bit_vector;
VARIABLEoverflow:OUT bit;
CONSTANTmultiplicand:IN bit_vector;
CONSTANTmultiplier:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegMult (
VARIABLEresult:OUT std_logic_vector;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTmultiplicand:IN std_logic_vector;
CONSTANTmultiplier:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegMult (
VARIABLEresult:OUT std_ulogic_vector;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTmultiplicand:IN std_ulogic_vector;
CONSTANTmultiplier:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic multiplication of the multiplicand and the
multiplier. The input may be represented in either OnesComp, TwosComp,
SignMagnitude, or Unsigned format as selected by the SrcRegMode parame
The output is also in this same representation. The default value for SrcReg
is DefaultRegMode which can be globally set to any one of the four arithmet
representations by changing its defined value in the Std_Regpak body.

The multiplication is carried out as follows:

1. The sign of the result is determined.

2. The two inputs are converted to Unsigned representation.
Std_DevelopersKit User’s Manual, V2.2 3-127

RegMult Std_Regpak

ith

he

ent

nger

l
its

 the
s sign
esult.
rtion

hifts
s are
 X’s

ctors,
n bit

 an X
d out
wn in

nding
).
3. The multiplication is carried out in a repeated shift and add manner.

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign.

Overflow: Overflow is set if the product of the two inputs is too large to fit in t
actual parameter that is associated with the formal parameter result.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual be N + M b
long for Unsigned and TwosComp representation and N + M - 1 bits long for
SignMagnitude and OnesComp representation where N is the length of the
Multiplicand and M is the length of the multiplier. If the actual associated with
formal parameter result has a longer length than required, then the product i
extended to fit in the actual parameter associated with the formal parameter r
If the actual associated with result is shorter than required, then only that po
of the result which can be copied (the least significant bits) is copied.

X HANDLING:

All X’s in the inputs are propagated in the appropriate manner for repeated s
and adds. When the inputs are converted to unsigned representation, the X’
handled as follows.For all of the representations if the number is positive then
are simply echoed in the vector that is returned. This is also true for negative
SignMagnitude and OnesComp vectors. If the sign bit is an X for these
representations then the negation is performed. For negative TwosComp ve
X’s are propagated as appropriate for negating a TwosComp vector. If the sig
is X the negation is performed. The sign of the result is calculated assuming
in the sign bit represents a negative number. The multiplication is then carrie
propagating the X’s as appropriate for a series of shifts and adds. This is sho
the example given below. In converting the result back to the appropriate
arithmetic representation the X’s are propagated as described in the correspo
conversion functions (i.e. To_OnesComp, To_TwosComp, and To_SignMag
Std_DevelopersKit User’s Manual, V2.23-128

Std_Regpak RegMult

de

 and

rflow

the
t
te
10X1
* 1101

10X1partial product 1

010X1partial product 2
1XX1X1partial product 3

XXXXX1X1 result

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following variable declarations:
variable in_1, in_2 : bit_vector(7 downto 0);
variable prod: bit_vector(0 to 15);
variable ovf : bit;

and the following procedure call:
RegMult(prod, ovf, in_1, in_2, TwosComp);

The above procedure call causes a two’s complement multiplication to be
performed on in_1, in_2, and c_in. The result is returned in prod and the ove
bit is returned in ovf.

RegMult (
result=>i_bus (70 downto 32),
overflow=>OPEN,
multiplicand=>j_bus (15 downto 0),
multiplier=>k_bus (1 to 24),
SrcRegMode=>Unsigned

);

In this case since the two vector inputs are 24 bits and 16 bits in length and
register mode is Unsigned, i_bus (61 downto 32) is assigned the product tha
results from the multiplication of j_bus (15 downto 0) and k_bus(1 to 24). No
that since overflow is left open, it is ignored.
Std_DevelopersKit User’s Manual, V2.2 3-129

SRegMult Std_Regpak

ter.
Mode
ic
SRegMult
Register Multiplication : Multiply two inputs and detect any resulting overflow

OVERLOADED DECLARATIONS:

Procedure SRegMult (
SIGNALresult:OUT bit_vector;
SIGNALoverflow:OUT bit;
CONSTANTmultiplicand:IN bit_vector;
CONSTANTmultiplier:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegMult (
SIGNALresult:OUT std_logic_vector;
SIGNALoverflow:OUT std_ulogic;
CONSTANTmultiplicand:IN std_logic_vector;
CONSTANTmultiplier:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegMult (
SIGNALresult:OUT std_ulogic_vector;
SIGNALoverflow:OUT std_ulogic;
CONSTANTmultiplicand:IN std_ulogic_vector;
CONSTANTmultiplier:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic multiplication of the multiplicand and the
multiplier. The input may be represented in either OnesComp, TwosComp,
SignMagnitude, or Unsigned format as selected by the SrcRegMode parame
The output is also in this same representation. The default value for SrcReg
is DefaultRegMode which can be globally set to any one of the four arithmet
representations by changing its defined value in the Std_Regpak body.

The multiplication is carried out as follows:

1. The sign of the result is determined.

2. The two inputs are converted to Unsigned representation.
Std_DevelopersKit User’s Manual, V2.23-130

Std_Regpak SRegMult

ith

he

ent

nger

l
its

 the
s sign
esult.
rtion

hifts
s are
 X’s

ctors,
n bit

 an X
d out
wn in

nding
).
3. The multiplication is carried out in a repeated shift and add manner.

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign.

Overflow: Overflow is set if the product of the two inputs is too large to fit in t
actual parameter that is associated with the formal parameter result.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual be N + M b
long for Unsigned and TwosComp representation and N + M - 1 bits long for
SignMagnitude and OnesComp representation where N is the length of the
Multiplicand and M is the length of the multiplier. If the actual associated with
formal parameter result has a longer length than required, then the product i
extended to fit in the actual parameter associated with the formal parameter r
If the actual associated with result is shorter than required, then only that po
of the result which can be copied (the least significant bits) is copied.

X HANDLING:

All X’s in the inputs are propagated in the appropriate manner for repeated s
and adds. When the inputs are converted to unsigned representation, the X’
handled as follows.For all of the representations if the number is positive then
are simply echoed in the vector that is returned. This is also true for negative
SignMagnitude and OnesComp vectors. If the sign bit is an X for these
representations then the negation is performed. For negative TwosComp ve
X’s are propagated as appropriate for negating a TwosComp vector. If the sig
is X the negation is performed. The sign of the result is calculated assuming
in the sign bit represents a negative number. The multiplication is then carrie
propagating the X’s as appropriate for a series of shifts and adds. This is sho
the example given below. In converting the result back to the appropriate
arithmetic representation the X’s are propagated as described in the correspo
conversion functions (i.e. To_OnesComp, To_TwosComp, and To_SignMag
Std_DevelopersKit User’s Manual, V2.2 3-131

SRegMult Std_Regpak

 and

 and

rflow

the
t
te
10X1
* 1101

10X1partial product 1

010X1partial product 2
1XX1X1partial product 3

XXXXX1X1 result

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is zero length an error assertion is made
the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following signal declarations:
signal in_1, in_2 : bit_vector(7 downto 0);
signal prod: bit_vector(0 to 15);
signal ovf : bit;

and the following procedure call:
SRegMult(prod, ovf, in_1, in_2, TwosComp);

The above procedure call causes a two’s complement multiplication to be
performed on in_1, in_2, and c_in. The result is returned in prod and the ove
bit is returned in ovf.

SRegMult (
result=>i_bus (70 downto 32),
overflow=>OPEN,
multiplicand=>j_bus (15 downto 0),
multiplier=>k_bus (1 to 24),
SrcRegMode=>Unsigned

);

In this case since the two vector inputs are 24 bits and 16 bits in length and
register mode is Unsigned, i_bus (61 downto 32) is assigned the product tha
results from the multiplication of j_bus (15 downto 0) and k_bus(1 to 24). No
that since overflow is left open, it is ignored.
Std_DevelopersKit User’s Manual, V2.23-132

Std_Regpak RegNegate

eg
p,
ode

is
ame
 can
 its

ply
 by

ber,
f the

nd
RegNegate
Register Negation: Determine the negation of the input vector for the proper
register mode

OVERLOADED DECLARATIONS:

Function RegNegate(
SrcReg:IN bit_vector;-- vector to be negated
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function RegNegate(
SrcReg:IN std_logic_vector;-- vector to be negated
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function RegNegate(
SrcReg:IN std_ulogic_vector;-- vector to be negated
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

This function negates the value of the actual parameter associated with SrcR
and returns this new value. The input may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The appropriate form of negation for the specified register mode
applied to the input. The value that is returned by the function is also in this s
representation. The default value for SrcRegMode is DefaultRegMode which
be globally set to any one of the four arithmetic representations by changing
defined value in Std_Regpak body.

The negation of a TwosComp input is equivalent to inverting all the bits and
incrementing by one. The negation of a OnesComp input is performed by sim
inverting all the bits. The negation of a SignMagnitude number is carried out
simply inverting the sign bit. If an attempt is made to negate an Unsigned num
the value that is returned is the bit wise complement (e.g. the OnesComp) o
number.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.
Std_DevelopersKit User’s Manual, V2.2 3-133

RegNegate Std_Regpak

e
lways
user

w
tive
te the

 By
e

bled.
e

ctor

istent

ions.

o

Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.

Overflow: When negating a TwosComp number it is possible that an overflo
condition will occur. TwosComp allows the representation of one more nega
number than positive numbers. As a result when an attempt is made to nega
maximum negative number for the bit width of the input, an overflow occurs.
convention, the TwosComp of that maximum negative number is itself and th
original vector is returned. A warning assertion is issued if warnings are ena
Warnings are enabled globally by the WarningsOn flag which is defined in th
Std_Regpak body.

X HANDLING:

For TwosComp and Unsigned numbers all X’s are propagated so that the ve
that is returned has X’s in the appropriate places. For SignMagnitude and
OnesComp any X’s in the input are simply echoed to the output. This is cons
with hardware implementations of negation units. The following table shows
examples of std_logic_vectors in the various register modes and their negat

BUILT IN ERROR TRAP:

If the vector input is of zero length then an error assertion is made and a zer
length vector is returned.

EXAMPLE:

Given the variable declaration:
variable stat : std_logic_vector (7 downto 0);

then the following line negates stat using OnesComp negation:
stat := RegNegate(stat, OnesComp);

Table 3-29. std_logic_vectors in Various Register Modes

TwosComp OnesComp Unsigned SignMagnitude

vector 100100X0 10X01X11 10X01X11 001101X1

negation 011XXXX0 01X10X00 01X10X00 101101X1
Std_DevelopersKit User’s Manual, V2.23-134

Std_Regpak RegNotEqual

not
RegNotEqual
Inequality Operator : Compare two inputs and determine if the left input does
equal the right input

OVERLOADED DECLARATIONS:

Function RegNotEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN bit_vector;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegNotEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN bit_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;

Function RegNotEqual (
l : IN INTEGER;-- left input
r : IN bit_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return bit;
Std_DevelopersKit User’s Manual, V2.2 3-135

RegNotEqual Std_Regpak
Function RegNotEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN std_logic_vector;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegNotEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN std_logic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegNotEqual (
l : IN INTEGER;-- left input
r : IN std_logic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegNotEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;
Std_DevelopersKit User’s Manual, V2.23-136

Std_Regpak RegNotEqual

ides
in a
p,
ode
 be

his
l not
Function RegNotEqual (
l : IN std_ulogic_vector;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegNotEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return BOOLEAN;

Function RegNotEqual (
l : IN std_ulogic_vector;-- left input
r : IN INTEGER;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

Function RegNotEqual (
l : IN INTEGER;-- left input
r : IN std_ulogic_vector;-- right input
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic;

DESCRIPTION:

This function compares the left and right inputs (l and r, respectively) and dec
whether the left input is not equal to the right input. The comparison is done
short circuit fashion. An input vector may be represented in either OnesCom
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The default value for SrcRegMode is DefaultRegMode which can
globally set to any one of the four arithmetic representations by changing its
defined value in the Std_Regpak body. If two vectors are used as inputs to t
function then, they must have the same register mode or the comparison wil
be carried out properly.
Std_DevelopersKit User’s Manual, V2.2 3-137

RegNotEqual Std_Regpak

d
o
e or

 the
th of
hion
 for
 taken

chine

n is

he

ny
ctor.

 form
y
d,

n is
elds
array
tion,
 most
rison
ed

ic. If
alue
he
Vector Length: An input vector may be of any length, have any beginning an
ending points for its range, and be either ascending or descending. When tw
vectors are used as inputs to this function they need not have the same rang
length.

When the inputs are both vectors, the comparison operation is carried out in
following manner. The shorter of the two vectors is sign extended to the leng
the longer of the two. The comparison is then carried out in a short circuit fas
taking into account the sign of the numbers and the register mode. Note that
OnesComp and SignMagnitude representations the existence of two zeros is
into account.

The constant IntegerBitLength represents the bit length of integers on the ma
on which the VHDL simulator is being run. Its value is set globally in the
Std_Regpak body. When one of the inputs to this function is an integer, the
integer is converted to a vector of length IntegerBitLength and the compariso
done in a manner similar to that described above.

Result: Depending upon the particular overloaded function that was called, t
result that is returned is either a BOOLEAN, a bit, or a std_ulogic value.

DON‘T CARE HANDLING:

RegNotEqual handles don’t cares specially. A don’t care in any position in a
input vector matches any value in the corresponding position in the other ve

HANDLING:

The left and the right arguments of the comparison function are cast into the
of arrays. Comparisons of the arrayed arguments are conducted in a left arra
index to right array index fashion. As each array index position is encountere
using this methodology, a simple array element by array element compariso
conducted.0 is equal to 0, 1 is equal to 1, but comparing 0, 1, or X to an X yi
an indeterminate answer. The comparison can be completed whenever any
element indicates a successful comparison. This is called short circuit opera
where the remaining elements of the arrays need not be compared if the left
elements have already determined the comparison result. Anytime the compa
reaches an index that has an X as an array element, the comparison is deem
indeterminate and results in an X being returned if the return type is std_ulog
the comparison is indeterminate and the return type is BOOLEAN then the v
FALSE is returned. When an X results in an indeterminate comparison and t
Std_DevelopersKit User’s Manual, V2.23-138

Std_Regpak RegNotEqual

ings
pak

e

 The
uts.

de.

LSE
return type is BOOLEAN if warnings are enabled an assertion is made. Warn
are enabled globally by the WarningsOn flag which is defined in the Std_Reg
body. An X in the sign position always results in the comparison being
indeterminate. NOTE that if two vectors are identical but have X’s in the sam
positions (i.e. 0XX0 and 0XX0) then the comparison is considered to be
indeterminate.

BUILT IN ERROR TRAPS:

1. If one of the inputs is a vector of zero length an error assertion is made.
zero length vector is always considered to be the smaller of the two inp

2. If both of the inputs are vectors of zero length an error assertion is ma
The two vectors are considered to be equal.

EXAMPLES:

Given the variable declarations:
variable a_result : bit_vector (7 downto 0);
variable b_result : bit_vector (0 to 15);
variable neq : BOOLEAN;

the following line sets neq to TRUE if a_result is not equal to b_result and FA
otherwise with both operands being represented in OnesComp:

neq := RegNotEqual(a_result,b_result,OnesComp);

Table gives some sample inputs and the result of the comparison operation.

Table 3-30. RegNotEqual Sample Inputs and Results

l_expression r_expression register mode return type return value

11111111 00000000 OnesComp BOOLEAN FALSE

10111111 01110101 OnesComp bit 1

0110X001 01110000 TwosComp std_ulogic 1

01X01110 01111111 TwosComp std_ulogic X

01X01110 01111111 Unsigned BOOLEAN FALSE

000X0110 000X0110 Unsigned std_ulogic X

00X10110 256 TwosComp BOOLEAN TRUE
Std_DevelopersKit User’s Manual, V2.2 3-139

RegRem Std_Regpak

d
sign as

ode
 for
 four
body.
RegRem
Remainder of Division: Divide two inputs and generate remainder

OVERLOADED DECLARATIONS:

Procedure RegRem (
VARIABLEresult:OUT bit_vector;
VARIABLEZeroDivide:OUT bit;
CONSTANTdividend:IN bit_vector;
CONSTANTdivisor:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegRem (
VARIABLEresult:OUT std_logic_vector;
VARIABLEZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_logic_vector;
CONSTANTdivisor:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegRem (
VARIABLEresult:OUT std_ulogic_vector;
VARIABLEZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_ulogic_vector;
CONSTANTdivisor:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic division of the dividend by the divisor an
returns the remainder. In this case, the result (the remainder) has the same
that of the dividend. The input may be represented in either OnesComp,
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The output is also in this same representation. The default value
SrcRegMode is DefaultRegMode which can be globally set to any one of the
arithmetic representations by changing its defined value in the Std_Regpak
Note that ZeroDivide is set if the divisor is the zero vector.
Std_DevelopersKit User’s Manual, V2.23-140

Std_Regpak RegRem

hm.

ith

ent

nger

l
 with
he
d,
er. If
on of
pied

and
The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign. The sign of the result is that of the dividend.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual associated
the formal parameter result have the same length as that of the dividend. If t
actual associated with this formal parameter is longer than the length require
then the result of the operation is sign extended to fit into the actual paramet
the actual associated with result is shorter than required, then only that porti
the result of the operation which can be copied (the least significant bits) is co
into the actual parameter.

CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
Std_DevelopersKit User’s Manual, V2.2 3-141

RegRem Std_Regpak

led as
ply

 and

 as
 the
the
oring
nd
in the

 (i.e.

de

 and
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to Unsigned representation, the X’s are hand
follows. For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0 an X
sign bit is treated as a 1. In the conversion back to the appropriate arithmetic
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

4. If an attempt is made to divide by zero an error assertion is made.
Std_DevelopersKit User’s Manual, V2.23-142

Std_Regpak RegRem

 is

n

EXAMPLES:

Given the following variable declarations:

variable in_1, in_2 : bit_vector(7 downto 0);
variable rem: bit_vector(0 to 7);

and the following procedure call:

RegRem (modu, in_1, in_2, TwosComp);

The above procedure call divides in_1 by in_2. The remainder of this division
returned in rem.

RegRem (
result=>i_bus (70 downto 32),
dividend=>k_bus (1 to 24),
divisor=>l_bus (1 to 12),
SrcRegMode=>Unsigned

);

In this case k_bus(1 to 24) is divided by l_bus(1 to 12). The remainder is sig
extended to 39 bits and returned in i_bus(70 downto 32).
Std_DevelopersKit User’s Manual, V2.2 3-143

SRegRem Std_Regpak

d
sign as

ode
 for
 four
body.
SRegRem
Remainder of Division: Divide two inputs and generate remainder

OVERLOADED DECLARATIONS:

Procedure SRegRem (
SIGNALresult:OUT bit_vector;
SIGNALZeroDivide:OUT bit;
CONSTANTdividend:IN bit_vector;
CONSTANTdivisor:IN bit_vector;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegRem (
SIGNALresult:OUT std_logic_vector;
SIGNALZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_logic_vector;
CONSTANTdivisor:IN std_logic_vector;
CONSTANTSrcRegMode:IN regmode_type
);
Procedure SRegRem (
SIGNALresult:OUT std_ulogic_vector;
SIGNALZeroDivide:OUT std_ulogic;
CONSTANTdividend:IN std_ulogic_vector;
CONSTANTdivisor:IN std_ulogic_vector;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic division of the dividend by the divisor an
returns the remainder. In this case, the result (the remainder) has the same
that of the dividend. The input may be represented in either OnesComp,
TwosComp, SignMagnitude, or Unsigned format as selected by the SrcRegM
parameter. The output is also in this same representation. The default value
SrcRegMode is DefaultRegMode which can be globally set to any one of the
arithmetic representations by changing its defined value in the Std_Regpak
Note that ZeroDivide is set if the divisor is the zero vector.
Std_DevelopersKit User’s Manual, V2.23-144

Std_Regpak SRegRem

hm.

ith

ent

nger

l
 with
he
d,
er. If
on of
pied
The division is carried out as follows:

1. The sign of the quotient is determined.

2. The two inputs are converted to Unsigned representation.

3. The division is carried out using a conventional binary restoring algorit

4. The result is converted into the appropriate arithmetic representation w
the appropriate sign. The sign of the result is that of the dividend.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual associated
the formal parameter result have the same length as that of the dividend. If t
actual associated with this formal parameter is longer than the length require
then the result of the operation is sign extended to fit into the actual paramet
the actual associated with result is shorter than required, then only that porti
the result of the operation which can be copied (the least significant bits) is co
into the actual parameter.
Std_DevelopersKit User’s Manual, V2.2 3-145

SRegRem Std_Regpak

and

led as
ply

 and

 as
 the
the
oring
nd
in the

 (i.e.
CONVENTIONAL BINARY RESTORING ALGORITHM:

Let A be the dividend.
Let D be the divisor.
Let B be the quotient.
Let R be the remainder.
Let i be a counter.
Let n be the length of the dividend assuming that it is larger than the divisor
that the most significant bit is a 1. Then A, D, and R are extended to 2n bits.
1 R <-- A

D <-- D shifted n bits to the left
B <-- 0
i <-- 0

2 R <-- 2R - D
3 If R >= 0 then

B <-- 2B + 1
else
R <-- R + D
B <-- 2B

4 i <-- i + 1
5 if i < n then go to 2
6 end

X HANDLING:

When the inputs are converted to Unsigned representation, the X’s are hand
follows. For all of the representations if the number is positive then X’s are sim
echoed in the Unsigned vector. This is also true for negative SignMagnitude
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed. The sign of the result is calculated assuming an X in
sign bit represents a negative number. During the implementation of the rest
algorithm, X’s are propagated as would be expected for unsigned addition a
subtraction. When determining whether the remainder is greater than 0 an X
sign bit is treated as a 1. In the conversion back to the appropriate arithmetic
representation X’s are propagated as described for the appropriate functions
To_OnesComp, To_TwosComp, and To_Unsign).
Std_DevelopersKit User’s Manual, V2.23-146

Std_Regpak SRegRem

de

 and

 is

n

BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros.

3. If the result has a zero length then an error assertion is made.

4. If an attempt is made to divide by zero an error assertion is made.

EXAMPLES:

Given the following signal declarations:

signal in_1, in_2 : bit_vector(7 downto 0);
signal rem: bit_vector(0 to 7);

and the following procedure call:

SRegRem (modu, in_1, in_2, TwosComp);

The above procedure call divides in_1 by in_2. The remainder of this division
returned in rem.

SRegRem (
result=>i_bus (70 downto 32),
dividend=>k_bus (1 to 24),
divisor=>l_bus (1 to 12),
SrcRegMode=>Unsigned

);

In this case k_bus(1 to 24) is divided by l_bus(1 to 12). The remainder is sig
extended to 39 bits and returned in i_bus(70 downto 32).
Std_DevelopersKit User’s Manual, V2.2 3-147

RegShift Std_Regpak

g is
ied
alue
hat is
bits
RegShift
Register Shift: Perform a bidirectional logical shift operation

OVERLOADED DECLARATIONS:

Procedure RegShift(
CONSTANTSrcReg:IN bit_vector;
VARIABLEDstReg:INOUT bit_vector;
VARIABLEShiftOut:INOUT bit;
CONSTANTdirection:IN bit;
CONSTANTFillVal:IN bit;
CONSTANTNbits:IN NATURAL
);

Procedure RegShift(
CONSTANTSrcReg:IN std_logic_vector;
VARIABLEDstReg:INOUT std_logic_vector;
VARIABLEShiftOut:INOUT std_ulogic;
CONSTANTdirection:IN std_ulogic;
CONSTANTFillVal:IN std_ulogic;
CONSTANTNbits:IN NATURAL
);

Procedure RegShift(
CONSTANTSrcReg:IN std_ulogic_vector;
VARIABLEDstReg:INOUT std_ulogic_vector;
VARIABLEShiftOut:INOUT std_ulogic;
CONSTANTdirection:IN std_ulogic;
CONSTANTFillVal:IN std_ulogic;
CONSTANTNbits:IN NATURAL
);

DESCRIPTION:

This procedure performs a bidirectional logical shift of the input vector. SrcRe
shifted by the number of positions specified by Nbits and the direction specif
by the parameter direction. DstReg returns the shifted vector. FillVal is the v
that is shifted into the register and the parameter ShiftOut returns the last bit t
shifted out of the register. The default for FillVal is zero and the default for N
is one.
Std_DevelopersKit User’s Manual, V2.23-148

Std_Regpak RegShift

ding.

l
ame
. If the
ctual
Vector Length: The input vector, SrcReg, may be of any length, have any
beginning and ending points for its range, and be either ascending or descen

DstReg: An actual parameter of any length may be associated with the forma
parameter DstReg. If the length of the actual associated with DstReg is the s
as that of the actual associated with SrcReg then shifting occurs as expected
length of the actual associated with DstReg is longer than the length of the a
associated with SrcReg then shifting occurs as shown below:

Figure 3-2. RegShift Left and Right Shift

Given SrcReg of size N and DstReg of size M where
N < M and given a shift of S bits then

For a left shift:

N-1 0

M-1 N+S N+S-1 S S-1 0

SrcReg

DstReg

For a right shift:

N-1 0

M-1 M-S M-S-1 M-N-S M-N-S-1 0

SrcReg

DstReg

Unchanged FillVal From SrcReg
Std_DevelopersKit User’s Manual, V2.2 3-149

RegShift Std_Regpak

f the

r is
ted to

ut
If the length of the actual associated with DstReg is shorter than the length o
actual associated with SrcReg then shifting occurs as shown below:

Figure 3-3. RegShift N>M Shift

Direction: The parameter direction specifies the direction that the input vecto
shifted. If the parameter is passed a value of zero then the input vector is shif
the right. If the parameter is passed a one or an X the shift is to the left. The
default value for direction is a one.

X HANDLING:

X’s are handled in an identical manner to any other value. An X in the input
vector is shifted the appropriate number of positions and returned in the outp
vector if it is not shifted out of the vector.

Given SrcReg of size N and DstReg of size M where
N > M and given a shift of S bits then

For a left shift:

SrcReg

DstReg

For a right shift:

N-1 N-M-S N-M-S-1 0

M-1 S S-1 0

SrcReg

DstReg

N-1 N-M-S N-M-S-1 0

M-1 M-S M-S-1 0

Unchanged FillVal From SrcReg
Std_DevelopersKit User’s Manual, V2.23-150

Std_Regpak RegShift

ase,

ut is

fted 3
nts
t

otate
he

ing

d as
BUILT IN ERROR TRAPS:

1. An error assertion is made if the input vector is of zero length. In this c
the output vector is returned filled with the value specified by FillVal.

2. An error assertion is made if the output vector is of zero length. ShiftO
still filled with the correct value for a shift of the indicated number of bit
positions.

EXAMPLES:

Given the following variable declarations:

variable acc : bitvector(15 downto 0);
variable carry : bit;

then the following line causes the contents of the accumulator (acc) to be shi
bits to the left. The two most significant bits of the original accumulator conte
are lost and the third most significant bit is shifted into the carry bit. The leas
significant 3 bits have zeros shifted into them.

RegShift(acc, acc, carry, '1', '0', 3);

This procedure can also be used to implement a register rotate. In order to r
the accumulator one bit to the left so that the most significant bit ends up in t
least significant bit position the following procedure call can be used:

RegShift(acc, acc, carry, '1', acc(15));

The same type of operation can be performed with the most significant bit go
into the carry and the carry going into the least significant bit. (A rotate left
through the carry bit). This is done as follows:

RegShift(acc, acc, carry, '1', carry);

An arithmetic shift right of two bits for a TwosComp number can be performe
follows:

RegShift(acc, acc, carry, '0', acc(15), 2);
Std_DevelopersKit User’s Manual, V2.2 3-151

SRegShift Std_Regpak

g is
ied
alue
hat is
bits
SRegShift
Register Shift: Perform a bidirectional logical shift operation

OVERLOADED DECLARATIONS:

Procedure SRegShift(
CONSTANTSrcReg:IN bit_vector;
SIGNALDstReg:INOUT bit_vector;
SIGNALShiftOut:INOUT bit;
CONSTANTdirection:IN bit;
CONSTANTFillVal:IN bit;
CONSTANTNbits:IN NATURAL
);

Procedure SRegShift(
CONSTANTSrcReg:IN std_logic_vector;
SIGNALDstReg:INOUT std_logic_vector;
SIGNALShiftOut:INOUT std_ulogic;
CONSTANTdirection:IN std_ulogic;
CONSTANTFillVal:IN std_ulogic;
CONSTANTNbits:IN NATURAL
);

Procedure SRegShift(
CONSTANTSrcReg:IN std_ulogic_vector;
SIGNALDstReg:INOUT std_ulogic_vector;
SIGNALShiftOut:INOUT std_ulogic;
CONSTANTdirection:IN std_ulogic;
CONSTANTFillVal:IN std_ulogic;
CONSTANTNbits:IN NATURAL
);

DESCRIPTION:

This procedure performs a bidirectional logical shift of the input vector. SrcRe
shifted by the number of positions specified by Nbits and the direction specif
by the parameter direction. DstReg returns the shifted vector. FillVal is the v
that is shifted into the register and the parameter ShiftOut returns the last bit t
shifted out of the register. The default for FillVal is zero and the default for N
is one.
Std_DevelopersKit User’s Manual, V2.23-152

Std_Regpak SRegShift

ding.

l
ame
. If the
ctual
Vector Length: The input vector, SrcReg, may be of any length, have any
beginning and ending points for its range, and be either ascending or descen

DstReg: An actual parameter of any length may be associated with the forma
parameter DstReg. If the length of the actual associated with DstReg is the s
as that of the actual associated with SrcReg then shifting occurs as expected
length of the actual associated with DstReg is longer than the length of the a
associated with SrcReg then shifting occurs as shown below:

Figure 3-4. SRegShift Where DstReg < SrcReg

Given SrcReg of size N and DstReg of size M where
N < M and given a shift of S bits then

For a left shift:

N-1 0

M-1 N+S N+S-1 S S-1 0

SrcReg

DstReg

For a right shift:

N-1 0

M-1 M-S M-S-1 M-N-S M-N-S-1 0

SrcReg

DstReg

Unchanged FillVal From SrcReg
Std_DevelopersKit User’s Manual, V2.2 3-153

SRegShift Std_Regpak

f the

r is
ted to

ut
If the length of the actual associated with DstReg is shorter than the length o
actual associated with SrcReg then shifting occurs as shown below:

Figure 3-5. SRegShift

Direction: The parameter direction specifies the direction that the input vecto
shifted. If the parameter is passed a value of zero then the input vector is shif
the right. If the parameter is passed a one or an X the shift is to the left. The
default value for direction is a one.

X HANDLING:

X’s are handled in an identical manner to any other value. An X in the input
vector is shifted the appropriate number of positions and returned in the outp
vector if it is not shifted out of the vector.

Given SrcReg of size N and DstReg of size M where
N > M and given a shift of S bits then

For a left shift:

SrcReg

DstReg

For a right shift:

N-1 N-M-S N-M-S-1 0

M-1 S S-1 0

SrcReg

DstReg

N-1 N-M-S N-M-S-1 0

M-1 M-S M-S-1 0

Unchanged FillVal From SrcReg
Std_DevelopersKit User’s Manual, V2.23-154

Std_Regpak SRegShift

ase,

ut is

fted 3
nts
t

otate
he

ing

d as
BUILT IN ERROR TRAPS:

1. An error assertion is made if the input vector is of zero length. In this c
the output vector is returned filled with the value specified by FillVal.

2. An error assertion is made if the output vector is of zero length. ShiftO
still filled with the correct value for a shift of the indicated number of bit
positions.

EXAMPLES:

Given the following signal declarations:

signal acc : bitvector(15 downto 0);
signal carry : bit;

then the following line causes the contents of the accumulator (acc) to be shi
bits to the left. The two most significant bits of the original accumulator conte
are lost and the third most significant bit is shifted into the carry bit. The leas
significant 3 bits have zeros shifted into them.

SRegShift(acc, acc, carry, '1', '0', 3);

This procedure can also be used to implement a register rotate. In order to r
the accumulator one bit to the left so that the most significant bit ends up in t
least significant bit position the following procedure call can be used:

SRegShift(acc, acc, carry, '1', acc(15));

The same type of operation can be performed with the most significant bit go
into the carry and the carry going into the least significant bit. (A rotate left
through the carry bit). This is done as follows:

SRegShift(acc, acc, carry, '1', carry);

An arithmetic shift right of two bits for a TwosComp number can be performe
follows:

SRegShift(acc, acc, carry, '0', acc(15), 2);
Std_DevelopersKit User’s Manual, V2.2 3-155

RegSub Std_Regpak

end,
e

 same
 can
RegSub
Register Subtraction: Subtract two inputs and detect any resulting underflow

OVERLOADED DECLARATIONS:

Procedure RegSub (
VARIABLEresult:INOUT bit_vector;
VARIABLEborrow_out:OUT bit;
VARIABLEoverflow:OUT bit;
CONSTANTminuend:IN bit_vector;
CONSTANTsubtrahend:IN bit_vector;
CONSTANTborrow_in:IN bit;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegSub (
VARIABLEresult:INOUT std_logic_vector;
VARIABLEborrow_out:OUT std_ulogic;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTminuend:IN std_logic_vector;
CONSTANTsubtrahend:IN std_logic_vector;
CONSTANTborrow_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure RegSub (
VARIABLEresult:INOUT std_ulogic_vector;
VARIABLEborrow_out:OUT std_ulogic;
VARIABLEoverflow:OUT std_ulogic;
CONSTANTminuend:IN std_ulogic_vector;
CONSTANTsubtrahend:IN std_ulogic_vector;
CONSTANTborrow_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic subtraction on the minuend, the subtrah
and the borrow_in and produces a result and a borrow_out. The input may b
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by the SrcRegMode parameter. The output is also in this
representation. The default value for SrcRegMode is DefaultRegMode which
Std_DevelopersKit User’s Manual, V2.23-156

Std_Regpak RegSub

 its

n

lt
uts or

 and
 and

ent

nger

l
s long

has a
ght
e. (i.e.
ted
. If
on of

te
tire
 of
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body.

Borrow_out: Borrow_out is set if there is a borrow out of the most significant
numerical bit position, which, for SignMagnitude representation, is the positio
just below the sign bit.

Overflow: Overflow is set if either overflow or underflow occurs (i.e. the resu
cannot be represented in the same number of bits as the longer of the two inp
the two inputs are unsigned numbers and the subtrahend is larger than the
minuend).

Borrow_in: If the borrow_in is set, the result of the subtraction of the addend
augend is decremented by one. Borrow_in is only operational in TwosComp
Unsigned modes.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual be at least a
as the longer of the two input vectors (i.e. the larger of minuend’length or
subtrahend’length). If the actual associated with the formal parameter result
longer length than that of the longer of the two input vectors, then only the ri
most bits of the actual associated with the result are affected by the procedur
If the returned length of the procedure is 8 bits and a 14 bit actual is associa
with the result, then only the right most 8 bits of the actual contain the result)
the actual associated with result is shorter than required, then only that porti
the result which can be copied (the least significant bits) is copied.

X HANDLING:

All X’s in the inputs are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample subtraction
two TwosComp std_logic_vectors:

01000111
-000X010X

0XXX001X
Std_DevelopersKit User’s Manual, V2.2 3-157

RegSub Std_Regpak

de

 and
mp

rmed
nd

s (55
to 24)
BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros. If the mode is either Unsigned or TwosCo
and the borrow_in is set, then the result is filled with ones and the
borrow_out is set.

3. If the result has a zero length then an error assertion is made

EXAMPLES:

Given the following variable declarations:

variable in_1, in_2 : bit_vector(7 downto 0);
variable diff : bit_vector(8 to 15);
variable b_out, ovf, b_in : bit;

and the following procedure call:

RegSub(diff,b_out,ovf,in_1,in_2,b_in,TwosComp);

The above procedure call causes a two’s complement subtraction to be perfo
with in_2 and b_in being subtracted from in_1. The result is returned in diff a
the borrow and overflow bits are returned in b_out and ovf, respectively.

RegSub (
result=>i_bus (63 downto 32),
borrow_out=>OPEN,
overflow=>OPEN,
minuend=>j_bus (15 downto 0),
subtrahend=>k_bus (1 to 24),
borrow_in=>‘0’,
SrcRegMode=>Unsigned

);

In this case since the longest of the two vector inputs is 24 bits in length, i_bu
downto 32) is assigned the sum that results from the subtraction of k_bus (1
and the borrow_in from j_bus(15 downto 0). Note that since borrow_out and
overflow are left open, they are ignored.
Std_DevelopersKit User’s Manual, V2.23-158

Std_Regpak SRegSub

end,
e

 same
 can
SRegSub
Register Subtraction: Subtract two inputs and detect any resulting underflow

OVERLOADED DECLARATIONS:

Procedure SRegSub (
SIGNALresult:INOUT bit_vector;
SIGNALborrow_out:OUT bit;
SIGNALoverflow:OUT bit;
CONSTANTminuend:IN bit_vector;
CONSTANTsubtrahend:IN bit_vector;
CONSTANTborrow_in:IN bit;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegSub (
SIGNALresult:INOUT std_logic_vector;
SIGNALborrow_out:OUT std_ulogic;
SIGNALoverflow:OUT std_ulogic;
CONSTANTminuend:IN std_logic_vector;
CONSTANTsubtrahend:IN std_logic_vector;
CONSTANTborrow_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

Procedure SRegSub (
SIGNALresult:INOUT std_ulogic_vector;
SIGNALborrow_out:OUT std_ulogic;
SIGNALoverflow:OUT std_ulogic;
CONSTANTminuend:IN std_ulogic_vector;
CONSTANTsubtrahend:IN std_ulogic_vector;
CONSTANTborrow_in:IN std_ulogic;
CONSTANTSrcRegMode:IN regmode_type
);

DESCRIPTION:

This subroutine performs arithmetic subtraction on the minuend, the subtrah
and the borrow_in and produces a result and a borrow_out. The input may b
represented in either OnesComp, TwosComp, SignMagnitude, or Unsigned
format as selected by the SrcRegMode parameter. The output is also in this
representation. The default value for SrcRegMode is DefaultRegMode which
Std_DevelopersKit User’s Manual, V2.2 3-159

SRegSub Std_Regpak

 its

n

lt
uts or

 and
 and

ent

nger

l
s long

has a
ght
. (i.e.
ted
. If
on of

te
tire
 of
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body.

Borrow_out: Borrow_out is set if there is a borrow out of the most significant
numerical bit position, which, for SignMagnitude representation, is the positio
just below the sign bit.

Overflow: Overflow is set if either overflow or underflow occurs (i.e. the resu
cannot be represented in the same number of bits as the longer of the two inp
the two inputs are unsigned numbers and the subtrahend is larger than the
minuend).

Borrow_in: If the borrow_in is set, the result of the subtraction of the addend
augend is decremented by one. Borrow_in is only operational in TwosComp
Unsigned modes.

Vector Lengths: The two vector inputs may be of different lengths, have differ
beginning and ending points for their ranges, and be either ascending or
descending. The shorter input is always sign extended to the length of the lo
of the two inputs.

Result: An actual parameter of any length may be associated with the forma
parameter result. It is recommended that the length of the actual be at least a
as the longer of the two input vectors (i.e. the larger of minuend’length or
subtrahend’length). If the actual associated with the formal parameter result
longer length than that of the longer of the two input vectors, then only the ri
most bits of the actual associated with the result is affected by the procedure
If the returned length of the procedure is 8 bits and a 14 bit actual is associa
with the result, then only the right most 8 bits of the actual contain the result)
the actual associated with result is shorter than required, then only that porti
the result which can be copied (the least significant bits) is copied.

X HANDLING:

All X’s in the inputs are propagated so that the result has X’s in the appropria
places. For SignMagnitude representation an X in the sign bit causes the en
output to be filled with X’s. For example, the following is a sample subtraction
two TwosComp std_logic_vectors:

01000111
-000X010X

0XXX001X
Std_DevelopersKit User’s Manual, V2.23-160

Std_Regpak SRegSub

de

 and
mp

rmed
nd

s (55
to 24)
BUILT IN ERROR TRAPS:

1. If one of the two vector inputs is of zero length an error assertion is ma
and the input of zero length is treated as a vector filled with zeros.

2. If both vector inputs are of zero length then an error assertion is made
the result is filled with zeros. If the mode is either Unsigned or TwosCo
and the borrow_in is set, then the result is filled with ones and the
borrow_out is set.

3. If the result has a zero length then an error assertion is made.

EXAMPLES:

Given the following signal declarations:

signal in_1, in_2 : bit_vector(7 downto 0);
signal diff : bit_vector(8 to 15);
signal b_out, ovf, b_in : bit;

and the following procedure call:

SRegSub(diff,b_out,ovf,in_1,in_2,b_in,TwosComp);

The above procedure call causes a two’s complement subtraction to be perfo
with in_2 and b_in being subtracted from in_1. The result is returned in diff a
the borrow and overflow bits are returned in b_out and ovf, respectively.

SRegSub (
result=>i_bus (63 downto 32),
borrow_out=>OPEN,
overflow=>OPEN,
minuend=>j_bus (15 downto 0),
subtrahend=>k_bus (1 to 24),
borrow_in=>‘0’,
SrcRegMode=>Unsigned

);

In this case since the longest of the two vector inputs is 24 bits in length, i_bu
downto 32) is assigned the sum that results from the subtraction of k_bus (1
and the borrow_in from j_bus(15 downto 0). Note that since borrow_out and
overflow are left open, they are ignored.
Std_DevelopersKit User’s Manual, V2.2 3-161

SignExtend Std_Regpak

nging
is is

 the

in

e

SignExtend
Sign Extension: To increase the bit width of the input while maintaining the
appropriate sign

OVERLOADED DECLARATIONS:

Function SignExtend(
SrcReg:IN bit_vector;-- input to be sign extended
DstLength:IN NATURAL;-- the bit width of the output
SignBitPos:IN NATURAL;-- the position of the sign bit
SrcRegMode:IN regmode_type-- the register mode
) return bit_vector;

Function SignExtend(
SrcReg:IN std_logic_vector;-- input to be sign extended
DstLength:IN NATURAL;-- the bit width of the output
SignBitPos:IN NATURAL;-- the position of the sign bit
SrcRegMode:IN regmode_type-- the register mode
) return std_logic_vector;

Function SignExtend(
SrcReg:IN std_ulogic_vector;-- input to be sign extended
DstLength:IN NATURAL;-- the bit width of the output
SignBitPos:IN NATURAL;-- the position of the sign bit
SrcRegMode:IN regmode_type-- the register mode
) return std_ulogic_vector;

DESCRIPTION:

This function returns a vector that is a copy of the input vector but is of an
increased width. The sign of the input is maintained. How this operation is
performed depends upon the SrcRegMode parameter. Its default value is
DefaultRegMode which can be globally set to any one of the four arithmetic
representations (TwosComp, OnesComp, Unsigned, SignMagnitude) by cha
its defined value in the Std_Regpak body. For TwosComp and OnesComp th
done by copying all of the bits in the original vector, from the sign bit down to
least significant bit, into the least significant bit positions of the vector that is
returned. The sign bit is then copied into the remaining bits positions. For
SignMagnitude this involves copying all of the bits to the right of the sign bit
the original vector into the least significant bit positions of the vector to be
returned. The sign bit is then copied into the most significant bit position of th
Std_DevelopersKit User’s Manual, V2.23-162

Std_Regpak SignExtend

ros.

nd

d by
 as
ning
f the

 is
he
most

 to

 then

 the
pied
 X,
ed,
vector to be returned. The remaining bits are filed with zeros. For Unsigned
numbers the input vector is once again copied into the least significant bit
positions of the vector to be returned and the remaining bits are filled with ze

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has a length that is specifie
the parameter DstLength. The range of the returned vector is always defined
DstLength - 1 downto 0. Note that this does not preclude the user from assig
the returned vector to or comparing the returned vector with another vector o
same length and type but of a different range.

DstLength: This specifies the length of the vector that is to be returned.
DstLength must be greater than or equal to the length of the input vector.

SignBitPos:This parameter specifies the position of the sign bit. The position
specified in terms of its absolute position in the input vector. For example if t
input vector is a defined as a bit_vector(20 downto 11) and the sign bit is the
significant bit, then SignBitPos should be passed a value of 20. Note that if
SignBitPos specifies a bit position in the middle of a range then all of the bits
the left of that position are not carried over to the vector that is returned. If
SignBitPos specifies a bit position that is outside the range of the input vector
the sign bit is assumed to be the most significant bit of the input vector.

X HANDLING:

Any X’s in the bits to the right of the sign bit in the input vector are echoed to
output. For TwosComp and OnesComp if the sign bit is an X, the X is then co
into all of the higher order bit positions. For SignMagnitude if the sign bit is an
the most significant bit (i.e. sign bit) of the returned vector is an X. For Unsign
the X’s are simply echoed in the returned vector.
Std_DevelopersKit User’s Manual, V2.2 3-163

SignExtend Std_Regpak

d the

value
BUILT IN ERROR TRAPS:

1. If the input vector has a zero length, then an error assertion is made an
vector that is returned is filled with zeros.

2. If DstLength is zero, then an error assertion is made and a zero length
vector is returned.

3. If DstLength is less than the length of the input vector then an error is
issued and the original vector is returned

EXAMPLE:

Given the declarations:

variable read_data : bit_vector(14 downto 7) :=
B“10111010”;

variable extended_data : bit_vector (3 to 14);

then the following statement causes extended_data to be assigned a binary
of: 111111111010.

extended_data := SignExtend(read_data,
12,
11,
TwosComp);
Std_DevelopersKit User’s Manual, V2.23-164

Std_Regpak To_BitVector

d by

d by
idth -
rned
ngth

d by
pt to

ute
s are
gsOn
To_BitVector
Convert an Integer to a Bit_Vector: Converts an integer to a bit_vector of the
specified length.

DECLARATION:

Function To_BitVector (
intg:IN INTEGER;-- integer to be converted
width:IN NATURAL;-- width of returned vector
SrcRegMode:IN regmode_type-- register mode of vector
) return bit_vector;

DESCRIPTION:

This function converts the input integer specified by the parameter intg to a
bit_vector with a width specified by the parameter width and an arithmetic
representation (TwosComp, OnesComp, Unsigned, SignMagnitude) specifie
the parameter SrcRegMode. The default value for SrcRegMode is
DefaultRegMode which can be globally set to any one of the four arithmetic
representations by changing its defined value in the Std_Regpak body.

Result: The vector that is returned by the function has a length that is specifie
the parameter width. The range of the returned vector is always defined as w
1 downto 0. Note that this does not preclude the user from assigning the retu
vector to or comparing the returned vector with another vector of the same le
and type but of a different range.

If the length of the vector to be returned is too small to hold the value specifie
intg then the least significant bits of the binary value are returned. If an attem
convert a negative integer to an Unsigned bit_vector is made then the absol
value of the integer is converted to the bit vector. When this occurs if warning
enabled, an assertion is made. Warnings are enabled globally by the Warnin
flag which is defined in the Std_Regpak body.
Std_DevelopersKit User’s Manual, V2.2 3-165

To_BitVector Std_Regpak
BUILT IN ERROR TRAP:

An error assertion is made if the specified width of the result vector is zero.

EXAMPLE:

Given the following variable declarations:

variable status : integer;
variable bit_status : bit_vector(15 downto 8);

The following line assigns the value of the integer status to an 8 bit long
bit_vector using Unsigned representation:

bit_status := To_BitVector(status, 8, Unsigned);
Std_DevelopersKit User’s Manual, V2.23-166

Std_Regpak To_Integer

th an
ified
de is

nd

ion to
To_Integer
Convert a Vector to an Integer: Converts a std_logic_vector, a
std_ulogic_vector, or a bit_vector to an integer

OVERLOADED DECLARATIONS:

Function To_Integer (
SrcReg:IN bit_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode of vector
) return integer;

Function To_Integer (
SrcReg:IN std_logic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode of vector
) return integer;

Function To_Integer (
SrcReg:IN std_ulogic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode of vector
) return integer;

DESCRIPTION:

This function converts the input vector specified by the parameter SrcReg wi
arithmetic type (TwosComp, OnesComp, Unsigned, or SignMagnitude) spec
by the parameter SrcRegMode to an integer. The default value for SrcRegMo
DefaultRegMode which can be globally set to any one of the four arithmetic
representations by changing its defined value in the Std_Regpak body.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

X HANDLING:

Since X’s cannot be represented in an integer, any X causes an error assert
be made and the result is returned with an indeterminate value.
Std_DevelopersKit User’s Manual, V2.2 3-167

To_Integer Std_Regpak

e of
set
BUILT IN ERROR TRAPS:

1. If an X exists in the std_logic_vector or the std_ulogic_vector to be
converted then an error assertion is made and a zero is returned.

2. If the magnitude of the input vector is too large to fit in a word that is
IntegerBitLength - 1 bits in length an error assertion is made and a valu
zero is returned. IntegerBitLength is the machine’s integer length. It is
globally in the Std_Regpak body.

EXAMPLE:

Given the variable declarations:

variable addr : std_logic_vector(15 downto 0);
variable int_addr : integer;

The following line assigns to int_addr the integer value of the Unsigned
std_logic_vector addr:

int_addr := To_Integer(address, Unsigned);
Std_DevelopersKit User’s Manual, V2.23-168

Std_Regpak To_OnesComp

c

ode
y

rned
ative

gative
ented
de.
e
 zero
s.

nd
To_OnesComp
Convert a Vector to OnesComp: Converts a vector from one type of arithmeti
representation to OnesComp

OVERLOADED DECLARATIONS:

Function To_OnesComp (
SrcReg:IN bit_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function To_OnesComp (
SrcReg:IN std_logic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function To_OnesComp (
SrcReg:IN std_ulogic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

Converts the input vector from the arithmetic representation (TwosComp,
OnesComp, Unsigned, or SignMagnitude) specified by SrcRegMode to
OnesComp representation. The default value for SrcRegMode is DefaultRegM
which can be globally set to any one of the four arithmetic representations b
changing its defined value in the Std_Regpak body.

If the input vector is already a OnesComp vector, then the input vector is retu
as is. For TwosComp and SignMagnitude vectors, if the vectors are non-neg
they are returned as is. For a negative TwosComp vector, the vector is
decremented by one. Note that since TwosComp can represent one more ne
number than OnesComp it is possible to get a number that cannot be repres
in OnesComp. When this occurs if warnings are enabled, an assertion is ma
Warnings are enabled globally by the WarningsOn flag which is defined in th
Std_Regpak body. For a negative SignMagnitude vector, the sign bit is set to
and every bit is inverted. For Unsigned, the number is normally returned as i

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.
Std_DevelopersKit User’s Manual, V2.2 3-169

To_OnesComp Std_Regpak

e
lways
user

t. For
nting
or
f the
ero

 a

ll

ber
r

Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.

X HANDLING:

For non-negative TwosComp vectors, the X’s are simply echoed to the outpu
negative TwosComp vectors, X’s are propagated as appropriate for decreme
a vector. If the sign bit is an X, then the decrement operation is carried out. F
SignMagnitude and Unsigned vectors, X’s are simply echoed to the output. I
sign bit of a SignMagnitude number is an X then the sign bit is set equal to z
and all of the bits in the vector are inverted. If the most significant bit of an
Unsigned vector is an X then it is assumed that the vector is too big to fit into
OnesComp representation of the given size and, if warnings are enabled, an
assertion is made.

BUILT IN ERROR TRAP:

1. If the input vector is of zero length an error assertion is made and a nu
vector is returned.

2. If the most significant bit of an Unsigned input vector is set then the num
cannot fit in a OnesComp representation of the same size and an erro
assertion is made.

EXAMPLE:

Given the variable declarations:

variable twos_out: std_logic_vector(7 downto 0);
variable ones_in: std_logic_vector(8 to 15);

then the following line assigns ones_in the OnesComp representation of the
TwosComp twos_out.

ones_in:= To_OnesComp(twos_out, TwosComp);
Std_DevelopersKit User’s Manual, V2.23-170

Std_Regpak To_SignMag

ply

nd

e
lways
user
To_SignMag
Convert a Vector to SignMagnitude: Converts a vector from one type of
arithmetic representation to SignMagnitude

OVERLOADED DECLARATIONS:

Function To_SignMag (
SrcReg:IN bit_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function To_SignMag (
SrcReg:IN std_logic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function To_SignMag (
SrcReg:IN std_ulogic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

Converts the input vector from the arithmetic representation (TwosComp,
OnesComp, Unsigned, or SignMagnitude) specified by SrcRegMode to
SignMagnitude representation. The default value for SrcRegMode is
DefaultRegMode which can be globally set to any one of the four arithmetic
representations by changing its defined value in the Std_Regpak body.

For all representations, if the input vector is non-negative, then the function
returns this vector as is. If the input vector is negative, then it is inverted, as
appropriate for its representation, the sign bit is set, and then the vector is
returned. A vector that is in SignMagnitude representation to begin with is sim
echoed in the returned vector.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
Std_DevelopersKit User’s Manual, V2.2 3-171

To_SignMag Std_Regpak

ly
’s are
s the
omp

tor. If
 a 1.
st

d, an

ll

 is
f the

 of
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.

X HANDLING:

For all of the representations if the number is non-negative then X’s are simp
echoed in the vector that is returned. For negative OnesComp vectors, the X
also echoed in the vector that is returned. An X in the sign bit position cause
vector to be inverted and the sign bit replaced with a one. For negative TwosC
vectors the X’s are propagated as appropriate for negating a TwosComp vec
the sign bit is an X then the vector is negated and the sign bit is replaced by
For Unsigned representation X’s are echoed in the returned vector. If the mo
significant bit is an X then it is assumed that the vector is too big to fit in a
SignMagnitude representation of the given length and, if warnings are enable
assertion is made.

BUILT IN ERROR TRAP:

1. If the input vector is of zero length an error assertion is made and a nu
vector is returned.

2. If the most significant bit of an input vector in Unsigned representation
set then the input vector cannot fit in a SignMagnitude representation o
same length and an error assertion is made.

EXAMPLE:

Given the variable declarations:

variable ones_out: std_logic_vector(7 downto 0);
variable signmag_in: std_logic_vector(8 to 15);

then the following line assigns signmag_in the SignMagnitude representation
the OnesComp ones_out.

signmag_in:= To_SignMag(ones_out, OnesComp);
Std_DevelopersKit User’s Manual, V2.23-172

Std_Regpak To_StdLogicVector

etic
d by

d by
idth -
rned
ngth

d by
pt to
To_StdLogicVector
Convert an Integer to a Std_Logic_Vector: Converts an integer to a
std_logic_vector of the specified length

DECLARATION:

Function To_StdLogicVector (
intg:IN INTEGER,-- integer to be converted
width:IN NATURAL,-- width of returned vector
SrcRegMode:IN regmode_type-- register mode of vector
) return std_logic_vector;

DESCRIPTION:

This function converts the input integer specified by the parameter intg to a
std_logic_vector with a width specified by the parameter width and an arithm
representation (TwosComp, OnesComp, Unsigned, SignMagnitude) specifie
the parameter SrcRegMode. The default value for SrcRegMode is
DefaultRegMode which can be globally set to any one of the four arithmetic
representations by changing its defined value in the Std_Regpak body.

Result: The vector that is returned by the function has a length that is specifie
the parameter width. The range of the returned vector is always defined as w
1 downto 0. Note that this does not preclude the user from assigning the retu
vector to or comparing the returned vector with another vector of the same le
and type but of a different range.

If the length of the vector to be returned is too small to hold the value specifie
intg then the least significant bits of the binary value are returned. If an attem
convert a negative integer to an Unsigned std_logic_vector is made then the
absolute value of the integer is converted to the std_logic_vector. When this
occurs if warnings are enabled, an assertion is made. Warnings are enabled
globally by the WarningsOn flag which is defined in the Std_Regpak body.
Std_DevelopersKit User’s Manual, V2.2 3-173

To_StdLogicVector Std_Regpak
BUILT IN ERROR TRAP:

An error assertion is made if the specified width of the result vector is zero.

EXAMPLE:

Given the following variable declarations:

variable status : integer;
variable b_stat : std_logic_vector(15 downto 8);

The following line assigns the value of the integer status to an 8 bit long
bit_vector using Unsigned representation:

b_stat := To_StdLogicVector(status,8,Unsigned);
Std_DevelopersKit User’s Manual, V2.23-174

Std_Regpak To_StdULogicVector

etic
d by

d by
idth -
rned
ngth

d by
pt to
e

To_StdULogicVector
Convert an Integer to a Std_ULogic_Vector: Converts an integer to a
std_ulogic_vector of the specified length

DECLARATION:

Function To_StdULogicVector (
intg:IN INTEGER,-- integer to be converted
width:IN NATURAL,-- width of returned vector
SrcRegMode:IN regmode_type-- register mode of vector
) return std_ulogic_vector;

DESCRIPTION:

This function converts the input integer specified by the parameter intg to a
std_ulogic_vector with a width specified by the parameter width and an arithm
representation (TwosComp, OnesComp, Unsigned, SignMagnitude) specifie
the parameter SrcRegMode. The default value for SrcRegMode is
DefaultRegMode which can be globally set to any one of the four arithmetic
representations by changing its defined value in the Std_Regpak body.

Result: The vector that is returned by the function has a length that is specifie
the parameter width. The range of the returned vector is always defined as w
1 downto 0. Note that this does not preclude the user from assigning the retu
vector to or comparing the returned vector with another vector of the same le
and type but of a different range.

If the length of the vector to be returned is too small to hold the value specifie
intg then the least significant bits of the binary value are returned. If an attem
convert a negative integer to an Unsigned std_ulogic_vector is made then th
absolute value of the integer is converted to the std_logic_vector. When this
occurs if warnings are enabled, an assertion is made. Warnings are enabled
globally by the WarningsOn flag which is defined in the Std_Regpak body.

BUILT IN ERROR TRAP:

An error assertion is made if the specified width of the result vector is zero.
Std_DevelopersKit User’s Manual, V2.2 3-175

To_StdULogicVector Std_Regpak
EXAMPLE:

Given the following variable declarations:

variable status : integer;
variable b_stat: std_ulogic_vector(15 downto 8);

The following line assigns the value of the integer status to an 8 bit long
bit_vector using Unsigned representation:

b_stat := To_StdULogicVector(status,8,Unsigned);
Std_DevelopersKit User’s Manual, V2.23-176

Std_Regpak To_TwosComp

c

p, if
 the
if the
tive,
or

nd
To_TwosComp
Convert a Vector to TwosComp: Converts a vector from one type of arithmeti
representation to TwosComp

OVERLOADED DECLARATIONS:

Function To_TwosComp (
SrcReg:IN bit_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function To_TwosComp (
SrcReg:IN std_logic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function To_TwosComp (
SrcReg:IN std_ulogic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

Converts the input vector from the arithmetic representation (TwosComp,
OnesComp, Unsigned, or SignMagnitude) specified by SrcRegMode to
TwosComp representation. The default value for SrcRegMode is
DefaultRegMode which can be globally set to any one of the four arithmetic
representations by changing its defined value in the Std_Regpak body.

If SrcRegMode is TwosComp then no operation is performed. For OnesCom
the vector is negative then the vector is incremented by one and returned. If
input vector is non-negative, the vector is returned as is. For SignMagnitude,
vector is non-negative then it is also returned as is. If the input vector is nega
the sign bit is set to zero and the two’s complement of the number is taken. F
Unsigned, the number is normally returned as is.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.
Std_DevelopersKit User’s Manual, V2.2 3-177

To_TwosComp Std_Regpak

e
lways
user

ing
ector
tion.
 the
riate
or

cant
ion

ll

 is
e

 of
Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.

X HANDLING:

For OnesComp, X’s are propagated in the appropriate manner for increment
the vector if the vector is negative, otherwise, they are simply echoed in the v
that is returned. An X in the most significant bit results in an increment opera
For SignMagnitude, if the vector is non-negative the X’s are simply echoed in
returned vector. If the vector is negative the X’s are propagated in the approp
manner for negating the vector. If the sign bit is an X the vector is negated. F
Unsigned the X’s are echoed in the vector that is returned. If the most signifi
bit is an X, it is assumed that the vector will not fit in TwosComp representat
and, if warnings are enabled, an assertion is made.

BUILT IN ERROR TRAP:

1. If the input vector is of zero length an error assertion is made and a nu
vector is returned.

2. If the most significant bit of an input vector in Unsigned representation
set then the input vector cannot fit in a TwosComp representation of th
same length and an error assertion is made.

EXAMPLE:

Given the variable declarations:

variable ones_out: std_logic_vector(7 downto 0);
variable twos_in: std_logic_vector(8 to 15);

then the following line assigns twos_in the two’s complement representation
the one’s complement ones_out:

twos_in:= To_TwosComp(ones_out, OnesComp);
Std_DevelopersKit User’s Manual, V2.23-178

Std_Regpak To_Unsign

gned
 can
 its
ned

nd

e
lways
user
To_Unsign
Convert a Vector to Unsigned: Converts a vector from one type of arithmetic
representation to Unsigned

OVERLOADED DECLARATIONS:

Function To_Unsign (
SrcReg:IN bit_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return bit_vector;

Function To_Unsign (
SrcReg:IN std_logic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_logic_vector;

Function To_Unsign (
SrcReg:IN std_ulogic_vector;-- vector to be converted
SrcRegMode:IN regmode_type-- register mode
) return std_ulogic_vector;

DESCRIPTION:

Converts the input vector from the arithmetic representation (TwosComp,
OnesComp, Unsigned, or SignMagnitude) specified by SrcRegMode to Unsi
representation. The default value for SrcRegMode is DefaultRegMode which
be globally set to any one of the four arithmetic representations by changing
defined value in the Std_Regpak body. If the vector to be converted to Unsig
representation is negative, then the vector is negated.

For all representations, if the input vector is non-negative, then the function
returns this vector as is. If the input vector is negative, then it is inverted, as
appropriate for its representation, and then returned.

Vector Length: The input vector may be of any length, have any beginning a
ending points for its range, and be either ascending or descending.

Result: The vector that is returned by the function has the same length as th
vector that was passed to the function. The range of the returned vector is a
defined as SrcReg’length - 1 downto 0. Note that this does not preclude the
from assigning the returned vector to or comparing the returned vector with
another vector of the same length and type but of a different range.
Std_DevelopersKit User’s Manual, V2.2 3-179

To_Unsign Std_Regpak

hoed
d

 as
 the

or is

he
X HANDLING:

For all of the representations if the number is positive then X’s are simply ec
in the vector that is returned. This is also true for negative SignMagnitude an
OnesComp vectors. If the sign bit is an X for these representations then the
negation is performed. For negative TwosComp vectors, X’s are propagated
appropriate for negating a TwosComp vector. Once again, if the sign bit is X
negation is performed.

BUILT IN ERROR TRAP:

If the input vector is of zero length an error assertion is made and a null vect
returned

EXAMPLE:

Given the variable declarations:

variable ones_out: std_logic_vector(7 downto 0);
variable unsigned_in: std_logic_vector(8 to 15);

then the following line assigns unsigned_in the Unsigned representation of t
one’s complement ones_out.

unsigned_in:= To_Unsign(ones_out, OnesComp);
Std_DevelopersKit User’s Manual, V2.23-180

er
es

 of

he
ach
oids
Chapter 4
Std_Timing

Introduction
In order to promote the availability of ASIC libraries written in VHDL, a numb
of companies in the industry formed the VHDL Initiative Toward ASIC Librari
(VITAL) program. VITAL’s charter is to develop a standard methodology for
incorporating timing information within VHDL models and to leverage the use
de-facto standards to achieve this objective.

Note: VITAL related information is provided on an as-is, unsupported basis.
Please contact the IEEE for the latest information on VITAL and the
VITAL_Timing package.

Model Organization
Entity : All timing information should be passed into a VHDL model through t
model’s generic parameter list declared within the Entity. This assures that e
instance of the model can be provided with its own timing information and av
the common mistakes of relying upon global data to remain constant.
Std_DevelopersKit User’s Manual, V2.2 4-1

Model Organization Std_Timing

es.

is

shed
The Std_Timing and VITAL_Timing packages support the development of
generic parameter timing interfaces through the availability of timing datatyp

Architectures: Once the timing interface is defined, architectures can be
developed which provide pin-to-pin or distributed timing capabilities. This is
accomplished by using subprogram calls contained within the Std_Timing or
VITAL_Timing package in concert with a design methodology specified in th
document.

Moreover, within an architecture, timing constraint checking can be accompli
through the use of subprogram calls to Std_Timing and/or VITAL_Timing

Entity

Wire Delays

Functionality Section

Propagation Delay Selection

Pin-to-Pin Delay Style

Wire Delays

Interconnected Cells

Distributed Delay Style

Architecture

Architecture

Timing Values Passed into
the Model via a standard
Generic
Parameter Interface

Timing Violation Checks
Std_DevelopersKit User’s Manual, V2.24-2

Std_Timing Model Organization

te

ata
routines. Advanced network models can be developed which provide accura
point-to-point delay modeling.

Passing Timing Information into a circuit of VHDL
models

In order to pass timing information into an interconnection of VHDL models,
some mechanism needs to be established which provides the actual timing d
and a place to find the data.
Std_DevelopersKit User’s Manual, V2.2 4-3

Model Organization Std_Timing

n

the

 for
ve a
The flow of timing information into a VHDL (e.g. macrocell) model is shown i
the diagram below:

Back-annotated timing values can be incorporated into designs by following
steps outlined below:

• Write each model with a generic interface which provides placeholders
back-annotated timing data. Each of the generic parameters should ha
default expression.

Entity of the ASIC or FPGA

Architecture (Netlist)
of the ASIC or FPGA

U123: macrocellxyz
port map (...)
U234: macrocellxyz
portmap (...)
U345: macrocellabc
portmap (...)

u123

u234

u345Notice:
(a) These are the SOCKETS (i.e. compo-
nent instantiations) for the models where
the ports of the models are interconnect-
ed with other models through signals. No
timing information is passed to the mod-
els at this time.

(b) The models contain generic parameters with default time values
(e.g. usually unit delay ~ 1 ns). In order for the models to operate
with actual delay values, a delay calculator is usually run which
provides the actual values.

Configuration of the ASIC or FPGA

for U123: macrocellxyz use entity macrocellxyz
generic map (tplh_clk_q => u123_clk_q,...)
....

(c) Detailed timing values are provided by the configuration. Actu-
al timing values may be literally provided or referemced through a
back-annotation timing data value package.
Std_DevelopersKit User’s Manual, V2.24-4

Std_Timing Model Organization

el. In
T
gned

ign

A)

he
an

 data
ide

use

e”
ity to
es
• Create a package containing the component declarations of each mod
this package, include each of the port names of the model, but DO NO
include the generic parameter identifiers. This is a deliberate step desi
so that the timing information is not required to be associated with the
instantiation of the model in the architecture. Bindings of the timing
information to that of the model will occur later in the configuration des
unit.

• Create an architecture of the design (e.g. the netlist of the ASIC or FPG
which interconnects the VHDL models (e.g. the Macrocells).

• Connect the models together using signals, and/or net delay models.

• Define a configuration for the circuit which identifies each instance of t
models used in the circuit. In the configuration, specific timing values c
be associated with each instance of the model.

• Once a layout program and delay calculator has been run, actual timing
values can then be back-annotated into the generic parameters to prov
accurate, layout based timing information.

Referencing the Std_Timing and VITAL_Timing
Package

In order to reference the Std_Timing and VITAL_Timing package a library cla
needs to be provided in the VHDL source code for the model. The “Library”
clause declares that a library of the name Std_DevelopersKit exists. The “Us
clause enables the declarative region following the Use clause to have visibil
the declarations contained within each package. The example below illustrat
how to make the Std_Timing and VITAL_Timing package visible.

LIBRARY Std_DevelopersKit;
USE Std_DevelopersKit.Std_Timing.all;
USE Std_DevelopersKit.VITAL_Timing.all;
Std_DevelopersKit User’s Manual, V2.2 4-5

Model Interface Specification Std_Timing

s in

g

me

e
ing
time

w
ns

L
nd

their

tatic
ich
Model Interface Specification
The Std_Timing package advocated the definition of min-typ-max time value
versions prior to v2.0. This technique provided the users with a great deal of
flexibility and provided a means of switching quickly between any of the timin
values by the simple throw of aTimeMode switch. While this interface was
flexible, it did incur a bit of overhead in needing to maintain three values of ti
for each timing parameter.

For large designs, the amount of memory used per macrocell could be
problematic, therefore the VITAL initiative adopted a simplistic timing interfac
where only one value of time is provided for each generic parameter. Switch
between min-typ-max time values can then occur by associating the correct
value with the generic parameter requiring the information.

Support for both styles remains in the Std_Timing package. However, for ne
designs, the VITAL style described in this chapter is advocated for the reaso
mentioned.

General Philosophy

A general philosophy was followed in the design of Std_Timing and the VITA
initiative. This philosophy allows the model to deal with only the information a
complexity it requires and passes the responsibility for delay calculation and
back-annotation to tools which are more suited for these tasks.

• Static delay calculations are supported with this style of model timing
interface. Therefore there is no requirement for the models to perform
own load dependent delay calculations during the course of simulation
simply because the loads never change during the simulation run.
Consequently, all timing information can be passed into the model as s
data values and the model’s responsibility then becomes choosing wh
value of data to apply.

• All of the functionality and timing behavior is encapsulated within the
VHDL model and its associated packages.
Std_DevelopersKit User’s Manual, V2.24-6

Std_Timing Model Interface Specification

is
Model Entity Development Guidelines

The Entity is the model’s interface to the remaining portions of the design. It
essential that the entity be developed in a manner which allows:

1. portability among simulators

2. standard data type interfaces

3. standard timing interfaces

4. hooks for advanced features

5. extensibility if necessary

In this document, the following entity organization is suggested.

Entity Header Comments
Library and USE Clauses
ENTITY modelname IS

GENERIC (
Control_flags
Parametric Sizes
Timing parameters
Hierarchy Pathname

)
PORT(

Input Ports
Bidirectional Ports
Output Ports

)
Structural Component Library / USE Clause
ComponentName Constant

END modelname;

It is strongly recommended that the developer make liberal use of comments
throughout the model.
Std_DevelopersKit User’s Manual, V2.2 4-7

Model Interface Specification Std_Timing

he
Std_Timing Physical Data Types

Std_Timing defines a number of types and constants used for representing t
timing behavior of digital devices and systems.

Capacitance:
TYPE Capacitance IS RANGE INTEGER’LOW TO INTEGER’HIGH

UNITS
 ffd;-- femptofarad
 pf = 1000 ffd; -- picofarad

 nf = 1000 pf; -- nanofarad
END UNITS;

Voltage:
TYPE Voltage IS RANGE INTEGER’LOW TO INTEGER’HIGH

UNITS
 uv; -- microvolts

 mv = 1000 uv; -- millivolts
 v = 1000 mv; -- volts

END UNITS;

Current:
TYPE Current IS RANGE INTEGER’LOW TO INTEGER’HIGH

UNITS
 na;-- nanoamps

 ua = 1000 na;-- microamps
 ma = 1000 ua;-- milliamps
END UNITS;

Temperature:
TYPE Temperature IS RANGE INTEGER’LOW TO INTEGER’HIGH

UNITS
mdegreesC;

degreesC = 1000 mdegreesC;
END UNITS;

Frequency:
TYPE Frequency IS RANGE INTEGER’LOW TO INTEGER’HIGH

UNITS
 hz; -- hertz

 khz = 1000 hz; -- kilohertz
 mhz = 1000 khz; -- megahertz

 ghz = 1000 mhz;-- gigahertz
END UNITS;
Std_DevelopersKit User’s Manual, V2.24-8

Std_Timing Model Interface Specification

se
 over
r name

 by a
ic
o
eter
Generic Parameters

The generic parameters of each model should be organized in the following
fashion.

GENERIC (
Control_Flags
Parametric Size
Timing parameters
Hierarchy Pathname

)

Control Flags

The following Generic Control Parameter names and types are defined. The
parameters are not required, however, models should use these parameters
any other arbitrary parameter names. Models should not use these paramete
for other purposes.

--
-- Generic Parameter Control Flags
--
TimingChecksOn : Boolean := TRUE;
XGenerationOn : Boolean := FALSE;
WarningsOn : Boolean := TRUE;

Parametric Size Controls

A number of models can be written such that their bus widths are determined
generic parameter which is passed into the model. In such cases, the gener
parameter must be declared with a reasonable subtype such as NATURAL t
prevent the accidental use of negative lengths. In addition, the generic param
shall have a reasonable default value.

Example:
BusWidth : NATURAL := 8;
Std_DevelopersKit User’s Manual, V2.2 4-9

Model Interface Specification Std_Timing

ng

n-
Vital_Timing Generic Timing Parameter Data Types 1

VITAL_Timing defines the following types for use in specifying timing
parameters.

TransitionType is defined to provide from-to relationships between any of the
states {0,1,Z} and any other state within that same set of three states.

TYPE TransitionType is (tr01, tr10, tr0z, trz1, tr1z, trz0);
TYPE TransitionArrayType is array (TransitionType range <>)of
TIME;

DelayTypes are defined to provide with two or six values of time.

SUBTYPE DelayTypeXX is TIME;
SUBTYPE DelayType01 is TransitionArrayType (tr01 to tr10);
SUBTYPE DelayType01Z is TransitionArrayType (tr01 to trz0);

Vectorized forms are also provided.

TYPE DelayArrayTypeXXis ARRAY (natural range <>) of
DelayTypeXX;
TYPE DelayArrayType01is ARRAY (natural range <>) of
DelayType01;
TYPE DelayArrayType01Zis ARRAY (natural range <>) of
DelayType01Z;

TimeArray is provided for event recording purposes.

TYPE TimeArray is ARRAY (NATURAL RANGE <>) OF TIME;

Generic parameter naming specification 2

A standard generic parameter naming specification was established for the
purposes of (a) naming the parameters in an intuitive manner, (b) removing
designer dependence on the modeling style, and (c) most importantly enabli
external tools to identify the generic parameter by its name during the back-
annotation process.

1. VITAL v2.2b specification
2. Certain sections are taken from the VITAL 2.2b specification, others from the Std_Timing v1.8 docume
tation with modifications as were deemed necessary
Std_DevelopersKit User’s Manual, V2.24-10

Std_Timing Model Interface Specification

m of

2>
• the kind of timing parameter (e.g. propagation delay, setup time)

• the port(s) or delay path(s) for which the parameter applies.

The TYPE associated with a generic timing parameter communicates the for
the timing value (e.g. single value, state dependent value list, etc.)

tpd_CLK_Q : DelayTypeXX := 5 ns;
tpd_CLK_Q : DelayType01 := (tr01 => 2 ns, tr10 => 3 ns);
tpd_CLK_Q : DelayType01Z :=
 (1 ns, 2 ns, 3 ns, 4 ns, 5 ns, 6 ns);
tpd_CLK_Q : DelayArrayTypeXX(0 to 1):=
 (0 => 5 ns, 1 => 6 ns);
tpd_CLK_Q : DelayArrayType01(0 to 1):=
 (0 => (tr01 => 2 ns, tr10 => 3 ns),
 1 => (tr01 => 2 ns, tr10 => 3 ns));
tpd_CLK_Q : DelayArrayType01Z(0 to 1):=
 (0 =>(1 ns, 2 ns, 3 ns, 4 ns, 5 ns, 6 ns),
 1 =>(1 ns, 2 ns, 3 ns, 4 ns, 5 ns, 6 ns));

Generic Timing Parameter Prefixes

Generic timing parameters are of one of the following forms:

• <prefix>

• <prefix>_<port1-name>

• <prefix>_<port1-name>_<port2-name>_<condition>_<edge1>_<edge
Std_DevelopersKit User’s Manual, V2.2 4-11

Model Interface Specification Std_Timing

lue

 at

d

The following timing parameter prefixes are defined:
<prefix> ::=

tipd | {Simple} Interconnect Path Delay (IPD)
tpd | propagation delay
tsetup| setup constraint
thold| hold constraint
trelease|release constraint
tremoval|removal constraint
tperiod|period where min or max is not specified
tperiod_min|minimum period
tperiod_max|maximum period
tpw | minimum pulsewidth
tdevice|indicates to which subcomponent

the spec. applies
tskew| indicates to which subcomponent

the spec. applies
tpulse for path pulse delay

Terms:

• Propagation Delay - The time delay from the arrival of an input signal va
to the appearance of a corresponding output signal value.

• Setup Time - The time period prior to a clock edge during which the
specified input signal value may not change value.

• Hold Time - The time period following a clock edge during which the
specified input signal value may not change value.

• Release Time - A change to an unasserted value on the specified
asynchronous (set, reset) input signal must precede the clock edge by
least the release time.

• Removal Time - An asserted condition must be present on the specifie
asynchronous (set, reset) input signal for at least the removal time
following the clock edge.

• Period - The time delay from the leading edge of a clock pulse to the
leading edge of the following clock pulse.
Std_DevelopersKit User’s Manual, V2.24-12

Std_Timing Model Interface Specification

t1-
el.
tpdPropagation Delay

Thetpd prefix is used to denote Propagation Delay parameters.

Allowed parameter form(s):

tpd delay applies to ANY input-to-output path of the
model

tpd_<port1-name> delay applies to all delay paths to the indicated
OUTPUT port.

tpd_<port1-name>_<port2-name>
delay applies to ONLY the specified INPUT-to-
OUTPUT delay path.

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayType01 Two delay values (tr01, tr10)

DelayType01Z Six delay values (tr01, tr10, tr0z, trz1, tr1z, trz0)

DelayArrayTypeXX Array of delays (vector input)

DelayArrayType01 Array of delay pairs

DelayArrayType01Z Array of delay 6-tuples

tsetupInput Setup Time

Thetsetup prefix is used to denote Setup Time parameters.

Allowed parameter form(s):

tsetup_<port1-name> The setup time applies to any INPUT port <por
name> with respect to any clock signal on the mod
Std_DevelopersKit User’s Manual, V2.2 4-13

Model Interface Specification Std_Timing

he
tsetup_<port1-name>_<port2-name>
The setup time applies tothe INPUT port <port1-
name> with respect to the clock signal <port2-
name>.

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayType01 Two delay values

DelayArrayTypeXX Array of delays (vector input)

DelayArrayType01 Array of delay pairs (vector input)

tholdInput Hold Time

The thold prefix is used to denote Hold Time parameters.

Allowed parameter form(s):

thold_<port1-name> The hold time applies tothe INPUT port named
<port1-name> with respect to any clock signal on t
model.

thold_<port1-name>_<port2-name>
The hold time applies tothe INPUT port named
<port1-name> with respect to the clock signal
<port2-name>.

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayType01 Two delay values

DelayArrayTypeXX Array of delays (vector input)

DelayArrayType01 Array of delay pairs (vector input)
Std_DevelopersKit User’s Manual, V2.24-14

Std_Timing Model Interface Specification

ed

e

e.
treleaseInput Release Time

The treleaseprefix is used to denote Release Time parameters.

Allowed parameter form(s):

trelease_<port1_name> The release time applies to an INPUT port nam
<port1_name> with respect to any clock signal on
the model.

trelease_<port1_name>_<port2_name>
The release time applies to an INPUT port named
<port1_name> with respect to the clock signal
<port2_name>.

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayArrayTypeXX Array of delays (vector input)

tperiodPeriod

The tperiod prefix is used to denote minimum and maximum Period Time
parameters.

Allowed parameter form(s):

tperiod_min_<port1-name>
Minimum allowable period constraint applies to the
port whose name is <port1-name>.

tperiod_max_<port1-name>
Maximum allowable period constraint applies to th
port whose name is <port1-name>.

tperiod_<port1_name>_<EdgeSpecifier>
Where EdgeSpecifier is either posedge or negedg
Std_DevelopersKit User’s Manual, V2.2 4-15

Model Interface Specification Std_Timing

ed
he

d

e

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayArrayTypeXX Array of delays (vector input)

tremovalInput Removal Time

The tremoval prefix is used to denote Removal Time parameters.

Allowed parameter form(s):

tremoval<port1-name> The removal time applies to the INPUT port nam
<port1-name> with respect to any clock signal on t
model.

tremoval<port1-name>_<port2-name>
The removal time applies to the INPUT port name
<port1-name> with respect to the clock signal
<port2-name>.

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayArrayTypeXX Array of delays (vector input)

tpwPulse Width

The tpw prefix is used to denote minimum and maximum Pulse Width
parameters.

The pulse width of a 0->1 or 1->0 transition of a periodic signal.

Allowed parameter form(s):

tpw_hi_min_<port1-name>
Minimum allowable time that <port1-name> must b
held high for a pulse on <port1-name>
Std_DevelopersKit User’s Manual, V2.24-16

Std_Timing Model Interface Specification

e

e

e

e.

n

ing
local
ing
ry

es for
tpw_hi_max_<port1-name>
Maximum allowable time that <port1-name> can b
held high.

tpw_lo_min_<port1-name>
Minimum allowable time that <port1-name> must b
held low for a pulse on <port1-name>

tpw_lo_max_<port1-name>
Maximum allowable time that <port1-name> can b
held low.

tpw_<port1_name>_<EdgeSpecifier>
Where EdgeSpecifier is either posedge or negedg

Allowed parameter type(s):

DelayTypeXX Single delay value

DelayType01 Two delay values (high, low)

DelayArrayTypeXX Array of delays (vector input)

tipd(Simple) Interconnect Path Delay

tipd_<portname> wire delay to / from that port to its interconnectio
point.

Std_Timing Generic Timing Parameter Data Types

Std_Timing provides an alternative to the data types found in the VITAL_Tim
package. Use the Std_Timing data types when you want the model to have
control over the selection of min-typ-max data values. Otherwise VITAL_Tim
data types are preferred and will allow the model to benefit from contempora
back-annotation mechanisms which may be built into the simulator.

Two timing representation mechanisms have been designed. The first provid
min–typ–max–user_defined timing, the second provides for min–typ–max–
user_defined slope/intercept form. Both are controlled in the same manner!
Std_DevelopersKit User’s Manual, V2.2 4-17

Model Interface Specification Std_Timing

ed–

ing

ing
The objectives of this timing parameter design were to:

1. Provide burned–in (default) actual data

2. Provide ability for user to modify (override) burned–in data

3. Provide ability for user to add their own timing

4. Provide ability for user to switch between their own timing and the burn
in data.

5. Support passed timing values or slope/intercepts

Std_Timing Traditional Min-Typ-Max format

Most standard component model and ASIC macrocell data sheets publish tim
information in a min-typ-max tabular format. If the manufacturer has not
characterized the device in min-typ-max format, then most commonly the tim
information is available in either min-max or typical form.

TYPE MinTypMaxTime IS ARRAY (TimeModeType) OF TIME;

Generic parameters should be declared of type MinTypMaxTime and the
identifiers used for the generic parameters should follow the conventions for
Tpreamble shown below:

Tpreamble_InputPort_OutputPort : MinTypMaxTime :=
AggregateDefaultExpression;

Tpreamble ::=
tplhdelay when OUTPUT transitions from 0 | L –> 1 | H
tphldelay when OUTPUT transitions from 1 | H –> 0 | L
tplzdelay when OUTPUT transitions from 0 | L –> Z
tphzdelay when OUTPUT transitions from 1 | H –> Z
tpzldelay when OUTPUT transitions from Z –> 0 | L
tpzhdelay when OUTPUT transitions from Z –> 1 | H
Std_DevelopersKit User’s Manual, V2.24-18

Std_Timing Model Interface Specification

d.
 any
es
type

l

y set

ws.
 hard
ters

 be
r

Switching between Min-Typ-Max values

To facilitate the selection of timing values, TimeModeType has been declare
The enumeration values of this type have been specifically selected to avoid
conflict with timing identifiers which you may be likely to declare or other nam
such as min which is already a reserved word in VHDL due to the TIME data
declaration.

TYPE TimeModeType IS
(t_minimum,-- minimum time spec

t_typical,-- typical time spec
t_maximum,-- maximum time spec
t_special-- user defined delay

);

Example:
Generic (
 TimeMode : TimeModeType := DefaultTimeMode;
 tplh_a1_y1 : MinTypMaxTime := (2 ns,7 ns, 3 ns, 1 ns);
 tphl_a1_y1 : MinTypMaxTime := (
 t_minimum => 11.5 ns,
 t_typical => 16.2 ns,
 t_maximum => 8.0 ns,
 t_special => UnitDelay); -- user defined
);

TimeMode instructs the model to use minimum, typical, maximum, or specia
timing values. The DefaultTimeMode is a constant which can be defined in a
common User Defined Timing Data Package. This constant ‘s value is usuall
equal tot_typical.

An example of the use of MinTypMaxTime types in generic parameters follo
In this instance, the modeler knew the values of the timing data and chose to
code the values in the generic parameter list of the model as default parame
instead of using the package provided DefaultMinTypMaxTime constant.

The line below demonstrates how the declarations in the example above can
used to assign a value to a signal after a minimum, maximum, typical, or use
defined delay as specified by TimeMode.

y1 <= ‘1’ after tplh_a1_y1 (TimeMode);
Std_DevelopersKit User’s Manual, V2.2 4-19

Model Interface Specification Std_Timing

ues
IC
ase-

ed to
our

ifiers

ided
hose

nstant.
Std_Timing Base-Incremental Delay Format

Certain device manufacturers represent their timing information in single val
of time (i.e minimum = 5 ns, maximum = 7.2 ns) while others (particularly AS
vendors) represent their timing values in base-incremental delay format. In b
incremental format the delay is calculated as:

d = m * c + b

where:

d is the delay of the gate

b is the delay of the gate for a fanout of zero

m is the delay of the gate for each unit of load capacitance

c is the load capacitance on the gate’s output

Similar to the Traditional timing representation, the data structure which is us
represent base-incremental delay in the Std_Timing package is an array of f
array sub-elements indexed by a TimeModeType generic parameter.

TYPE BaseIncrType IS (BaseDly, IncrDly);
TYPE BaseIncrDlyPair IS ARRAY (BaseIncrType) OF TIME;
TYPE BaseIncrDelay IS ARRAY (TimeModeType) OF BaseIncrDlyPair;

Generic parameters should be declared of type BaseIncrDelay and the ident
used for the generic parameters should follow the convention for Tpreamble
shown below:

Tpreamble_InputPort_OutputPort : BaseIncrDelay :=
DefaultBaseIncrDelay;

An example of the use of BaseIncrDelay types in generic parameters is prov
below. In this instance, the modeler knew the values of the timing data and c
to hard code the values in the generic parameter list of the model as default
parameters instead of using the package provided DefaultBaseIncrDelay co
Std_DevelopersKit User’s Manual, V2.24-20

Std_Timing Model Interface Specification

 be
r

Example:

Generic (
 TimeMode : TimeModeType := DefaultTimeMode;
 tplh_a1_y1 : MinTypMaxTime := (2 ns,7 ns, 3 ns, 1 ns);
 tphl_a1_y1 : MinTypMaxTime := (
 t_minimum => 11.5 ns,
 t_typical => 16.2 ns,
 t_maximum => 8.0 ns,
 t_special => UnitDelay); -- user defined
 tplh_clk_q : BaseIncrDelay := (

t_minimum => (0.46 ns, 2.08 ns),
t_typical => (0.56 ns, 3.08 ns),
t_maximum => (0.68 ns, 5.08 ns),
t_special => DefaultBIDelay);

);

The line below demonstrates how the declarations in the example above can
used to assign a value to a signal after a minimum, maximum, typical, or use
defined delay as specified by TimeMode and Cload_q.

Note: the function BaseIncrToTime is described on the following page.

q <= ‘L’ after BaseIncrToTime (tplh_clk_q (TimeMode), Cload_q) ;
Std_DevelopersKit User’s Manual, V2.2 4-21

BaseIncrToTime Std_Timing

me
BaseIncrToTime
Convert Base and Increment to Time: Converts Base + Increment to
nanoseconds

DECLARATION:

Function BaseIncrToTime (
Constant BIDelay:INBaseIncrDlyPair;
Constant CLoad:INCapacitance
) return TIME;

DESCRIPTION:

This function converts a BaseIncr style of timing representation to a single ti
value.

ASSUMPTIONS:

1. Base Delay is expressed in ns/pf (type TIME)

2. Incremental Delay is expressed in nanoseconds

3. Capacitive load is expressed in picofarads

BUILT IN EROR TRAPS:

None.

EXAMPLES:

CONSTANT Tp01_a1_y1 : time := BaseIncrToTime
(tphl_a1_y1(TimeMode), Cload_y1);
Std_DevelopersKit User’s Manual, V2.24-22

Std_Timing BaseIncrToMinTypMaxTime

t

al
BaseIncrToMinTypMaxTime
Convert Base and Increment to MinTypMaxTime: Converts Base + Incremen
to the same timing format used in the Traditional timing data form

DECLARATION:

Function BaseIncrToMinTypMaxTime (
Constant BIDelay:IN BaseIncrDelay;
Constant CLoad :IN Capacitance
) return MinTypMaxTime;

DESCRIPTION:

This function converts a BaseIncr style of timing representation to a Tradition
min-typ-max notation.

ASSUMPTIONS:

1. Base Delay is expressed in ns/pf (type TIME)

2. Incremental Delay is expressed in nanoseconds

3. Capacitive load is expressed in picofarads

BUILT IN EROR TRAPS:

None.

EXAMPLES:

CONSTANT Tp01_a1_y1 : MinTypMaxTime :=
BaseIncrToMinTypMaxTime (tphl_a1_y1(TimeMode),
Cload_y1);
Std_DevelopersKit User’s Manual, V2.2 4-23

Hierarchical Pathname Std_Timing

path
neric

 the

.

Hierarchical Pathname
Government requirements and commercial ease of use require hierarchical
names to be specified for all assertion messages. Therefore the following ge
parameter shall be included in every model.

InstancePath : string := “/U123/mycell”;

Instance Path may be set explicitly or via 1076-93 VHDL attributes.

Port Declarations

The ports of each model should be organized in the following fashion.

PORT(
 Input Ports
 Bidirectional Ports
 Output Ports
)

Port Data Types

All port declarations used to model actual digital logic shall be modeled using
types declared in the Std_Logic_1164 package.

• Ports should use the Std_logic_1164 data type or subtypes.1

• Array Ports: Models should use the std_logic_vector datatype.

Scalar Ports and Signals

• Scalar Ports: To provide a consistent interface for I/O signals, models
should use the std_logic datatype or a subtype thereof for scalar ports

• std_logic : For non–vectored signals.

1. IEEE Std 1164-1993
Std_DevelopersKit User’s Manual, V2.24-24

Std_Timing Hierarchical Pathname

nting

itial

ue

.

entity and2 is
 port (A : IN std_logic := ‘U’;
 B : IN std_logic:= ‘U’;
 C : OUT std_logic
);
end and2;

Vector (1-dimension array) Ports and Signals

• std_logic_vector: For buses and grouped control signals

It is preferred that the user constrain the type (within the entity design unit)
through the use of a range constraint rather than through the use of discrete
subtypes since the latter would require the reference to a library, and it is
recommended that the model be as self contained as possible.

The range shall be a descending range with the left indexed element represe
the most significant bit (MSB).

Example :
entity alu is
 port (Dbus : INOUT std_logic_vector (15 downto 0) :=

(Others => ‘Z’);
 B : IN std_logic_vector (15 downto 0) :=

(Others => ‘U’);
 Y : OUT std_logic_vector (23 downto 0);

);
end alu;

Port Default Values

Each port should have an associated default expression which defines the in
value for the port subject to elaboration.

Uni-directional buses: It is recommended that the value ‘U’ be the default val
unless there is some other compelling reason to do otherwise.

Bi-directional Buses: It is recommended that the bus be set to ‘Z’. This allows
other signals to drive the bus and override the ‘Z’ with the driven signal value
Std_DevelopersKit User’s Manual, V2.2 4-25

Interconnect Modeling Std_Timing

rious
els

 into
de
,
sed

e
per
ated

may,

r -
tally
Interconnect Modeling
With the emergence of sub-micro delay technologies, accurate modeling of
network delays becomes critically important. This chapter will address the va
methods available for handling interconnect delays starting with simple mod
through complete network models.

Simple Unidirectional Single Driver-Multiple Receiver
Topology

The simplest network model is a single delay line, which may be incorporated
the model. While this technique works for simple topologies, it fails to provi
an adequate solution for more extensive interconnect topologies. In addition
models which use these techniques can be quite inefficient due to the increa
number of process statements within the model. As an illustration, imagine a
chain of buffers, each with an input and output delay process in addition to th
buffer’s behavioral process. In this case, we have three process statements
model, where one would do just fine. This type of inefficiency cannot be toler
in high gate count designs.

Yet, in spite of these shortcomings, this interconnect modeling methodology
in many cases, be adequate for most designs.

Handling the simple case within the model.

If it is knowna priori that the circuit netlist is comprised of simple single drive
multiple receiver interconnections, or if the error associated with less than to
Std_DevelopersKit User’s Manual, V2.24-26

Std_Timing Interconnect Modeling

 be

ment

pe-

 no
nding
accurate net delay modeling is acceptable, then models can be built with the
network delay built into the model.

Figure 4-1.

Simple wire delays may be modeled within theWIRE_DELAY block using the
following techniques:

• For each generic parameter indicating a wire delay specification (i.e.
tipd_<portname>), declare a signal in the architecture (e.g. SIGNAL
<portname>_ipd) which will serve as the internal, post delayed signal.

• If the input signal to be delayed is a vector, a generate statement shall
used inside theWIRE_DELAY block, so as to delay each subelement of the
vector signal.

• In the generate block, there shall be no declarations and the only state
should be a concurrent procedure call to [Vital] PropagateWireDelay().

• If the tipd_* generic is not of type DelayType01Z, then the predefined ty
conversion function [Vital] ExtendToFillDelay may be used.

• Within the declared WIRE_DELAY block, propagate the wire delay by
utilizing the [Vital] PropagateWireDelay () concurrent procedure. There
shall be no other statements in the block other than the concurrent
procedure calls or a generate loop.

• Outside this block, for every delayed signal (*_ipd signal), there shall be
reference to the undelayed input signal. In all such cases, the correspo
*_ipd signal should be used.

Net delays are reflected into the model
Std_DevelopersKit User’s Manual, V2.2 4-27

VitalPropagateWireDelay Std_Timing

 a
nal

ain.

the
VitalPropagateWireDelay
handles {0,1,Z} -> {0,1,Z} interconnect delay
+ NO strength stripping
+ NO vectored ports
+ provisions for negative hold time adjustments
To delay an input or output port by the appropriate wire delay

DECLARATION:

PROCEDURE VitalPropagateWireDelay
SIGNAL OutSig: OUT std_logic;
SIGNAL InSig : IN std_logic;
CONSTANTtwire : IN DelayType01Z;
CONSTANTt_hold_hi: INTIME := 0 ns;
CONSTANTt_hold_lo: INTIME := 0 ns
):

DESCRIPTION:

Performs the following function:

if ((t_hold_hi < 0 ns) or (t_hold_lo < 0 ns)) then
delay := ABS(MINIMUM(t_hold_hi, t_hold_lo));

end if;
outsig <= TRANSPORT insig after

(VitalCalcDelay(insig, insig'LAST_VALUE, twire) + delay);

This procedure works closely along with VitalTimingCheck. In order to perform
hold time check, in the case of negative hold time constraints, the tested sig
must be delayed so that the earliest transitions occur in the positive time dom
From that vantage point, a hold time may be tested with respect to the clock
signal.

Rather than define a separate procedure to simply delay the input signal by
absolute value of the hold time constraint, the algorithm for this delay was
incorporated into the Vital PropagateWireDelay procedure.
Std_DevelopersKit User’s Manual, V2.24-28

Std_Timing VitalPropagateWireDelay
EXAMPLE:

SIGNAL clock_ipd : std_logic; -- internally wire delayed clock
SIGNAL databus_ipd : std_logic_vector (databus’range);

WIRE_DELAY : block
begin

VitalPropagateWireDelay(
outsig => clock_ipd,

insig => clock,
twire = VitalExtendToFillDelay(twire_clock));

-- Port delays for a vector input of DATASIZE

gen_data: for I in databus’range generate
VitalPropagateWireDelay(

outsig => databus_ipd(i),
insig => databus(i),
twire =

VitalExtendToFillDelay(twire_databus));
end generate;
-- certain IN or INOUT ports will be associated

 -- with negative hold time constraints.
-- In order to properly handle negative hold time

 -- constraints, the affected port is delayed by
-- the hold time.

VitalPropagateWireDelay (OutSig => <portname>_ipd,
InSig => <portname>,
twire => tipdz_<portname>,
t_hold_hi => thold_<port1>_<port2>,
t_hold_lo => thold_<port1>_<port2>

);
end block;
Std_DevelopersKit User’s Manual, V2.2 4-29

AssignPathDelay Std_Timing

 wire
f

AssignPathDelay
handles 0->1, 1->0 interconnect delay
+ strength stripping
+ handles vectored ports
To reflect the input referenced wire delay into the input port of the model.

OVERLOADED DECLARATIONS:

Procedure AssignPathDelay (
Signal SignalOut : OUT std_ulogic;
Constant newval: IN std_ulogic;
Constant oldval : IN std_ulogic;
Constant PathDelay : IN DelayPair;
Constant StripStrength:IN Boolean
);

Procedure AssignPathDelay (
Signal SignalOut : OUT std_ulogic_vector;
Constant newval: IN std_ulogic_vector;
Constant oldval : IN std_ulogic_vector;
Constant PathDelay : IN DelayPairVector;
Constant StripStrength: IN Boolean
);

Procedure AssignPathDelay (
Signal SignalOut : OUT std_logic_vector;
Constant newval: IN std_logic_vector;
Constant oldval : IN std_logic_vector;
Constant PathDelay : IN DelayPairVector;
Constant StripStrength: IN Boolean
);

DESCRIPTION:

AssignPathDelay is an overloaded procedure which assigns either the rising
delay or the falling wire delay to SignalOut depending on the current value o
newval and the previous oldval values.
Std_DevelopersKit User’s Manual, V2.24-30

Std_Timing AssignPathDelay

es
 and

e
nals
CONTROL FLAGS:

If StripStrength = TRUE, then the procedure will map any of the 9 state valu
into either 'U','X','0' or '1'. The conversion is accomplished by setting 'Z', 'W',
'-' to 'X', 'L' is set to '0' and 'H' is set to '1'.

Applicable Types

TYPE DelayPair IS ARRAY (std_ulogic RANGE ‘1’ DOWNTO ‘0’) OF
TIME;
TYPE DelayPairVector IS ARRAY (NATURAL RANGE <>) OF
DelayPair;

Methodology for Handling Input Reflected Path Delays:

Step 1: Declare a generic parameter for each input pin which specifies its wir
delay. The type of this generic parameter will be DelayPair for scalar input sig
and DelayPairVector for array signals.

Generic (
 PathDelay_DTACK : DelayPair := DefaultDelayPair;
 PathDelay_DataBus : DelayPairVector (7 downto 0) :=

 (others => DefaultDelayPair));
Port (DTACK : IN std_logic;
 DataBus : std_logic_vector (7 downto 0));

Step 2: Create one internal signal for each input port, within the enclosing
architecture, to be used to carry the pre-delayed input data.

Signal PortName_internal : std_logic;
Signal PortNameVector_internal : std_logic_vector;
Signal DTACK_internal : std_logic;
Signal DataBus_internal : std_logic_vector (7 downto 0);

AssignPathDelay(...)

DTACK DTACK_internal

internalexternal
Std_DevelopersKit User’s Manual, V2.2 4-31

AssignPathDelay Std_Timing

rnal

 on
are

t
ect

 up

n by
red

s.
Step 3: Call the AssignPathDelay function to assign the path delay to the inte
signal.

AssignPathDelay (SignalOut => DTACK_internal,
newval => DTACK,
oldval => DTACK’last_value,
pathdelay => PathDelay_DTACK,
StripStrength => TRUE);

Step 4: Reference the signalPortName_internal throughout the remainder of
your model.

Multiple Driver-Multiple Receiver

In many cases, a signal is driven by multiple sources. This frequently occurs
interrupt lines and system busses. To handle this situation, two approaches
possible.

Input and Output Delay Lines: Each model can be fitted with input and outpu
delay lines. Output delay lines provide the wire delay to a common interconn
point (assuming it is just one point!). From there, an input delay line will pick
the remaining delay to the input of the driven device.

Multiple Net models: In this case, two models are created, one which is drive
the top driver, the other by the bottom driver. The loads being driven are sha
between the drivers.

Wire delays and loading dependent delays are modeled on a pin-to-pin basi
Signal resolution takes place at the junction of the receivers.
Std_DevelopersKit User’s Manual, V2.24-32

Std_Timing AssignPathDelay

namic
r

rs on

ect
ent.
s

basis.

ing
er
iver
Furthermore, the two models can be interconnected via a signal to handle dy
loading effect. One wire model can inform the other that its driver is no longe
driving, thereby shifting the full load responsibility to the remaining drivers
dynamically.

The AssignPathDelay routine may be utilized to develop this net model.

Multiple Bidirectional Driver-Multiple Bidirectional
Receiver

When the highest accuracy is required, or when there are bidirectional drive
the net, a more sophisticated net model is required. There are a number of
complex timing situations which require advanced modeling of the interconn
delay. In particular, multiply driven bidirectional busses are one such requirem
In modeling bidirectional buses, a implementation would decompose the bu
topology into multiple unidirectional drivers much in the same fashion as
modeling any other type of wire delay. One wire delay model would be
instantiated per driver.

Figure 4-2.

Wire delays and loading dependent delays are then modeled on a pin-to-pin

In the example shown, four identical wire delay models will be used each be
driven by its respective driver. Signal resolution will then occur on the receiv
pin. Since the 1164 standard offers a reflexive resolution function, each rece
will find the same value on its port as if the interconnection had occurred at a
single point in the circuit.

four identical
wire delay models are used
Std_DevelopersKit User’s Manual, V2.2 4-33

Back-Annotation Std_Timing

f
y

ing
Once again, if sophisticated timing is required, the wire models can include a
broadcast signal which informs the other wire delay models of the number o
active drivers on the network. This would allow dynamic load dependent dela
modeling with a minimum of overhead.

Back-Annotation
VITAL identifies a standard path for back-annotation timing information.
Simulators which support this mechanism provide an SDF reader which can
directly associate instance specific timing information with the models requir
the information.
Std_DevelopersKit User’s Manual, V2.24-34

Std_Timing Back-Annotation
Figure 4-3.

User Supplied RTL VHDL

Std_Timing and
VITAL_Timing packages

Functional Verification us-
ing VHDL Simulator

VHDL Synthesizer

VHDL Circuit Model
(Interconnected compo-

ASIC Delay Calculation
pre-layout estimation and
post-layout circuit delays

Synth_Regpak,
Std_Regpak & Referenc-
es to Synthetic Libraries

Add Timing Hooks

Full timing VHDL model

Timing validation using VHDL
Simulator

SDF File

SDF Reader

Std_Timing +
Std_Mempak +
Std_IOpak +
Std_Regpak +
Add’l user defined pkgs.

Board Level VHDL model
and / or testbench

User supplied timing data
via configurations or packag-
Std_DevelopersKit User’s Manual, V2.2 4-35

Back-Annotation Std_Timing

s with

 via

 the

f that

nding
 the
.

The association is accomplished by name matching of the generic parameter
the entries in the SDF file. Therefore, for the process to be successful, strict
adherence to naming conventions must be followed.

When direct SDF import is not available, timing information must be entered
either configurations and/or packages.

Mechanism for passing timing data

A package can be created which contains the timing information required for
interconnection of VHDL models in a typical design. In a typical case, the
package will contain entries for each instance and each generic parameter o
instance.

Library Std_DevelopersKit;
USE Std_DevelopersKit.Std_Timing.all;
Package UserDefinedTimingDataPackage is
-- Timing information for instance U123
Constant U123_tpd_clk_q : time;
Constant U123_tsetup_d_clk : time;
-- Timing information for instance U456
Constant U456_tpd_a_y : time;
Constant U456_tpd_b_y : time;
-- many others.....
End UserDefinedTimingDataPackage;

Each of the deferred constants can then obtain their values from the correspo
package body. The deferred constant mechanism also provides a means for
constants to obtain their values via function calls to the Std_Timing package
Std_DevelopersKit User’s Manual, V2.24-36

Std_Timing Back-Annotation
Package Body

Package Body UserDefinedTimingDataPackage is

-- Intrinsic Delays

tpd_clk_q : MinTypMaxTime := (

t_minimum => 11.5 ns,
t_typical => 16.2 ns,
t_maximum => 8.0 ns,
t_special => UnitDelay);

tpd_a_y : MinTypMaxTime := (4 ns, 5 ns, 6 ns, 1 ns);
tpd_b_y : MinTypMaxTime := (4 ns, 5 ns, 6 ns, 1 ns);
tsetup_d_clk : BaseIncrDelay := (

t_minimum => (0.46 ns, 2.08 ns),
t_typical => (0.56 ns, 3.08 ns),
t_maximum => (0.68 ns, 5.08 ns),
t_special => DefaultBIDelay);

-- Environment Switches

Constant TimeMode : TimeModeType := t_typical;
Constant DeviceVoltage :Voltage := 5.2 v;
Constant DeviceTemp : Temperature := 25 degreesC;
Constant CLoad_q : Capacitance := 5 pf;
Constant CLoad_y : Capacitance := 7 pf;

-- Instance Specific Delay Values

-- Timing information for instance U123
Constant U123_tpd_clk_q : time :=

tpd_clk_q (TimeMode);
Constant U123_tsetup_d_clk : time :=
 BaseIncrToTime(

BIDelay => tsetup_d_clk (TimeMode),
Cload => Cload_q);

-- Timing information for instance U456
Constant U456_tpd_a_y : time := 20 ns;
Constant U456_tpd_b_y : time := 21 ns;
-- many others.....
End UserDefinedTimingDataPackage;
Std_DevelopersKit User’s Manual, V2.2 4-37

Back-Annotation Std_Timing

n

to

 have

 the
 may

e are
Derating of Timing Values

In the previous section, we discovered how to represent the timing informatio
required for a model. In this section we will use that information to handle the
detailed pin-to-pin timing typical of most digital devices and to incorporate
derating factors within that description.

Designing the Derating System

Temperature, Voltage, and Capacitance derating systems have been built in
Std_Timing. To take advantage of this feature, you will need to include the
following generic parameters in your models.

The derating system is built upon an assumption that timing parameters may
an associated derating curve which relates, on a relative basis, the time
specification to some other variable such as system temperature, voltage, or
capacitive load on a port. The following graph shows how the delay of a gate
increase with increasing load capacitance:

A third order polynomial curve fit program is used since it has been found to
closely match the derating curves normally found in device data books. Ther
separate interpolators for voltage, temperature, and capacitance and the
coefficients of the set of three polynomials is maintained in the Std_Timing
package body through a deferred constant named SysCoeff.

Load Capacitance

G
at

e
D

el
ay
Std_DevelopersKit User’s Manual, V2.24-38

Std_Timing Back-Annotation

nts in

s.

own
In Std_Timing we have:

Constant SysCapDerateCoeff_lh : PolynomialCoeff := (d, c, b,
a);

Constant SysCoeff : DerateCoeffArray := (
CapDerateCoeff_lh => SysCapDerateCoeff_lh,
CapDerateCoeff_hl => SysCapDerateCoeff_hl,
TempDerateCoeff_lh => SysTempDerateCoeff_lh,
TempDerateCoeff_hl => SysTempDerateCoeff_hl,
VoltageDerateCoeff_lh => SysVoltageDerateCoeff_lh,
VoltageDerateCoeff_hl => SysVoltageDerateCoeff_hl);

where in PolynomialCoeff is defined as:

Type PolynomialCoeff IS ARRAY (3 DOWNTO 0) OF REAL;

All of the System Coefficients should be established in your own
UserDefinedTimingDataPackage body. In order for you to set the coefficients
to match your particular process or derating curve, you will need to run the
polyregress interpolator described below and then insert the correct coefficie
theUserDefinedTimingDataPackage body.

The _lh and _hl suffixes pertain to 0 fi 1 and 1 fi 0 transition dependent delay

The format of the polynomial equation is the following:

f(x) = a + bx + cx 2 + dx 3

and the coefficients are assigned to the SysCapDerateCoeff constants as sh
below:

Constant SysCapDerateCoeff_lh : PolynomialCoeff :=
(d, c, b, a);
Std_DevelopersKit User’s Manual, V2.2 4-39

Back-Annotation Std_Timing

ing
ld
is

irs,

 load.

ody
inder
PolyRegress

Included with the Std_Timing package are C-code files. The installation
procedure, if followed correctly, has already compiled these files in the std_tim
subdirectory and generated an executable file named polyregress. You shou
create a link to this file from within your home directory or create a path to th
subdirectory.

Polyregress is a polynomial interpolator which, given a set of x-y function pa
will calculate the coefficients of a third order polynomial used to match the
derating curves of propagation delay vs. Temperature, Voltage or Capacitive

Running Polyregress:

Polyregress is executed as shown below:

% polyregress
Please enter x, f(x) data pairs separated by a single
comma and terminated by a carriage return <CR>. If you
enter a <CR> without first having entered a pair of
values, this program will assume you have entered
the last set of data pairs.
Enter [x, f(x)] > 4.6, 1.2
Enter [x, f(x)] > 4.8, 1.1
Enter [x, f(x)] > 5.0, 1.0
Enter [x, f(x)] > 5.2, 0.9
Enter [x, f(x)] > 5.4, 0.8
Enter [x, f(x)] > <CR>
You have entered 5 data points, the polynomial
coefficients are :
f(x) := a + b*x + c* x**2 + d*x**3;
a := 3.5
b := 0.5
c := 0.0
d := 0.0

Once you have completed this task for each of the temperature, voltage and
capacitance curves, then simply edit the UserDefinedTimingDataPackage b
and insert the correct coefficients, recompile the package body and the rema
of the modeling task can proceed.
Std_DevelopersKit User’s Manual, V2.24-40

Std_Timing Back-Annotation

.
The values already provided for each coefficient expression are shown below

 d*x**3 + c*x**2 + b*x + a
CONSTANTSysCapDerateCoeff_lh:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
CONSTANTSysCapDerateCoeff_hl:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
-- Temperature Derating Polynomial Coefficients
CONSTANTSysTempDerateCoeff_lh:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
CONSTANTSysTempDerateCoeff_hl:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
-- Voltage Derating Polynomial Coefficients
CONSTANTSysVoltageDerateCoeff_lh:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
CONSTANTSysVoltageDerateCoeff_hl:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
CONSTANTSysDeratingCoeffDefault:PolynomialCoeff :=

(0.0000, 0.0000, 0.0000, 1.0000);
CONSTANTSysCoeff:DerateCoeffArray :=(

CapDerateCoeff_lh=>SysCapDerateCoeff_lh,
CapDerateCoeff_hl=>SysCapDerateCoeff_hl,
TempDerateCoeff_lh=>SysTempDerateCoeff_lh,
TempDerateCoeff_hl=>SysTempDerateCoeff_hl,
VoltageDerateCoeff_lh=>SysVoltageDerateCoeff_lh,
VoltageDerateCoeff_hl=>SysVoltageDerateCoeff_hl
);
Std_DevelopersKit User’s Manual, V2.2 4-41

Back-Annotation Std_Timing

, it is
ior to
Derating the Circuit Timing

Since time delays do not, most often, change during the course of simulation
most efficient to calculate any deratings and load dependent delays either pr
simulation or during elaboration. The following methodology will be used to
preform elaboration time delay calculations.

TYPE TransitionType IS (tr01, tr10, trxx, tr0z, trz0, tr1z,
trz1);
SUBTYPERiseFall IS TransitionType RANGE tr01 TO tr10;
TYPE RealFactors IS ARRAY (RiseFall) OF REAL;
TYPE RealFactorsVector IS ARRAY (NATURAL RANGE <>) OF
RealFactors;
TYPE PolynomialCoeff IS ARRAY (3 DOWNTO 0) OF REAL;
TYPE CTV IS (CapDerateCoeff_lh , CapDerateCoeff_hl,

TempDerateCoeff_lh, TempDerateCoeff_hl,
VoltageDerateCoeff_lh, VoltageDerateCoeff_hl);

TYPE DerateCoeffArray IS ARRAY (CTV) OF PolynomialCoeff;

The calculations of time delay should be carried out in the
UserDefinedTimingDataPackage declarative region so that the operation is
executed only once during simulator initialization and not for each signal
transaction.
Std_DevelopersKit User’s Manual, V2.24-42

Std_Timing DeratingFactor

zed to
DeratingFactor
Return Real Derating Factor: To return a real, normalized derating factor.

OVERLOADED DECLARATIONS:

Function DeratingFactor (
Constant Coefficients:IN PolynomialCoeff;
Constant SysVoltage:IN Voltage
) return Real;

Function DeratingFactor (
Constant Coefficients:IN PolynomialCoeff;
Constant SysTemp:IN Temperature
) return Real;

Function DeratingFactor (
Constant Coefficients:IN PolynomialCoeff;
Constant OutputLoad:IN Capacitance
) return Real;

DESCRIPTION:

This function accepts the system derating coefficients and a specific system
temperature, voltage or capacitive load and calculates a real number normali
1.00 which reflects the derating of a given time specification verses the
environmental parameter.

This function is overloaded to provide for context dependent deratings of
temperature, voltage and loading.

ASSUMPTIONS:

Capacitance is represented in picofarads.
Voltage is represented in volts.
Temperature is represented in degrees Centigrade.

BUILT IN ERROR TRAPS:

none
Std_DevelopersKit User’s Manual, V2.2 4-43

DeratingFactor Std_Timing
Example:
Package Body UserDefinedTimingDataPackage is

-- Intrinsic Delays

tpd_clk_q : MinTypMaxTime := (

t_minimum => 11.5 ns,
t_typical => 16.2 ns,
t_maximum => 8.0 ns,
t_special => UnitDelay);

tsetup_d_clk : BaseIncrDelay := (
t_minimum => (0.46 ns, 2.08 ns),
t_typical => (0.56 ns, 3.08 ns),
t_maximum => (0.68 ns, 5.08 ns),
t_special => DefaultBIDelay);

-- Environment Switches

Constant TimeMode : TimeModeType := t_typical;
Constant DeviceVoltage :Voltage := 5.2 v;
Constant DeviceTemp : Temperature := 25 degreesC;
Constant CLoad_q : Capacitance := 5 pf;

-- Derating Coefficients

CONSTANT SysTempDerateCoeff_lh :PolynomialCoeff :=
 (0.0000, 0.0000, 0.0000, 1.0000);
CONSTANT SysVoltageDerateCoeff_lh :PolynomialCoeff := (
0.0000, 0.0000, 0.0000, 1.0000);

-- Instance Specific Delay Values

-- Timing information for instance U123
Constant U123_tpd_clk_q : time :=

tpd_clk_q (TimeMode) *
DeratingFactor (SysTempDerateCoeff_lh,

DeviceTemp);
Constant U123_tsetup_d_clk : time :=

BaseIncrToTime(
BIDelay => tsetup_d_clk (TimeMode),
Cload => Cload_q) * DeratingFactor
 (SysTempDerateCoeff_lh,DeviceTemp);

End UserDefinedTimingDataPackage;
Std_DevelopersKit User’s Manual, V2.24-44

Std_Timing DerateOutput

rs or a

s for
g.

each
s the
ould
DerateOutput
Return Real Derating Factors: To return a pair of rising and falling derating
factors.

OVERLOADED DECLARATIONS:

Function DerateOutput (
Constant SysDerCoeff:IN DerateCoeffArray;
Constant SysVoltage:IN Voltage;
Constant SysTemp:IN Temperature;
Constant OutputLoad:IN Capacitance
) return RealFactors;

Function DerateOutput (
Constant outwidth:IN INTEGER;
Constant SysDerCoeff:IN DerateCoeffArray;
Constant SysVoltage:IN Voltage;
Constant SysTemp:IN Temperature;
Constant OutputLoad:IN CapacitanceVector
) return RealFactorsVector;

DESCRIPTION:

This function accepts the system derating coefficients and a specific system
temperature, voltage and capacitive load and calculates a pair of real numbe
vector of pairs of real numbers as the case may be.

The pair of real numbers represents the rising and falling derating curve value
the multiplicative combination of temperature, voltage and capacitive deratin

This function is overloaded to provide for a vector of derating values, one for
sub-element of an output bus, for example. The parameter outwidth indicate
number of elements in the RealFactorsVector which is returned. Outwidth sh
be set to equal the number of elements of the corresponding output bus.

ASSUMPTIONS:

Capacitance is represented in picofarads.
Voltage is represented in volts.
Temperature is represented in degrees Centigrade.
Std_DevelopersKit User’s Manual, V2.2 4-45

DerateOutput Std_Timing

s and
ers....

llows...
EXAMPLES:

The example below refers to a 74138 decoder and a is one of the select line
Q(7 downto 0) are the output lines. In the entity declare the generic paramet

Generic (
 tplh_a_Q : MinTypMaxTimeVector (7 downto 0) :=

(others => DefaultMinTypMaxTime);
 cload_Q : CapacitanceVector (7 downto 0) :=
 (7 => 1.2 pf, -- output Q7
capacitive load
 6 => 1.7 pf, -- output Q6
capacitive load
 5 => 1.4 pf, -- output Q5
capacitive load
 4 => 1.0 pf, -- output Q4
capacitive load
 3 => 1.3 pf, -- output Q3
capacitive load
 2 => 1.0 pf, -- output Q2
capacitive load
 1 => 1.2 pf, -- output Q1
capacitive load
 0 => 1.0 pf -- output Q0
capacitive load
)
);

Now in theUserDefinedTimingDataPackage declarative region, declare
a constant and process the derating during the elaboration phase...

CONSTANT tplh_a_Q_Delay : time_vector (7 downto 0) :=
tplh_a_Q(TimeMode) *
DerateOutput(outwidth=> Q'length,

SysDerCoeff=> SysCoeff,
SysVoltage=> DeviceVoltage,
SysTemp=> DeviceTemp,
OutputLoad=> Cload_Q)(tr01);

Then in your architecture statement part, you can use the derated load as fo

 Y(0) <= foo (a(0)) after tplh_a_Q_delay(0);
Std_DevelopersKit User’s Manual, V2.24-46

Std_Timing Architecture Development

is a

est
uted

r

Architecture Development

Architecture Topology

In general, there are two architectural styles. The first is a purely behavioral
approach with pin-to-pin delays specified within a single process. The other
distributed delay modeling style where the model is built by interconnecting
primitives or submodels together via signals. Distributed delay modeling is b
suited for partitioned design styles. For a more complete discussion of distrib
modeling, please refer to the VITAL specification1. The remainder of this chapte
will address a behavioral modeling style.

1. VITAL 2.2b specification available from the IEEE 1076.4 subcommittee

Entity

Wire Delays

Functionality Section

Propagation Delay Selection

Pin-to-Pin Delay Style
Architecture

Timing Values Passed
into the Model via a stan-
dard Generic
Parameter Interface

Timing Violation Checks
Std_DevelopersKit User’s Manual, V2.2 4-47

Architecture Development Std_Timing

he
ided

is rule
In previous chapters, the flow of timing data into the generic parameters of t
VHDL model was addressed. Here the standard interface specifications prov
a means for back-annotation information to make its way into the model.

It is the task of the architecture to apply this timing information to the model.
Experience has shown that for most modeling tasks, a single
process modeling methodology is advantageous. There are exceptions to th
however, particularly in the case of tri-state bus drivers.

This chapter will identify an architecture style which can be readily used to
provide high-quality timing accuracy when modeling macrocells through to
standard component models.

Architecture Example:

ARCHITECTURE Behavioral OF dff IS
--
-- Internal “Delayed” Input signals
--
SIGNAL D_ipd, CLK_ipd : std_logic := ‘X’;
BEGIN
--
-- Simple Interconnect Delay Handling
--
WIRE_DELAY : BLOCK
 AssignPathDelay (D_ipd,D,’X’,tipd_D,true);
 AssignPAthDelay (CLK_ipd,CLK,’X’,tipd_CLK,true);
END BLOCK;

-- Functionality Section

SingleProcessModel : PROCESS (CLK_ipd, D_ipd)

VARIABLE Tviol_D_CLK : X01 := ‘0’;
VARIABLE Q_zd : std_logic := ‘X’
VARIABLE CLK_GlitchData : GlitchDataType;

BEGIN

 -- Timing Violations Section

IF (TimingChecksON) THEN
Std_DevelopersKit User’s Manual, V2.24-48

Std_Timing Architecture Development

are
 VitalTimingCheck (D_ipd, "D",
 CLK_ipd, "CLK",
 tsetup_D_CLK(tr01),
 tsetup_D_CLK(tr10),
 (CLK_ipd='1'),
 InstancePath & "DFF",
 Tviol_D_CLK);

END IF ;

 -- Functionality Section

IF Rising_edge (CLK_ipd) THEN
 Q_zd <= D_ipd;

END IF ;

 -- Pin-to-Pin Delay Section

 VitalPropagatePathDelay (
 OutSignal => Q,
 OutSignalName => “Q”,
 OutTemp => Q_zd,
 Paths(0).InputChangeTime => CLK_ipd’last_event,
 Paths(0).PathDelay => tpd_CLK_Q,
 Paths(0).Condition => TRUE,
 GlitchData => GlitchData,
 GlitchMode => MessagePlusX,
 GlitchKind => OnEvent);
END PROCESS;
END Behavioral;

Timing Violation Section

A generic parameter “TimingChecksOn” controls whether timing constraints
checked. Std_Timing and VITAL_Timing each contain timing constraint
checking routines which can be called upon to detect timing violations.

Common Parameters:

The following parameters appear as formal parameters of the subsequent
subprograms.
Std_DevelopersKit User’s Manual, V2.2 4-49

Architecture Development Std_Timing

ing

as a
alled

l
a D-

s a
alled

SE,
that
for

is

tance

al
L
nt
ral
• TestPort::= A SIGNAL parameter which represents the signal undergo
the timing violation test. For example, the “D” signal of a D-flip-flop.

• TestPortName::= If the name of the signal is passed to this parameter
STRING, then the signal name will appear in the assertion statement c
by the subprogram.

• RefPort::= A SIGNAL parameter which represents the reference signa
against which the TestPort is tested. For example, the “CLK” signal of
flip-flop.

• RefPortName::= If the name of the signal is passed to this parameter a
STRING, then the signal name will appear in the assertion statement c
by the subprogram.

• condition::= If TRUE, then the check will be performed; otherwise no
check will be performed and no assertions reported. If condition is FAL
then the return value is FALSE. This parameter has been provided so
procedures can be used concurrently while maintaining a mechanism
disabling the timing check under certain circumstances.

• HeaderMsg::= This string will be included in the assertion message. Th
string may contain any additional message desired to be produced
whenever an assertion occurs. However, it is customary to pass the ins
path name of the model which is testing the timing violation.

• WarningsON::= If TRUE, then assertion messages will be created
whenever a timing violation occurs. This switch has no effect on the
performance of the routine’sdetection of the timing violation, it’s only
effect is on the issuance of an assertion message.

Procedures vs. Functions

Std_Timing and VITAL_Timing packages each offer procedural and function
versions of subprograms. The procedural versions frequently contain SIGNA
class formal parameters which allow the procedure to be used in a concurre
modeling style (non-VITAL). The functional versions can be used in behavio
modeling styles.
Std_DevelopersKit User’s Manual, V2.24-50

Std_Timing Architecture Development

dent

 is
 ‘0’ to
h as
e
e

SOFT vs. Regular Assertion Messages

Std_Timing routines provide additional flexibility over that of the
VITAL_Timing routines.

• Std_Timing routines allow you to disable assertion messages indepen
of the detection of the timing violation.

• Std_Timing routines offer the detection of “soft” violations. A distinction
made between value transitions which cause a “state” change, such as
‘1’, versus value transitions which are simply a change in strength, suc
‘L’ to ‘0’. Timing violations which have resulted due to a strength chang
are identified as “SOFT” violations. All other assertions will not have th
“SOFT” designation and are known as “HARD” violations.
Std_DevelopersKit User’s Manual, V2.2 4-51

SetupViolation Std_Timing

ge
 setup
SetupViolation
Checks for Setup Time Violations: SetupViolation issues an assertion messa
and returns a TRUE value whenever changes on the TestPort occur within a
time constraint window with respect to transitions on a RefPort signal.

DECLARATION:

FUNCTION SetupViolation (
Signal TestPort:IN std_ulogic;
ConstantTestPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant t_setup_hi:IN TIME := 0 ns;
Constant t_setup_lo :IN TIME := 0 ns;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”;
ConstantWarningsON:INBOOLEAN := TRUE
) return BOOLEAN ;

DESCRIPTION:

This function will return TRUE if a setup violation occurs, FALSE otherwise.

• t_setup_hi::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘1’.

• t_setup_lo::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘0’.

tsetup thold

Test Signal

Ref. Signal

*** shown with tsetup
and thold as positive numbers

tsetup

thold

Ref. Signal

*** shown with tsetup pos.
and thold as negative numb

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.24-52

Std_Timing SetupViolation

ve

t not
ASSUMPTIONS:

t_setup_hi and t_setup_lo must both be non-negative numbers. If negative setup
time specifications are expected, then the user should use the combined
“TimingViolation” function which has been designed to accommodate negati
setup and hold times.

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the setup time
specifications.

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the setup time window specified. This rare occurrence would
indicate a possible circuit instability, even though the state had not actually
changed.

EXAMPLES:

If setupviolation (
testport=> D,
testportname=> “D”,
refport=> CLK,
refportname=> “CLK”,
t_setup_hi=> 22.5 ns,
t_setup_lo=> 21.0 ns,
condition=> rising_edge(clk),
headerMsg=> “/u1/u23/u224”

then
Q <= ‘X’;

else
Q <= ‘Z’;

end if;
Std_DevelopersKit User’s Manual, V2.2 4-53

SetupCheck Std_Timing

ow
SetupCheck
Checks for Setup Time Violations: SetupCheck issues an assertion message
whenever changes on the TestPort occur within a setup time constraint wind
with respect to transitions on a RefPort signal.

DECLARATION:

Procedure SetupCheck (
Signal TestPort:IN std_ulogic;
ConstantTestPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant t_setup_hi:IN TIME := 0 ns;
Constant t_setup_lo :IN TIME := 0 ns;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”
);

DESCRIPTION:

This procedure will report and assertion if a setup violation occurs.

• t_setup_hi::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘1’.

• t_setup_lo::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘0’.

Figure 4-4.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal

*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.24-54

Std_Timing SetupCheck

ve

t not
ASSUMPTIONS:

t_setup_hi and t_setup_lo must both be non-negative numbers. If negative setup
time specifications are expected, then the user should use the combined
“TimingViolation” function which has been designed to accommodate negati
setup and hold times.

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the setup time
specifications.

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the setup time window specified. This rare occurrence would
indicate a possible circuit instability, even though the state had not actually
changed.

EXAMPLES:

setupcheck (
testport=> D,
testportname=> “D”,
refport=> CLK,
refportname=> “CLK”,
t_setup_hi => 22.5 ns,
t_setup_lo=> 21.0 ns,
condition=> rising_edge(clk),
headerMsg=> “/u1/u23/u224”

);
Std_DevelopersKit User’s Manual, V2.2 4-55

HoldViolation Std_Timing

 hold

ge

ge
HoldViolation
Checks for Hold Time Violations: HoldViolation issues an assertion message
and returns a TRUE value whenever changes on the TestPort occur within a
time constraint window with respect to transitions on a RefPort signal.

DECLARATION:

Function HoldViolation (
Signal TestPort:IN std_ulogic;
ConstantTestPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant t_hold_hi:IN TIME := 0 ns;
Constant t_hold_lo :IN TIME := 0 ns;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”;
ConstantWarningsON:IN BOOLEAN := TRUE
) return BOOLEAN ;

DESCRIPTION:

This function will return TRUE if a hold violation occurs, FALSE otherwise.

• t_hold_hi::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘1’.

• t_hold_lo::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘0’.

Figure 4-5.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal
*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.24-56

Std_Timing HoldViolation

ve

t not
ASSUMPTIONS:

t_hold_hi and t_hold_lo must both be non-negative numbers. If negative hold
time specifications are expected, then the user should use the combined
“TimingViolation” function which has been designed to accommodate negati
setup and hold times.

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the hold time
specifications.

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the hold time window specified. This rare occurrence would
indicate a possible circuit instability, even though the state had not actually
changed.

EXAMPLES:

If holdviolation (
testport=> D,
testportname=> “D”,
refport=> CLK,
refportname=> “CLK”,
t_hold_hi => 22.5 ns,
t_hold_lo=> 21.0 ns,
condition=> (clk = ‘1’),
headerMsg=> “/u1/u23/u224”

then
Q <= ‘X’;

else
Q <= ‘Z’;

end if;
Std_DevelopersKit User’s Manual, V2.2 4-57

HoldCheck Std_Timing

w

ge

ge
HoldCheck
Checks for Hold Time Violations: HoldViolation issues an assertion message
whenever changes on the TestPort occur within a hold time constraint windo
with respect to transitions on a RefPort signal.

DECLARATION:

Procedure HoldCheck (
Signal TestPort:IN std_ulogic;
ConstantTestPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant t_hold_hi:IN TIME := 0 ns;
Constant t_hold_lo :IN TIME := 0 ns;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”
);

DESCRIPTION:

This procedure will assert an error message if a hold violation occurs.

• t_hold_hi::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘1’.

• t_hold_lo::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘0’.

Figure 4-6.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal
*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.24-58

Std_Timing HoldCheck

ve

t not
ASSUMPTIONS:

t_hold_hi and t_hold_lo must both be non-negative numbers. If negative hold
time specifications are expected, then the user should use the combined
“TimingViolation” function which has been designed to accommodate negati
setup and hold times

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the hold time
specifications.

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the hold time window specified. This rare occurrence would
indicate a possible circuit instability, even though the state had not actually
changed.

EXAMPLES:

HoldCheck (testport=> D,
testportname=> “D”,
refport=> CLK,
refportname=> “CLK”,
t_hold_hi => 22.5 ns,
t_hold_lo=> 21.0 ns,
condition=> (clk = ‘1’),
headerMsg=> “/u1/u23/u224”

);
Std_DevelopersKit User’s Manual, V2.2 4-59

VitalTimingCheck Std_Timing

 of a
 (b)
VitalTimingCheck
Checks for Setup and Hold Violations
+ vectored TestPort + Outputs assertion message
+ returns violation flag + X01 violation flags
+ behavioral usage ONLY
Found in the VITAL_Timing package, this procedure (a) detects the presence
setup or hold violation on the "TestPort" signal with respect to the "RefPort",
sets a flag named "violation" accordingly and (c) issues an appropriate error
message.

OVERLOADED DECLARATIONS:

Violation return type is Boolean:

PROCEDURE VitalTimingCheck (
SIGNAL TestPort: IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName: INSTRING := "";-- name OF the signal
SIGNAL RefPort: INstd_ulogic; -- SIGNAL referenced
CONSTANT RefPortName: INSTRING := "";-- name OF the ref signal
CONSTANT t_setup_hi: INTIME := 0 ns;-- setup for TestPort='1'
CONSTANT t_setup_lo: INTIME := 0 ns;-- setup for TestPort= 0'
CONSTANT t_hold_hi: INTIME := 0 ns;-- hold for TestPort='1'
CONSTANT t_hold_lo: INTIME := 0 ns;-- hold for TestPort='0'
CONSTANT CheckEnabled: INBOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition:IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
CONSTANT HeaderMsg :INSTRING := " ";
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE Violation : OUT BOOLEAN);

PROCEDURE VitalTimingCheck (
SIGNAL TestPort : IN std_logic_vector;-- SIGNAL being tested
CONSTANT TestPortName : IN STRING := "";-- name OF the signal
SIGNAL RefPort : IN std_ulogic; -- SIGNAL being referenced
CONSTANT RefPortName : IN STRING := ""; -- name OF the ref signal
CONSTANT t_setup_hi : IN TIME := 0 ns; -- setup TestPort = '1'
CONSTANT t_setup_lo : IN TIME := 0 ns; -- setup TestPort = '0'
CONSTANT t_hold_hi : IN TIME := 0 ns;-- hold for TestPort = '1'
CONSTANT t_hold_lo : IN TIME := 0 ns; -- hold for TestPort = '0'
Std_DevelopersKit User’s Manual, V2.24-60

Std_Timing VitalTimingCheck

ng
CONSTANT CheckEnabled : IN BOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition: IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
CONSTANT HeaderMsg : IN STRING := " ";
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE TestPortLastEvent: INOUT DelayArrayTypeXX;
-- records time of test port events

VARIABLE TestPortLastValue: INOUT std_logic_vector;
-- records previous test port values

VARIABLE Violation : OUT BOOLEAN);

PROCEDURE VitalTimingCheck (
SIGNAL TestPort : IN std_ulogic_vector;-- SIGNAL being tested
CONSTANT TestPortName : IN STRING := ""; -- name OF the signal
SIGNAL RefPort : IN std_ulogic;-- SIGNAL being referenced
CONSTANT RefPortName : IN STRING := "";-- name OF the ref signal
CONSTANT t_setup_hi : IN TIME := 0 ns;-- setup for TestPort = '1'
CONSTANT t_setup_lo : IN TIME := 0 ns;-- setup for TestPort = '0'
CONSTANT t_hold_hi : IN TIME := 0 ns; -- hold for TestPort = '1'
CONSTANT t_hold_lo : IN TIME := 0 ns; -- hold for TestPort = '0'
CONSTANT CheckEnabled : IN BOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition: IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
CONSTANT HeaderMsg : IN STRING := " ";
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE TestPortLastEvent: INOUT DelayArrayTypeXX;
-- records time of test port events

VARIABLE TestPortLastValue: INOUT std_ulogic_vector;
-- records previous test port values

VARIABLE Violation : OUT BOOLEAN);

Violation return type is X01:

‘X’ indicates that a violation HAS occurred. (HINT: you may use this value alo
with an XOR gate for the purpose of Xgeneration)

‘0’ indicates that a violation HAS NOT occured.‘1’ is never returned.
Std_DevelopersKit User’s Manual, V2.2 4-61

VitalTimingCheck Std_Timing
PROCEDURE VitalTimingCheck (
SIGNAL TestPort : IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName : IN STRING := "";-- name OF the signal
SIGNAL RefPort : IN std_ulogic;-- SIGNAL being referenced
CONSTANT RefPortName : IN STRING := "";-- name OF the ref signal
CONSTANT t_setup_hi : IN TIME := 0 ns;-- setup for TestPort = '1'
CONSTANT t_setup_lo : IN TIME := 0 ns;-- setup for TestPort = '0'
CONSTANT t_hold_hi : IN TIME := 0 ns; -- hold for TestPort = '1'
CONSTANT t_hold_lo : IN TIME := 0 ns; -- hold for TestPort = '0'
CONSTANT CheckEnabled : IN BOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition: IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
CONSTANT HeaderMsg : IN STRING := " ";
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE Violation : OUT X01);

PROCEDURE VitalTimingCheck (
SIGNAL TestPort : IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName : IN STRING := "";-- name OF the signal
SIGNAL RefPort : IN std_ulogic;-- SIGNAL being referenced
CONSTANT RefPortName : IN STRING := "";-- name OF the ref signal
CONSTANT t_setup_hi : IN TIME := 0 ns;-- setup for TestPort =
'1'
CONSTANT t_setup_lo : IN TIME := 0 ns;-- setup for TestPort =
'0'
CONSTANT t_hold_hi : IN TIME := 0 ns;-- hold for TestPort = '1'
CONSTANT t_hold_lo : IN TIME := 0 ns;-- hold for TestPort = '0'
CONSTANT CheckEnabled : IN BOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition: IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
CONSTANT HeaderMsg : IN STRING := " ";
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE TestPortLastEvent: INOUT DelayArrayTypeXX;
-- records time of test port events

VARIABLE TestPortLastValue: INOUT std_logic_vector;
-- records previous test port values

VARIABLE Violation : OUT X01);

PROCEDURE VitalTimingCheck (
Std_DevelopersKit User’s Manual, V2.24-62

Std_Timing VitalTimingCheck

he

he
SIGNAL TestPort : IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName : IN STRING := "";-- name OF the signal
SIGNAL RefPort : IN std_ulogic;-- SIGNAL being referenced
CONSTANT RefPortName : IN STRING := "";-- name OF the ref signal
CONSTANT t_setup_hi : IN TIME := 0 ns;-- setup for TestPort = '1'
CONSTANT t_setup_lo : IN TIME := 0 ns;-- setup for TestPort = '0'
CONSTANT t_hold_hi : IN TIME := 0 ns; -- hold for TestPort = '1'
CONSTANT t_hold_lo : IN TIME := 0 ns;-- hold for TestPort = '0'
CONSTANT CheckEnabled : IN BOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition: IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
CONSTANT HeaderMsg : IN STRING := " ";
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE TestPortLastEvent: INOUT DelayArrayTypeXX;
-- records time of test port events

VARIABLE TestPortLastValue: INOUT std_ulogic_vector;
-- records previous test port values

VARIABLE Violation : OUT X01);

DESCRIPTION:

• t_setup_hi ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='1' state without causing a setup violation.

• t_setup_lo ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='0' state without causing a setup violation.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal
*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.2 4-63

VitalTimingCheck Std_Timing

 a
s

last
which
r

e.
• t_hold_hi ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='1' state without causing a hold violation.

• t_hold_lo ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='0' state without causing a hold violation.

• CheckEnabled ::= The function immediately checks CheckEnabled for
TRUE value. If the value is FALSE, the FUNCTION immediately return
with the value of FALSE (‘0’ if the Violation type is X01).

• RefTransition ::=This specifies the condition on which an event on the
RefPort will be considered to be the reference event. For instance
(CLK=’1’) means that the reference event is any transition to ‘1’ by the
signal CLK.

• HeaderMsg ::= This HeaderMsg string will accompany any assertion
messages produced by this function.

• TimeMarker ::= Holds the time of the last reference transition and the
time that a hold check passed. Must be associated with an aggregate
initializes this variable. TimeMarker => (-500 ns, NULL, NULL) The use
should never change the state of that variable

• Violation ::= BOOLEAN: This routine will set the flag TRUE if a
violation exists and will set the flag FALSE if no violation exists.
X01: The routine will produce an ‘X’ if a violation occurred, ‘0’ otherwis

For vectors:

• TestPortLastEvent ::= This VARIABLE is used to store the last time in
which TestPort changed value.

• TestPortLastValue ::= This VARIABLE is used to store the last value
taken on by TestPort prior to its current value.

ASSUMPTIONS:

1. For positive hold times both a setup and a hold error may be reported.
Std_DevelopersKit User’s Manual, V2.24-64

Std_Timing VitalTimingCheck

tup

tPort
his
g

2. For both hold times negative, only one error may be reported per clock
cycle and that error will be a setup error.

3. For one negative hold time the procedure will only report one error (se
or hold) per clock cycle.

4. Negative setup times are not allowed.

5. Regardless of whether CheckEnabled is true, the transitions of the Tes
are recorded by the routine. In order for this routine to work correctly, t
procedure shall not be placed in a branch other than to disable all timin
checks.
Std_DevelopersKit User’s Manual, V2.2 4-65

VitalTimingCheck Std_Timing

tion
ise,
BUILT IN ERROR TRAPS:

If the observed setup or hold time is less than the specified values, an asser
message will be issued and the variable “Violation” will be set TRUE. Otherw
no message will be asserted and the variable “Violation” will be set FALSE.

EXAMPLE:

VARIABLE TimeMarkerRLCLK : TimeMarkerType :=
(-500 ns, NULL, NULL);

-- Timing Check Section

IF (TimingChecksON) THEN

-- setup RL high or low before rising CLK
-- hold RL high or low after rising CLK
VitalTimingCheck (

TestPort=>RL_CLK_ipd,
TestPortName=>"RL",
RefPort=>CLK_ipd,
RefPortName=>"CLK",
t_setup_hi=>tsetup_RL_CLK(tr01),
t_setup_lo=>tsetup_RL_CLK(tr10),
t_hold_hi=>thold_RL_CLK(tr01),
t_hold_lo=>thold_RL_CLK(tr10),
CheckEnabled=>TRUE,
RefTRansition=>(CLK_ipd='1'),
HeaderMsg=>InstancePath & "/DLE24",
TimeMarker=>TimeMarkerRLCLK,
Violation=>Tviol_RL_CLK);

END IF; -- Timing Check Section
Std_DevelopersKit User’s Manual, V2.24-66

Std_Timing VitalSetupHoldCheck

n"

lation,
order
VitalSetupHoldCheck
Checks for Setup and Hold Violations

+ NO vectored TestPort support
+ does not output assertion message
+ behavioral usage ONLY
+ Can be used with VitalReportSetupHoldViolation
 for assertion message support

This procedure (a) detects the presence of a setup or hold violation on the
"TestPort" signal with respect to the "RefPort", (b) sets a flag named "violatio
accordingly and (c) issues an appropriate error message.

This procedure differs from the VitalTimingCheck procedure in that this
procedure does not issue any assertion messages in the event of a timing vio
whereas the VitalTimingCheck procedure issues its own error messages. In
to issue error messages, this procedure must be used in conjunction with the
VitalReportSetupHoldViolation and/or VitalReportRlseRmvlViolation
procedures.

DECLARATION:

PROCEDURE VitalSetupHoldCheck (
SIGNAL TestPort : IN std_ulogic; -- SIGNAL being tested
SIGNAL RefPort : IN std_ulogic;-- SIGNAL being referenced
CONSTANT t_setup_hi : IN TIME := 0 ns;-- setup for TestPort = '1'
CONSTANT t_setup_lo : IN TIME := 0 ns;-- setup for TestPort = '0'
CONSTANT t_hold_hi : IN TIME := 0 ns;-- hold for TestPort = '1'
CONSTANT t_hold_lo : IN TIME := 0 ns;-- hold for TestPort = '0'
CONSTANT CheckEnabled : IN BOOLEAN; -- true ==> spec checked.
CONSTANT RefTransition: IN BOOLEAN; -- specify reference edge

-- i.e. CLK = '1' for rising edge
VARIABLE TimeMarker : INOUT TimeMarkerType;

-- holds time of last reference transition
-- and the last time a hold check passed

VARIABLE TimingInfo : OUT TimingInfoType
 -- violation information

);

APPLICABLE TYPES:
TYPE ViolationType is (NoViolation, SetupViolation,
HoldViolation);
Std_DevelopersKit User’s Manual, V2.2 4-67

VitalSetupHoldCheck Std_Timing

he
'1'

he
'0'

'1'

'0'
TYPE TimingInfoType is RECORD
 Violation : ViolationType;-- kind of violation which
occurred
 ObservedTime : time; -- when the violation occurred
 ExpectedTime : time; -- when the transition was
expected
 ConstrntTime : time; -- what the spec stated
 State : X01; -- state of the tested signal
END RECORD;

DESCRIPTION:

• t_setup_hi ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
state without causing a setup violation.

• t_setup_lo ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
state without causing a setup violation.

• t_hold_hi ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
state without causing a hold violation.

• t_hold_lo ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
state without causing a hold violation.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal
*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.24-68

Std_Timing VitalSetupHoldCheck

 a
s

last
which
r

tup

tPort
his
g

• CheckEnabled ::= The function immediately checks CheckEnabled for
TRUE value. If the value is FALSE, the FUNCTION immediately return
with the value of FALSE (‘X’ if the Violation type is X01).

• RefTransition ::=This specifies the condition on which an event on the
RefPort will be considered to be the reference event. For instance
(CLK=’1’) means that the reference event is any transition to ‘1’ by the
signal CLK.

• TimeMarker ::= Holds the time of the last reference transition and the
time that a hold check passed. Must be associated with an aggregate
initializes this variable. TimeMarker => (-500 ns, NULL, NULL) The use
should never change the state of that variable

• TimingInfo ::= This contains the violation information

ASSUMPTIONS:

1. For positive hold times both a setup and a hold error may be reported.

2. For both hold times negative, only one error may be reported per clock
cycle and that error will be a setup error.

3. For one negative hold time the procedure will only report one error (se
or hold) per clock cycle.

4. Negative setup times are not allowed.

5. Regardless of whether CheckEnabled is true, the transitions of the Tes
are recorded by the routine. In order for this routine to work correctly, t
procedure shall not be placed in a branch other than to disable all timin
checks.
Std_DevelopersKit User’s Manual, V2.2 4-69

VitalSetupHoldCheck Std_Timing
EXAMPLE:

VARIABLE TimingInfoRLCLK : TimingInfoType;
VARIBALE TimeMarketRLCLK : TimeMarkerType :=

(-500 ns, NULL, NULL);

-- Timing Check Section

IF (TimingChecksON) THEN

-- setup RL high or low before rising CLK
-- hold RL high or LOW after rising CLK
VitalTimingCheck (

TestPort=>RL_CLK_ipd,
RefPort=>CLK_ipd,
t_setup_hi=>tsetup_RL_CLK(tr01),
t_setup_lo=>tsetup_RL_CLK(tr10),
t_hold_hi=>thold_RL_CLK(tr01),
t_hold_lo=>thold_RL_CLK(tr10),
CheckEnabled=>TRUE,
RefTRansition=>(CLK_ipd='1'),
TimeMarker=>TimeMarkerRLCLK,
TimingInfo=>TimingInfoRLCLK);

VitalReportSetupHoldViolation (
TestPortName=>"RL",
RefPortName=>"CLK",
HeaderMsg=>InstancePath & "/DLE24",
TimingInfo=>TimingInfoRLCLK);

Violation := TimingInfoRLCLK.Violation /= NoViolation;
END IF; -- Timing Check Section
Std_DevelopersKit User’s Manual, V2.24-70

Std_Timing VitalReportSetupHoldViolation

ck

age,
 of
s
e at

ting

s

s

VitalReportSetupHoldViolation
Reports the Setup/Hold assertion messages detected by VitalSetupHoldChe

This routine issues an ERROR level assertion which includes: Header Mess
Violation Type (i.e. Setup, Hold), State of the Violation (i.e. HI, LO), the name
the Tested Signal, the name of the Reference Signal upon which the test wa
based, the Expected time response, the Observed time response and the tim
which the violation occurred.

DECLARATION:

PROCEDURE VitalReportSetupHoldViolation (
CONSTANT TestPortName : IN string := "";-- name of the tested
signal
CONSTANT RefPortName : IN string := ""; -- name of the
reference
CONSTANT HeaderMsg : IN string := " ";
CONSTANT TimingInfo :IN TimingInfoType); -- Timing Violation
Info.

DESCRIPTION:

Issues NO assertion message unless TimingInfo.Violation /= NoViolation.
Otherwise, this procedure will issue ERROR level assertion messages repor
the details of the failed setup/hold violation.

• TestPortName ::= STRING name of the port undergoing the violation
test.

• RefPortName ::= STRING name of the port against which the testport’
transitions are referenced.

• HeaderMsg ::= This HeaderMsg string will accompany any assertion
messages produced by this function.

• TimingInfo ::= This variable RECORD holds information from a previou
usage of VitalSetupHoldCheck
Std_DevelopersKit User’s Manual, V2.2 4-71

VitalReportSetupHoldViolation Std_Timing
APPLICABLE TYPES:

TYPE ViolationType is (NoViolation, SetupViolation,
HoldViolation);
TYPE TimingInfoType is RECORD
 Violation : ViolationType;-- kind of violation which
occurred
 ObservedTime : time; -- when the violation occurred
 ExpectedTime : time; -- when the transition was
expected
 ConstrntTime : time; -- what the spec stated
 State : X01; -- state of the tested signal
END RECORD;
Std_DevelopersKit User’s Manual, V2.24-72

Std_Timing VitalReportRlseRmvlViolation

age,
e

e test
e time

ting

s

s

VitalReportRlseRmvlViolation
Reports the Release/Removal assertion messages detected by
VitalSetupHoldCheck

This routine issues an ERROR level assertion which includes: Header Mess
Violation Type (i.e. Release, Removal), State of the Violation (i.e. HI, LO), th
name of the Tested Signal, the name of the Reference Signal upon which th
was based, the Expected time response, the Observed time response and th
at which the violation occurred.

DECLARATION:

PROCEDURE VitalReportRlseRmvViolation (
CONSTANT TestPortName : IN string := "";-- name of the tested
signal
CONSTANT RefPortName : IN string := ""; -- name of the
reference
CONSTANT HeaderMsg : IN string := " ";
CONSTANT TimingInfo :IN TimingInfoType); -- Timing Violation
Info.

DESCRIPTION:

Issues NO assertion message unless TimingInfo.Violation /= NoViolation.
Otherwise, this procedure will issue ERROR level assertion messages repor
the details of the failed release/removal violation.

• TestPortName ::= STRING name of the port undergoing the violation
test.

• RefPortName ::= STRING name of the port against which the testport’
transitions are referenced.

• HeaderMsg ::= This HeaderMsg string will accompany any assertion
messages produced by this function.

• TimingInfo ::= This variable RECORD holds information from a previou
usage of VitalSetupHoldCheck
Std_DevelopersKit User’s Manual, V2.2 4-73

VitalReportRlseRmvlViolation Std_Timing
APPLICABLE TYPES:

TYPE ViolationType is (NoViolation, SetupViolation,
HoldViolation);
TYPE TimingInfoType is RECORD
 Violation : ViolationType;-- kind of violation which
occured
 ObservedTime : time; -- when the violation occurred
 ExpectedTime : time; -- when the transition was
expected
 ConstrntTime : time; -- what the spec stated
 State : X01; -- state of the tested signal
END RECORD;
Std_DevelopersKit User’s Manual, V2.24-74

Std_Timing TimingViolation

 setup
)

he
TimingViolation
Checks for Setup and Hold Violations

+ NO vectored TestPort
+ Outputs assertion message
+ behavioral usage ONLY

Found in the Std_Timing package, this function (a) detects the presence of a
or hold violation on the "TestPort" signal with respect to the "RefPort", and (b
issues an appropriate error message.

DECLARATION:

Function TimingViolation (
SIGNAL TestPort: IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName: INSTRING := "";-- name OF the signal
SIGNAL RefPort: INstd_ulogic; -- SIGNAL referenced
CONSTANT RefPortName: INSTRING := "";-- name OF the ref signal
CONSTANT t_setup_hi: INTIME := 0 ns;-- setup for TestPort='1'
CONSTANT t_setup_lo: INTIME := 0 ns;-- setup for TestPort= 0'
CONSTANT t_hold_hi: INTIME := 0 ns;-- hold for TestPort='1'
CONSTANT t_hold_lo: INTIME := 0 ns;-- hold for TestPort='0'
CONSTANT HeaderMsg :INSTRING := " "
) return BOOLEAN;

DESCRIPTION:

• t_setup_hi ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='1' state without causing a setup violation.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal
*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.2 4-75

TimingViolation Std_Timing

he

he

tup

ld

t not

ually
• t_setup_lo ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='0' state without causing a setup violation.

• t_hold_hi ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='1' state without causing a hold violation.

• t_hold_lo ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='0' state without causing a hold violation.

• condition ::= The function immediately checks condition for a TRUE
value. If the value is FALSE, the FUNCTION immediately returns with t
value of FALSE.

• HeaderMsg ::= This HeaderMsg string will accompany any assertion
messages produced by this function.

ASSUMPTIONS:

1. For positive hold times both a setup and a hold error may be reported.

2. For both hold times negative, only one error may be reported per clock
cycle and that error will be a setup error.

3. For one negative hold time the procedure will only report one error (se
or hold) per clock cycle.

4. Negative setup times are not allowed.

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the setup or ho
time specifications.

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the setup or hold time window specified. This rare occurrence
would indicate a possible circuit instability, even though the state had not act
changed.
Std_DevelopersKit User’s Manual, V2.24-76

Std_Timing TimingViolation
EXAMPLE:

-- Timing Check Section

IF (TimingChecksON) THEN

If timingviolation (
testport=> D,
testportname=> “D”,
refport=> CLK,
refportname=> “CLK”,
t_setup_hi=> 32.0 ns,
t_setup_lo=> 22.1 ns,
t_hold_hi => 22.5 ns,
t_hold_lo=> 21.0 ns,
condition=> (clk = ‘1’),
headerMsg=> “/u1/u23/u224”

) then
Q <= ‘X’;

else
Q <= ‘Z’;

end if;

END IF; -- Timing Check Section
Std_DevelopersKit User’s Manual, V2.2 4-77

TimingCheck Std_Timing

f a
 (b)
TimingCheck
Checks for Setup and Hold Violations

+ vectored TestPort + Outputs assertion message
+ returns violation flag

Found in the Std_Timing package, this procedure (a) detects the presence o
setup or hold violation on the "TestPort" signal with respect to the "RefPort",
sets a flag named "violation" accordingly and (c) issues an appropriate error
message.

OVERLOADED DECLARATIONS:

Procedure TimingCheck (
SIGNAL TestPort: IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName: INSTRING := "";-- name OF the signal
SIGNAL RefPort: INstd_ulogic; -- SIGNAL referenced
CONSTANT RefPortName: INSTRING := "";-- name OF the ref signal
CONSTANT t_setup_hi: INTIME := 0 ns;-- setup for TestPort='1'
CONSTANT t_setup_lo: INTIME := 0 ns;-- setup for TestPort= 0'
CONSTANT t_hold_hi: INTIME := 0 ns;-- hold for TestPort='1'
CONSTANT t_hold_lo: INTIME := 0 ns;-- hold for TestPort='0'
CONSTANT condition:IN BOOLEAN := TRUE; -- set=TRUE to check
spec
CONSTANT HeaderMsg :INSTRING := " ";
VariableViolation:INOUT Boolean
) ;

Procedure TimingCheck (
SIGNAL TestPort: IN std_ulogic_vector; -- SIGNAL tested
CONSTANT TestPortName: INSTRING := "";-- name OF the signal
SIGNAL RefPort: INstd_ulogic; -- SIGNAL referenced
CONSTANT RefPortName: INSTRING := "";-- name OF the ref signal
CONSTANT t_setup_hi: INTIME := 0 ns;-- setup for TestPort='1'
CONSTANT t_setup_lo: INTIME := 0 ns;-- setup for TestPort= 0'
CONSTANT t_hold_hi: INTIME := 0 ns;-- hold for TestPort='1'
CONSTANT t_hold_lo: INTIME := 0 ns;-- hold for TestPort='0'
CONSTANT condition:IN BOOLEAN := TRUE; -- set=TRUE to check
spec
CONSTANT HeaderMsg :INSTRING := " ";
VariableTestPortLastEvent:INOUT Time_Vector;
VariableTestPortLastValue:INOUT std_ulogic_vector;
VariableViolation:INOUT Boolean
Std_DevelopersKit User’s Manual, V2.24-78

Std_Timing TimingCheck

he

he
) ;

Procedure TimingCheck (
SIGNAL TestPort: IN std_logic_vector; -- SIGNAL tested
CONSTANT TestPortName: INSTRING := "";-- name OF the signal
SIGNAL RefPort: INstd_ulogic; -- SIGNAL referenced
CONSTANT RefPortName: INSTRING := "";-- name OF the ref signal
CONSTANT t_setup_hi: INTIME := 0 ns;-- setup for TestPort='1'
CONSTANT t_setup_lo: INTIME := 0 ns;-- setup for TestPort= 0'
CONSTANT t_hold_hi: INTIME := 0 ns;-- hold for TestPort='1'
CONSTANT t_hold_lo: INTIME := 0 ns;-- hold for TestPort='0'
CONSTANT condition:IN BOOLEAN := TRUE; -- set=TRUE to check
spec
CONSTANT HeaderMsg :INSTRING := " ";
VariableTestPortLastEvent:INOUT Time_Vector;
VariableTestPortLastValue:INOUT std_logic_vector;
VariableViolation:INOUT Boolean
) ;

DESCRIPTION:

• t_setup_hi ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='1' state without causing a setup violation.

• t_setup_lo ::= Absolute minimum time duration before the transition of t
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='0' state without causing a setup violation.

• t_hold_hi ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='1' state without causing a hold violation.

tsetup thold

Test Signal

Ref. Signal
*** shown with tsetup
and thold as positive numbers

tsetup
thold

Ref. Signal
*** shown with tsetup pos.
and thold as negative numbers

*** Error Region***

*** Error Region***
Std_DevelopersKit User’s Manual, V2.2 4-79

TimingCheck Std_Timing

he

tup

tPort
his
g

• t_hold_lo ::= Absolute minimum time duration after the transition of the
RefPort for which transitions of TestPort are allowed to proceed to the
to_X01(TestPort) ='0' state without causing a hold violation.

• condition ::= The function immediately checks condition for a TRUE
value. If the value is FALSE, the FUNCTION immediately returns with t
value of FALSE.

• HeaderMsg ::= This HeaderMsg string will accompany any assertion
messages produced by this function.

• Violation ::= BOOLEAN: This routine will set the flag TRUE if a
violation exists and will set the flag FALSE if no violation exists..

For vectors:

• TestPortLastEvent ::= This VARIABLE is used to store the last time in
which TestPort changed value.

• TestPortLastValue ::= This VARIABLE is used to store the last value
taken on by TestPort prior to its current value.

ASSUMPTIONS:

1. For positive hold times both a setup and a hold error may be reported.

2. For both hold times negative, only one error may be reported per clock
cycle and that error will be a setup error.

3. For one negative hold time the procedure will only report one error (se
or hold) per clock cycle.

4. Negative setup times are not allowed.

5. Regardless of whether CheckEnabled is true, the transitions of the Tes
are recorded by the routine. In order for this routine to work correctly, t
procedure shall not be placed in a branch other than to disable all timin
checks.
Std_DevelopersKit User’s Manual, V2.24-80

Std_Timing TimingCheck

tion
ise,

ld

ot in
ould
BUILT IN ERROR TRAPS:

If the observed setup or hold time is less than the specified values, an asser
message will be issued and the variable “Violation” will be set TRUE. Otherw
no message will be asserted and the variable “Violation” will be set FALSE.

Hard Assertions will be triggered if the signal clearly violates the setup or ho
time specifications.

Soft Assertions will be triggered if the signal make a change in strength, but n
state within the setup or hold time window specified. This rare occurrence w
indicate a possible circuit instability, even though the state had not actually
changed.

EXAMPLE:
VARIABLE Violation : BOOLEAN := False;
VARIABLE DataBusLastEvent :TIME_vector (DataBus'RANGE) :=

(others => -1000 ns);
VARIABLE DataBusLastValue : std_logic_vector(DataBus’Range);

-- Timing Check Section

IF (TimingChecksON) THEN

TimingCheck (
testport=> DataBus,
testportname=> "DataBus",
refport=> CLK,
refport_name=> "CLK",
t_setup_hi=> 23 ns,
t_setup_lo=> 23 ns,
t_hold_hi=> 5 ns,
t_hold_lo=> 6 ns,
condition=> (CLK = '1'),
HeaderMsg=> InstanceHeader,
TestPortLastEvent=> DataBusLastEvent,
TestPortLastValue=> DataBusLastValue,
violation=> Violation);

If Violation THEN
Q <= 'X';

ELSE
Q <= 'Z';

END IF;
END IF; -- Timing Check Section
Std_DevelopersKit User’s Manual, V2.2 4-81

ReleaseViolation Std_Timing

.

ReleaseViolation
Checks for Release Time Violations--behavioral use ONLY

OVERLOADED DECLARATIONS:

Function ReleaseViolation (
Signal CtrlPort:IN std_ulogic;
ConstantCtrlPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant DataPortVal:INstd_ulogic;
Constant t_release_hi:IN TIME := 0 ns;
Constant t_release_lo :IN TIME := 0 ns;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”
) return BOOLEAN;

Function ReleaseViolation (
Signal CtrlPort:IN std_ulogic;
ConstantCtrlPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant DataPortVal:INstd_ulogic;
Constant t_release_hi:IN TIME := 0 ns;
Constant t_release_lo :IN TIME := 0 ns;
Constantt_hold_hi:INTIME;
Constantt_hold_lo:INTIME;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”
) return BOOLEAN;

DESCRIPTION:

This function will return TRUE if a release violation occurs, FALSE otherwise

• t_release_hi::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘1’.

• t_release_lo::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘0’.
Std_DevelopersKit User’s Manual, V2.24-82

Std_Timing ReleaseViolation

ge

ge

ined
ve
e

t not
• t_hold_hi::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘1’.

• t_hold_lo::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘0’.

ASSUMPTIONS:

t_release_hi and t_release_lo must both be non-negative numbers. If negative
release time specifications are expected, then the user should use the comb
“TimingViolation” function which has been designed to accommodate negati
release and hold times. t_hold_hi and t_hold_lo should also be non-negativ
numbers.

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the release time
specifications or the hold time specifications (for the applicable version).

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the release time window specified or the hold time window
specified (for the applicable version). This rare occurrence would indicate a
possible circuit instability, even though the state had not actually changed.
Std_DevelopersKit User’s Manual, V2.2 4-83

ReleaseViolation Std_Timing
EXAMPLES:

-- Timing Check Section

IF (TimingChecksON) THEN

If releaseviolation (
testport=> CD,
testportname=> “CD”,
refport=> CLK,
refportname=> “CLK”,
DataPortValue=> D,
t_release_hi => 22.5 ns,
t_release_lo=> 21.0 ns,
condition=> (clk = ‘1’),
headerMsg=> “/u1/u23/u224”

then
Q <= ‘X’;

else
Q <= ‘Z’;

end if;
END IF;
Std_DevelopersKit User’s Manual, V2.24-84

Std_Timing ReleaseCheck
ReleaseCheck
Checks for Release Time Violations--concurrent use supported

OVERLOADED DECLARATIONS:

Procedure ReleaseCheck (
Signal CtrlPort:IN std_ulogic;
ConstantCtrlPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant DataPortVal:INstd_ulogic;
Constant t_release_hi:IN TIME := 0 ns;
Constant t_release_lo :IN TIME := 0 ns;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”
);
Procedure ReleaseCheck (
Signal CtrlPort:IN std_ulogic;
ConstantCtrlPortName:IN STRING := “”;
Signal RefPort:IN std_ulogic;
Constant RefPortName:IN STRING := “”;
Constant DataPortVal:INstd_ulogic;
Constant t_release_hi:IN TIME := 0 ns;
Constant t_release_lo :IN TIME := 0 ns;
Constantt_hold_hi:INTIME;
Constantt_hold_lo:INTIME;
Constant condition:IN BOOLEAN;
Constant HeaderMsg:IN STRING := “”
);

DESCRIPTION:

This procedure will report and assertion if a release violation occurs.

• t_release_hi::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘1’.

• t_release_lo::= specification of the minimum interval preceding the
triggering edge of the referenced signal when the testport value is ‘0’.
Std_DevelopersKit User’s Manual, V2.2 4-85

ReleaseCheck Std_Timing

ge

ge

ined
ve
e

t not
• t_hold_hi::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘1’.

• t_hold_lo::= specification of the minimum interval after the triggering ed
of the referenced signal when the testport value is ‘0’.

ASSUMPTIONS:

t_release_hi and t_release_lo must both be non-negative numbers.If negative
release time specifications are expected, then the user should use the comb
“TimingViolation” function which has been designed to accommodate negati
release and hold times. t_hold_hi and t_hold_lo should also be non-negativ
numbers.

BUILT IN ERROR TRAPS:

Hard Assertions will be triggered if the signal clearly violates the release time
specifications or the hold time specifications (for the applicable version).

Soft Assertions will be triggered if the signal makes a change in strength, bu
in state within the release time window specified or the hold time window
specified (for the applicable version). This rare occurrence would indicate a
possible circuit instability, even though the state had not actually changed.

EXAMPLES:

ReleaseCheck (
testport=> CD,
testportname=> “CD”,
refport=> CLK,
refportname=> “CLK”,
DataPortVal=> D,
t_release_hi => 22.5 ns,
t_release_lo=> 21.0 ns,
condition=> (clk = ‘1’),
headerMsg=> “/u1/u23/u224”

);
Std_DevelopersKit User’s Manual, V2.24-86

Std_Timing VitalPeriodCheck

er to

g

ng
VitalPeriodCheck
Checks for Periodicity Violations: This procedure checks for minimum and
maximum periodicity and pulse

DECLARATION:

PROCEDURE VitalPeriodCheck (
SIGNALTestPort:IN std_ulogic;
CONSTANT TestPortName:IN STRING := “”;
CONSTANT PeriodMin:IN TIME := 0 ns;
CONSTANT PeriodMax:IN TIME := TIME’HIGH;
CONSTANT pw_hi_min:IN TIME := 0 ns;
CONSTANT pw_hi_max:IN TIME := TIME’HIGH;
CONSTANT pw_lo_min:IN TIME := 0 ns;
CONSTANT pw_lo_max :IN TIME := TIME’HIGH;
VARIABLE info :INOUT DelayArrayTypeXX := PeriodCheckInfo_Init;
VARIABLE Violation :OUT BOOLEAN;
CONSTANT HeaderMsg :IN STRING := “”;
CONSTANT Condition:IN Boolean
);

DESCRIPTION:

This procedure must be used in conjunction with a process statement in ord
retain the transition times to '0' and '1'

• PeriodMin ::= Minimum allowable time period between successive risin
or falling edges of the TestPort.

• PeriodMax ::=Maximum allowable time period between successive risi
or falling edges of the TestPort.

• pw_hi_min ::=Minimum allowable time period during which Testport is
maintained at a ‘1’ or ‘H’ value.

tpw_hi

tperiod

Testport

tpw_lo
Std_DevelopersKit User’s Manual, V2.2 4-87

VitalPeriodCheck Std_Timing

lated.
• pw_hi_max ::=Maximum allowable time period during which Testport is
maintained at a ‘1’ or ‘H’ value.

• pw_lo_min ::=Minimum allowable time period during which Testport is
maintained at a ‘0’ or ‘L’ value.

• pw_lo_max ::=Maximum allowable time period during which Testport is
maintained at a ‘0’ or ‘L’ value.

• info ::=VARIABLE parameter which records the transition times for use
internal to the routine.

• Violation ::=TRUE if either the pulsewidth or period has been violated.

• HeaderMsg ::=STRING of information commonly used to indicate the
calling Instance.

BUILT IN ERROR TRAPS:

Assertion messages are generated if any of the timing specifications are vio

EXAMPLE:

-- Timing Check Section

IF (TimingChecksOn) THEN

-- Pulse width, period check CLK
VitalPeriodCheck (

testport =>CLK_ipd,
testportname => “CLK_ipd”,
periodmin => tperiod_CLK,
periodmax => TIME’HIGH,
pw_hi_min => tpw_CLK(tr01),
pw_hi_max => TIME’HIGH,
pw_lo_min => tpw_CLK(tr10),
pw_lo_max => TIME’HIGH,
info => PeriodCheckInfo_CLK,
Violation => Pviol_CLK,
HeaderMsg => InstancePath & "/DLE24",

 Condition => TRUE
);

END IF; -- Timing Check Section
Std_DevelopersKit User’s Manual, V2.24-88

Std_Timing PeriodCheck

er to

g

PeriodCheck
Checks for Periodicity Violations
+ Allows the periodicity check to be state dependent

DECLARATION:

Procedure PeriodCheck (
SignalTestPort:IN std_ulogic;
Constant TestPortName:IN STRING := “”;
Constant RefPort :IN std_ulogic := ‘-’;
Constant RefPortName :IN STRING := “”;
Constant PeriodMin:IN TIME := 0 ns;
Constant PeriodMax:IN TIME := TIME’HIGH;
Constant pw_hi_min_hi:IN TIME := 0 ns; -- hi PW when ref = hi
Constant pw_hi_min_lo:IN TIME := 0 ns; -- hi PW when ref = lo
Constant pw_hi_max :IN TIME := TIME’HIGH;
Constant pw_lo_min_hi:IN TIME := 0 ns; -- lo PW when ref = hi
Constant pw_lo_min_lo:IN TIME := 0 ns; -- lo PW when ref = lo
Constant pw_lo_max :IN TIME := TIME’HIGH;
Variable info :INOUT PeriodCheckInfoType

 := PeriodCheckInfo_Init;
Variable Violation :OUT BOOLEAN;
Constant HeaderMsg :IN STRING := “”
);

DESCRIPTION:

This procedure must be used in conjunction with a process statement in ord
retain the transition times to '0' and '1'

• PeriodMin ::= Minimum allowable time period between successive risin
or falling edges of the TestPort.

tpw_hi

tperiod

Testport

tpw_lo
Std_DevelopersKit User’s Manual, V2.2 4-89

PeriodCheck Std_Timing

ng

ny of

g
tions
s

lated.
• PeriodMax ::=Maximum allowable time period between successive risi
or falling edges of the TestPort.

• pw_hi_min ::=Minimum allowable time period during which Testport is
maintained at a ‘1’ or ‘H’ value.

• pw_hi_max ::=Maximum allowable time period during which Testport is
maintained at a ‘1’ or ‘H’ value.

• pw_lo_min ::=Minimum allowable time period during which Testport is
maintained at a ‘0’ or ‘L’ value.

• pw_lo_max ::=Maximum allowable time period during which Testport is
maintained at a ‘0’ or ‘L’ value.

• info ::=VARIABLE parameter which records the transition times for use
internal to the routine.

• Violation ::=TRUE if either the pulsewidth or period has been violated.

• HeaderMsg ::=STRING of information commonly used to indicate the
calling Instance.

This procedure monitors the test port and determines if the test port violates a
the timing specifications regarding its periodicity. Info is used to hold timing
information and should only be set by the user once as shown in the followin
example. PeriodCheckInfo_Init is designed to minimize the number of asser
issued as a result of timing errors that necessarily occur when a simulation i
started.

BUILT IN ERROR TRAPS:

Assertion messages are generated if any of the timing specifications are vio
Std_DevelopersKit User’s Manual, V2.24-90

Std_Timing PeriodCheck
EXAMPLE:

VARIABLE PeriodCheckInfo_CLK : PeriodCheckInfoType :=
PeriodCheckInfo_Init;

VARIABLE violation : boolean := false;

-- Timing Check Section

IF (TimingChecksON) THEN

-- Pulse width, period check CLK

PeriodCheck (
testport =>CLK,
testportname=>“CLK”,
refport=>D,
refportname=>“D”,
periodmin=>50 ns,
periodmax=>100 ns,
pw_hi_min_hi=>10 ns,
pw_hi_min_lo=>10 ns,
pw_hi_max=>50 ns,
pw_lo_min_hi=>10 ns,
pw_lo_min_lo=>10 ns,
pw_lo_max=>50 ns,
info => PeriodCheckInfo_CLK,
violation=>violation,
HeaderMsg=>InstancePathName
);

if violation then
Q <= ‘X’;

else
Q <= ‘Z’;

end if;
END IF;
Std_DevelopersKit User’s Manual, V2.2 4-91

PulseCheck Std_Timing

 by

n the

e
ed

rt

rt

ulse
PulseCheck
Checks for Minimum Pulse Width--Note: This procedure has been obsoleted
PeriodCheck or VitalPeriodCheck.

DECLARATION:

Procedure PulseCheck (
SignalTestPort:IN std_ulogic;
Constant TestPortName:IN STRING := “”;
Constant t_pulse_hi:IN TIME := TIME’HIGH;
Constant t_pulse_lo:IN TIME := TIME’HIGH;
Variable timemark:INOUT TIME;
Constant HeaderMsg :IN STRING := “”
);

DESCRIPTION:

This procedure tests for pulses of less than the specified width which occur o
test signal.

A pulse is defined as two EVENTS which occur in close time proximity to on
another such that the time interval between events is less than some specifi
time.

• t_pulse_hi::= minimum allowable time between the last time the test po
changed and the current time when the new test port value is ‘1’.

• t_pulse_lo::= minimum allowable time between the last time the test po
changed and the current time when the new test port value is ‘0’.

ASSUMPTIONS:

t_pulse_hi and t_pulse_lo must both be non-negative numbers.

BUILT IN ERROR TRAPS:

This procedure will issue an assertion message if the test port violates the p
width specifications.
Std_DevelopersKit User’s Manual, V2.24-92

Std_Timing SpikeCheck

k or

e
ed

rt

rt

lse
SpikeCheck
Checks for Spikes--Note: This procedure has been obsoleted by PeriodChec
VitalPeriodCheck.

DECLARATION:

Procedure SpikeCheck (
SignalTestPort:IN std_ulogic;
Constant TestPortName:IN STRING := “”;
Constant t_spike_hi:IN TIME := TIME’HIGH;
Constant t_spike_lo:IN TIME := TIME’HIGH;
Variable timemark:INOUT TIME;
Constant HeaderMsg :IN STRING := “”
);

DESCRIPTION:

This procedure tests for spikes which occur on the testport

A spike is defined as two EVENTS which occur in close time proximity to on
another such that the time interval between events is less than some specifi
time.

• t_spike_hi::= minimum allowable time between the last time the test po
changed and the current time when the new test port value is ‘1‘.

• t_spike_lo::= minimum allowable time between the last time the test po
changed and the current time when the new test port value is ‘0’.

ASSUMPTIONS:

t_spike_hi and t_spike_lo must both be non-negative numbers.

BUILT IN ERROR TRAPS:

This procedure will issue an assertion message if the testport violates the pu
width specifications.
Std_DevelopersKit User’s Manual, V2.2 4-93

SkewCheck Std_Timing

is
ck

ges

E if
ote
E
ser

e of
ng
kew
SkewCheck
Monitors two signals and continually checks that the phasing between them
within the prescribed parameters: To detect skew problems between two clo
signals.

DECLARATION:

Procedure SkewCheck (
SIGNAL TestPort: IN std_ulogic; -- SIGNAL being tested
CONSTANT TestPortName: INSTRING := "";-- name OF the signal
SIGNAL RefPort: INstd_ulogic; -- SIGNAL referenced
CONSTANT RefPortName: INSTRING := "";-- name of ref. signal
CONSTANT tskew: INTIME := 0 ns;-- skew spec.
CONSTANT CheckEnabled: INBOOLEAN; -- if true spec. checked
CONSTANT HeaderMsg : INSTRING := " ";
VARIABLECheckForSkew: INOUTBOOLEAN; -- procedure use only
VARIABLEViolation: INOUTBOOLEAN; -- true for skew violation
CONSTANTWarningsOn: INBOOLEAN := TRUE
);

DESCRIPTION:

Any changes which occur within the +/- tskew window are acceptable. Chan
which occur OUTSIDE of that window are considered skew errors. tskew is
always treated as a positive number. Violation is returned with the value TRU
a skew violation occurred and is returned with the value FALSE otherwise. N
that the variable associated with CheckForSkew should be initialized to TRU
prior to the first time the procedure is called. Other than for initialization, the u
should not modify the value of the variable associated with CheckForSkew.

If CheckEnabled is FALSE then no skew check is performed. Note that if on
the ports has had a transition but the other port has not had the correspondi
transition at the time at which skew checks are disabled then an erroneous s
violation may be reported when skew checks are re-enabled.
Std_DevelopersKit User’s Manual, V2.24-94

Std_Timing SkewCheck
EXAMPLE:

PROCESS (CLK_phase1, CLK_phase2)
 VARIABLE SkewViolation : BOOLEAN := FALSE;
 VARIABLE ForProcOnly : BOOLEAN := TRUE;
BEGIN
 SkewCheck (

testport =>CLK_phase1,
testportname=>“CLK_phase1”,
refport=>CLK_phase2,
refportname=>“CLK_phase2”,
tskew=> 5.2 ns,
CheckEnabled=>TimingChecksON,
HeaderMsg=>InstancePathName,
CheckForSkew=>ForProcOnly,
Violation=>SkewViolation

);
IF Violation THEN

-- code to handle skew violation
ELSE

-- code if no skew violation occurs
END IF;

END PROCESS;

tskew

Error Region Error Region

tskew

RefPort

TestPort
Std_DevelopersKit User’s Manual, V2.2 4-95

SkewCheck Std_Timing

y to
 have

output
ed
l and

utines
se
Path Delay Section
The task of the path delay section is to determine which value of timing dela
associate with an output level change given the set of input ports which may
caused this output value to change value.

In the simplest case, only one input changed which caused a corresponding
to change value. In this trivial case, the cause-effect relationship is well defin
and the delay chosen will be the one specified between that given input signa
the output signal.

But what value of output delay should be chosen if two input signals
simultaneously change value causing the output to change its value? The ro
defined in the Std_Timing package and VITAL_Timing package address the
requirements.
Std_DevelopersKit User’s Manual, V2.24-96

Std_Timing VitalCalcDelay

d upon

e

VitalCalcDelay
Selects a state dependent timing value: To calculate the output delays base
the signal values.

OVERLOADED DECLARATIONS:

FUNCTION VitalCalcDelay (
CONSTANTnewval:IN std_ulogic;-- new value of signal
CONSTANToldval:IN std_ulogic;-- old value of signal
CONSTANTdelay:IN TransitionArrayType := UnitDelay
) RETURN DelayTypeXX;

FUNCTION VitalCalcDelay (
CONSTANTvalue:IN std_ulogic;-- new value of signal
CONSTANTdelay:IN TransitionArrayType := UnitDelay
) RETURN DelayTypeXX;

DESCRIPTION:

This function determines the proper value of delay to use given the newly
assigned value and the existing value on the signal or driver. For the two
parameter versions, only the newly assigned value is used in determining th
delay.

Table 4-1. VitalCalcDelay Assignment of Delay

Old Value New Value Delay

‘0’, ‘L’ ‘1’, ‘H’ tp01

‘0’, ‘L’ ‘Z’ tp0z

‘0’, ‘L’ ‘U’, ‘X’, ‘-’ MIN(tp01,tr0z)

‘1’, ‘H’ ‘0’, ‘L’ tp10

‘1’, ‘H’ ‘Z’ tp1z

‘1’, ‘H’ ‘U’, ‘X’, ‘-’ MIN(tp10,tr1z)

‘Z’ ‘0’, ‘L’ tpz0

‘Z’ ‘1’, ‘H’ tpz1
Std_DevelopersKit User’s Manual, V2.2 4-97

VitalCalcDelay Std_Timing

ill

ill
If the “delay” parameter contains less than 6 timing values, VitalCalcDelay w
expand the parameter internally using VitalExtendToFillDelay.

EXAMPLES:

In this example, the old signal value is not considered. Hence the function w
determine which delay to select based upon only the new value.

 y <= the_new_value AFTER VitalCalcDelay(
newval => the_new_value,
oldval => '-',
delay => (1 ns, 2 ns, 3 ns, 4 ns, 5 ns, 6 ns)
);

‘Z’ ‘U’, ‘X’, ‘-’ MIN(tpz0,tpz1)

‘U’, ‘X’, ‘-’ ‘0’, ‘L’ MAX(tp10,trz0)

‘U’, ‘X’, ‘-’ ‘1’, ‘H’ MAX(tr01,trz1)

‘U’, ‘X’, ‘-’ ‘Z’ MAX(tp1z,tp0z)

‘U’, ‘X’, ‘-’ others MAX(tp10,tp01)

Table 4-1. VitalCalcDelay Assignment of Delay

Old Value New Value Delay
Std_DevelopersKit User’s Manual, V2.24-98

Std_Timing CalcDelay
CalcDelay
Selects a state dependent timing value
+ vector support
To calculate the output delays based upon the signal values.

 DECLARATIONS:

Function CalcDelay (
Constantnewval:IN std_ulogic;-- new value of signal
Constantoldval:IN std_ulogic;-- old value of signal
Constanttp01:IN TIME := UnitDelay;-- 0->1 delay value
Constanttp10:IN TIME := UnitDelay;-- 1->0 delay value
Constanttp0z:IN TIME := UnitDelay;-- 0->z delay value
Constanttp1z:IN TIME := UnitDelay;-- 1->z delay value
Constanttpz0:IN TIME := UnitDelay;-- z->0 delay value
Constanttpz1:IN TIME := UnitDelay-- z->1 delay value
) return TIME;

Function CalcDelay (
Constantnewval:IN std_ulogic_vector;-- new value
Constantoldval:IN std_ulogic_vector;-- old value
Constanttp01:IN TIME := UnitDelay;-- 0->1 delay value
Constanttp10:IN TIME := UnitDelay;-- 1->0 delay value
Constanttp0z:IN TIME := UnitDelay;-- 0->z delay value
Constanttp1z:IN TIME := UnitDelay;-- 1->z delay value
Constanttpz0:IN TIME := UnitDelay;-- z->0 delay value
Constanttpz1:IN TIME := UnitDelay-- z->1 delay value
) return TIME_vector;

Function CalcDelay (
Constantnewval:IN std_logic_vector;-- new value
Constantoldval:IN std_logic_vector;-- old value
Constanttp01:IN TIME := UnitDelay;-- 0->1 delay value
Constanttp10:IN TIME := UnitDelay;-- 1->0 delay value
Constanttp0z:IN TIME := UnitDelay;-- 0->z delay value
Constanttp1z:IN TIME := UnitDelay;-- 1->z delay value
Constanttpz0:IN TIME := UnitDelay;-- z->0 delay value
Constanttpz1:IN TIME := UnitDelay-- z->1 delay value
) return TIME_vector;
Std_DevelopersKit User’s Manual, V2.2 4-99

CalcDelay Std_Timing

ults are

e

Function CalcDelay (
Constantvalue:IN std_ulogic;-- new value of signal
ConstantTp1:IN TIME := UnitDelay;-- 0->1 delay value
ConstantTp0:IN TIME := UnitDelay-- 1-> 0 delay value
) return TIME;

Function CalcDelay (
Constantvalue:IN std_ulogic_vector;-- new value of signal
ConstantTp1:IN TIME := UnitDelay;-- 0->1 delay value
ConstantTp0:IN TIME := UnitDelay-- 1-> 0 delay value
) return TIME_vector;

Function CalcDelay (
Constantvalue:IN std_logic_vector;-- new value of signal
ConstantTp1:IN TIME := UnitDelay;-- 0->1 delay value
ConstantTp0:IN TIME := UnitDelay-- 1-> 0 delay value
) return TIME_vector;

DEFAULTS:

For the verbose form, not all of the parameters need to be passed since defa
provided for those not passed.

ASSUMPTIONS:

newval'length = oldval'length for vectored signals

DESCRIPTION:

This function determines the proper value of delay to use given the newly
assigned value and the existing value on the signal or driver. For the three
parameter versions, only the newly assigned value is used in determining th
delay.
Std_DevelopersKit User’s Manual, V2.24-100

Std_Timing CalcDelay

e

ill
This function determines the proper value of delay to use given the newly
assigned value and the existing value on the signal or driver. For the two
parameter versions, only the newly assigned value is used in determining th
delay.

If the “delay” parameter contains less than 6 timing values, VitalCalcDelay w
expand the parameter internally using VitalExtendToFillDelay.

Table 4-2. CalcDelay Delay Assignments

Old Value New Value Delay

‘0’, ‘L’ ‘1’, ‘H’ tp01

‘0’, ‘L’ ‘Z’ tp0z

‘0’, ‘L’ ‘U’, ‘X’, ‘-’ MIN(tp01,tr0z)

‘1’, ‘H’ ‘0’, ‘L’ tp10

‘1’, ‘H’ ‘Z’ tp1z

‘1’, ‘H’ ‘U’, ‘X’, ‘-’ MIN(tp10,tr1z)

‘Z’ ‘0’, ‘L’ tpz0

‘Z’ ‘1’, ‘H’ tpz1

‘Z’ ‘U’, ‘X’, ‘-’ MIN(tpz0,tpz1)

‘U’, ‘X’, ‘-’ ‘0’, ‘L’ MAX(tp10,trz0)

‘U’, ‘X’, ‘-’ ‘1’, ‘H’ MAX(tr01,trz1)

‘U’, ‘X’, ‘-’ ‘Z’ MAX(tp1z,tp0z)

‘U’, ‘X’, ‘-’ others MAX(tp10,tp01)
Std_DevelopersKit User’s Manual, V2.2 4-101

CalcDelay Std_Timing

ill
EXAMPLES:

In this example, the old signal value is not considered. Hence the function w
determine which delay to select based upon only the new value.

y <= the_new_value AFTER CalcDelay(
 newval=> the_new_value,
 oldval=> '-',
 tr01 => 1 ns,
 tr10 => 1.5 ns,
 tr0z => 2.0 ns,
 tr1z => 1.9 ns,
 trz0 => 2.2 ns,
 trz1 => 2.3 ns);

VARIABLE Databus_delay_times : timevector(databus’length);

Databus_delay_times := CalcDelay (Databus, 1.5 ns, 2.0 ns);
for i in databus’length loop
 DB(i) <= databus(i) after Databus_delay_times(i);
end loop;
Std_DevelopersKit User’s Manual, V2.24-102

Std_Timing Drive

 a
Drive
Set the Technology Drive Level: To provide a means of modeling devices in
technology independent manner and having the drive strength of a signal
assignment be based upon the driving technology.

 DECLARATIONS:

FUNCTION Drive (
CONSTANTval:IN std_ulogic;-- new signal value
CONSTANTtech:TechnologyType
) RETURN std_ulogic;

FUNCTION Drive (
CONSTANTval:IN std_ulogic_vector;-- new signal value
CONSTANTtech:TechnologyType
) RETURN std_ulogic_vector;

FUNCTION Drive (
CONSTANTval:IN std_logic_vector;-- new signal value
CONSTANTtech:TechnologyType
) RETURN std_logic_vector;

DESCRIPTION:

Given a selection of a given technology type and a std_ulogic value, the
corresponding value will be provided from the TechnologyMap table.

 CONSTANT TechnologyMap : TechnologyTable := (
 ('U','X','0','1','Z','W','L','H','-'), -- cmos
 ('U','X','0','Z','Z','W','L','H','-'), -- cmos_od
 ('U','X','0','1','Z','W','L','H','-'), -- ttl
 ('U','X','0','Z','Z','W','L','H','-'), -- ttl_od
 ('U','X','0','H','Z','W','L','H','-'), -- nmos
 ('U','X','L','1','Z','W','L','H','-'), -- ecl
 ('U','W','L','H','Z','W','L','H','-'), -- pullup
 ('U','W','L','H','Z','W','L','H','-')); -- pulldown

TECHNOLOGY TYPE:

(cmos, cmos_od, ttl, ttl_oc, nmos, ecl, pullup, pulldown)

EXAMPLE:
Y <= Drive (‘0’ , cmos) after 20 ns;
Std_DevelopersKit User’s Manual, V2.2 4-103

VitalExtendToFillDelay Std_Timing

dent
s of
VitalExtendToFillDelay
Extends delays to 6-element format: To provide a set of six transition depen

time values for use in delay assignments even though only 1,2 or 3 value
delay may have been provided.

DECLARATION:

FUNCTION VitalExtendToFillDelay (
CONSTANTdelay : IN TransitionArrayType
) RETURN DelayType01Z;

ALGORITHM:

VARIABLE d_val : DelayType01Z;
BEGIN
CASE delay'length IS

WHEN 1 => d_val := (others => delay(tr01));
WHEN 2 => d_val(tr01) := delay(tr01);

d_val(tr0z) := delay(tr01);
d_val(trz1) := delay(tr01);
d_val(tr10) := delay(tr10);
d_val(tr1z) := delay(tr10);
d_val(trz0) := delay(tr10);

WHEN 3 => d_val(tr01) := delay(tr01);
d_val(trz1) := delay(tr01);
d_val(tr10) := delay(tr10);
d_val(trz0) := delay(tr10);
d_val(tr0z) := delay(tr0z);
d_val(tr1z) := delay(tr0z);

WHEN 6 =>d_val := delay;
WHEN others => assert false
report "VitalExtendToFillDelay(delay'length /= [1,2,3,6])"
SEVERITY ERROR;
END CASE;

RETURN (d_val);

EXAMPLE:

Variable Verilog_Delay_Vector: DelayType01Z;
Verilog_Delay_Vector := VitalExtendToFillDelay ((1 ns, 2
ns));
Std_DevelopersKit User’s Manual, V2.24-104

Std_Timing VitalGlitchOnEvent

ur
 is
VitalGlitchOnEvent
Handles Glitch Propagation on Events or Detection: A GLITCH is said to occ
whenever a new assignment is scheduled to occur at an absolute time which
more than the absolute time of a previously scheduled pending event.

DECLARATION:

PROCEDURE VitalGlitchOnEvent (
SIGNAL OutSignal :OUT std_logic; -- signal being driven
CONSTANT OutSignalName:IN string; -- name of the signal
VARIABLE GlitchData :INOUT GlitchDataType;-- Internal glitch
data
CONSTANT NewValue:IN std_logic; -- value being assigned
CONSTANT NewDelay:IN TIME := 0 ns; -- delay value
CONSTANT GlitchMode:IN GlitchModeType := MessagePlusX;
CONSTANT GlitchDelay: IN TIME := 0 ns -- delay to glitch
);

PROCEDURE VitalGlitchOnEvent (
SIGNAL OutSignal :OUT std_logic_vector; -- signal driven
CONSTANT OutSignalName:IN string; -- name of the signal
VARIABLE GlitchData :INOUT GlitchDataArrayType; -- Internal
glitch data
CONSTANT NewValue:IN std_logic_vector; -- value assigned
CONSTANT NewDelay:IN TimeArray; -- delay value
CONSTANT GlitchMode:IN GlitchModeType := MessagePlusX;
CONSTANT GlitchDelay: IN TIMEArray := 0 ns -- delay to glitch
);

DESCRIPTION:

OutSignal Signal being driven

Signal A

Signal B

Glitch Free Output

Glitch on Detect Output

Glitch on Event Output
Std_DevelopersKit User’s Manual, V2.2 4-105

VitalGlitchOnEvent Std_Timing

N
FF
F

D

ll be
he
OutSignalName Name of the driven signal

GlitchData Internal data required by the procedure

NewValue new value being assigned

NewDelay Delay accompanying the assignment (Note: for
vectors, this is an array)

GlitchMode MessagePlusX, X generation ON, Messaging O
MessageOnly, X generation OFF, Messaging O
XOnly, X generation ON, Messaging OF
NoGlitch X generation OFF, Messaging OFF

GlitchDelay if <= 0 ns , then there will be no Glitch
if > NewDelay, then there is no Glitch, otherwise,
this is the relative time from NOW when a FORCE
generation of a glitch will occur.

BUILT IN ERROR TRAPS:

If GlitchMode is set to MessagePlusX or MessageOnly, then an assertion wi
issued whenever a glitch is detected. The assertion will be made exactly at t
time in which the glitch is detected, regardless of whether GlitchOnEvent or
GlitchOnDetect was used.

APPLICABLE TYPES:
TYPE GlitchModeType is (MessagePlusX, MessageOnly, XOnly,
NoGlitch);

TYPE GlitchDataType IS
RECORD

 LastSchedTransaction : TIME;
 LastGlitchSchedTime : TIME;
 LastSchedValue : std_ulogic;
 CurrentValue : std_ulogic;

END RECORD;

TYPE GlitchDataArrayType IS ARRAY (natural range <>) of
GlitchDataType;
Std_DevelopersKit User’s Manual, V2.24-106

Std_Timing VitalGlitchOnDetect

er a
n the
VitalGlitchOnDetect
Handles Glitch Propagation on Detection: A GLITCH is said to occur whenev
new assignment is scheduled to occur at an absolute time which is more tha
absolute time of a previously scheduled pending event.

DECLARATION:

PROCEDURE VitalGlitchOnDetect (
SIGNAL OutSignal :OUT std_logic; -- signal driven
CONSTANT OutSignalName:IN string; -- name of the signal
VARIABLE GlitchData :INOUT GlitchDataType; -- Internal glitch
data
CONSTANT NewValue:IN std_logic; -- value assigned
CONSTANT NewDelay:IN TIME := 0 ns; -- delay value
CONSTANT GlitchMode:IN GlitchModeType := MessagePlusX;
CONSTANT GlitchDelay: IN TIME := 0 ns -- delay to glitch
);
PROCEDURE VitalGlitchOnDetect (
SIGNAL OutSignal :OUT std_logic_vector; -- signal driven
CONSTANT OutSignalName:IN string; -- name of the signal
VARIABLE GlitchData :INOUT GlitchDataArrayType; -- Internal
data
CONSTANT NewValue:IN std_logic_vector; -- value assigned
CONSTANT NewDelay:IN TimeArray ; -- delay value
CONSTANT GlitchMode:IN GlitchModeType := MessagePlusX;
CONSTANT GlitchDelay: IN TIMEArray := 0 ns -- delay to glitch
);

DESCRIPTION:

OutSignal Signal being driven

OutSignalName Name of the driven signal

Signal A
Signal B

Glitch Free Output

Glitch on Detect Output

Glitch on Event Output
Std_DevelopersKit User’s Manual, V2.2 4-107

VitalGlitchOnDetect Std_Timing

N
F

F

D

ll be
he
GlitchData Internal data required by the procedure

NewValue new value being assigned

NewDelay Delay accompanying the assignment (Note: for
vectors, this is an array)

GlitchMode MessagePlusX, X generation ON, Messaging O
MessageOnly, X generation OFF, Messaging OF
XOnly, X generation ON, Messaging OF
NoGlitch X generation OFF, Messaging OFF

GlitchDelay if <= 0 ns , then there will be no Glitch
if > NewDelay, then there is no Glitch, otherwise,
this is the relative time from NOW when a FORCE
generation of a glitch will occur.

BUILT IN ERROR TRAPS:

If GlitchMode is set to MessagePlusX or MessageOnly, then an assertion wi
issued whenever a glitch is detected. The assertion will be made exactly at t
time in which the glitch is detected, regardless of whether GlitchOnEvent or
GlitchOnDetect was used..

APPLICABLE TYPES:
TYPE GlitchModeType is (MessagePlusX, MessageOnly, XOnly,
NoGlitch);

TYPE GlitchDataType IS
RECORD

 LastSchedTransaction : TIME;
 LastGlitchSchedTime : TIME;
 LastSchedValue : std_ulogic;
 CurrentValue : std_ulogic;

END RECORD;

TYPE GlitchDataArrayType IS ARRAY (natural range <>) of
GlitchDataType;
Std_DevelopersKit User’s Manual, V2.24-108

Std_Timing VitalPropagatePathDelay

ed

al
ition
ith

st
ll

g
urs at
 the
VitalPropagatePathDelay
Handles Pin-to-pin delay: To assign the correct delay to an output signal bas
upon changes which may have occurred on affecting input signals.

OVERLOADED DECLARATIONS:

PROCEDURE VitalPropagatePathDelay (
SIGNAL OutSignal : OUT std_logic;-- output signal
CONSTANT OutSignalName : IN string; -- name of the output
signal
CONSTANT OutTemp : IN std_logic; -- intermediate 0-delay output
CONSTANT Paths : IN PathArrayType; -- all possible paths
VARIABLE GlitchData : INOUT Glitchdatatype;
CONSTANT GlitchMode : IN Glitchmodetype ;
CONSTANT GlitchKind : IN Glitchkind := OnEvent);

DESCRIPTION:

This procedure is to be used for accurate modeling of Path delays (condition
paths handling). It will select the appropriate path delay, based on PathCond
and schedule the new output value with the selected delay specified along w
Glitch handling (OnEvent or OnDetect).

It is the job of the VitalPropagatePathDelay(...) routine to determine the
appropriate delay to use given that an output signal has changed value. It
accomplishes this task by knowing when the input Paths(...) to the routine la
changed their values. From that information, it picks the minimum delay of a
possible active stimulus-response paths.

ALGORITHM:

The output delay is equal to the propagation delay from the earliest changin
input signal to the output, except when the earliest changing input signal occ
the same time as another input signal. In the latter case, the delay chosen is
minimum of all of the possible path delays.
Std_DevelopersKit User’s Manual, V2.2 4-109

VitalPropagatePathDelay Std_Timing

rsely
Rules

For the parameters to the path delay procedure, "explicit" rules are hereby
specified so as to avoid any potential misuse of this procedure (thereby adve
affecting optimizations).:

• OutSignal must be an output/inout port

• OutTemp must be output_zd

• Paths.InputChangeTime must be a 'LAST_EVENT of input or *_ipd
signals

• Parameters GlitchMode and GlitchKind should be locally static

• GlitchData should not be used in ANY other expression

RELATED TYPES:

TYPE PathType IS RECORD
InputChangeTime : time; -- timestamp for path input

signal
PathDelay : DelayType01Z;-- delay for this path
PathCondition : boolean; -- condition which

sensitizes
 this path

END RECORD;

TYPE PathArrayType is array (natural range <>) of PathType;
TYPE GlitchKind is (OnEvent, On_Detect);

Scalar Example:
--
-- Pin-to-Pin Delay Section
--
-- One call to VitalPropagatePathDelay for each output signal.
PathDelay: VitalPropagatePathDelay(

OutSignal => Q2, -- Actual OUTPUT signal
OutSignalName => “Q2”,
OutTemp => Q2_zd,-- Zero delayed internal Output signal
-- First of two input pins which affect the output Q2
Paths(0).InputChangeTime => Clock_ipd’last_event,
Std_DevelopersKit User’s Manual, V2.24-110

Std_Timing VitalPropagatePathDelay
Paths(0).PathDelay =>
VitalExtendToFillDelay(tpd_clock_q2),

Paths(0).Condition => (RESET = ‘0’),
-- Second of two input pins which affect the output Q2
Paths(1).InputChangeTime => Data_ipd’last_event,
Paths(1).PathDelay =>

VitalExtendToFillDelay(tpd_data_q2),
Paths(1).Condition => (RESET = ‘0’),
GlitchData=> GlitchData,
GlitchMode=> MessagePlusX,
GlitchKind=> OnEvent);

Vector Signal Example:
--
-- Pin-to-Pin Delay Section
--
DataBusPaths : For i in databus’range LOOP

VitalPropagatePathDelay(
OutSignal => Databus(i),
OutSignalName => “Databus(...)”,
OutTemp => Databus_zd(i),
-- First of two input pins which affect the output
Paths(0).InputChangeTime => Clock_ipd’last_event,
Paths(0).PathDelay =>

VitalExtendToFillDelay(tpd_clock_databus),
Paths(0).Condition => (RESET = ‘0’),
-- Second of two input pins which affect the output
Paths(1).InputChangeTime => Iack_ipd’last_event,
Paths(1).PathDelay =>

VitalExtendToFillDelay(tpd_iack_databus),
Paths(1).Condition => (RESET = ‘0’),
GlitchData=> GlitchDataArray(i),
GlitchMode=> MessagePlusX,
GlitchKind=> OnEvent);

end Loop;
Std_DevelopersKit User’s Manual, V2.2 4-111

MAXIMUM Std_Timing

me
ters.
MAXIMUM
Get the Maximum Value: To find the maximum of two time values or the
maximum of all of the values of time in a TIME_Vector.

OVERLOADED DECLARATIONS:

Function MAXIMUM
Constantt1:IN TIME;
Constant t2:IN TIME
) return TIME;

Function MAXIMUM (
Constantt1:IN TIME;
Constantt2:IN TIME;
Constantt3:IN TIME;
Constant t4:IN TIME
) return TIME;

Function MAXIMUM (
Constant tv:IN TIME_Vector
) return TIME;

DESCRIPTION:

This function is overloaded with the first form returning the maximum of two ti
parameters and the second form returning the maximum of four time parame
The third form returns the largest sub-element of a TIME_Vector array.

EXAMPLES:

t_max := MAXIMUM (t1, 54.6 ns);
subtype time6 is Time_Vector(6);
t_max := MAXIMUM (time6’(t1,t2,t3,t4,t5,t6));
Std_DevelopersKit User’s Manual, V2.24-112

Std_Timing MINIMUM

e
ters.
MINIMUM
Get the Minimum Value: To find the minimum of two time values or the
minimum of all of the values of time in a TIME_Vector.

OVERLOADED DECLARATIONS:

Function MINIMUM (
Constantt1:IN TIME;
Constant t2:IN TIME
) return TIME;

Function MINIMUM (
Constantt1:IN TIME;
Constantt2:IN TIME;
Constantt3:IN TIME;
Constant t4:IN TIME
) return TIME;

Function MINIMUM (
Constanttv:IN TIME_Vector
) return TIME;

DESCRIPTION:

This function is overloaded with the first form returning the minimum of two tim
parameters and the second form returning the minimum of four time parame
The third form returns the smallest sub-element of a TIME_Vector array.

EXAMPLES:

t_min := MINIMUM (t1, 54.6 ns);
subtype time6 is Time_Vector(6);
t_min := MINIMUM (time6’(t1,t2,t3,t4,t5,t6));
Std_DevelopersKit User’s Manual, V2.2 4-113

Std_SimFlags - a “UserDefinedTimingDataPackage” Std_Timing

en

e.

of
s. This
en by
l take

erall

ing
ach is
y–

es.
Std_SimFlags - a
“UserDefinedTimingDataPackage”

Note: This information is provided to facilitate the upgrade of VHDL code writt
from v1.8 or earlier version of the Std_Timing package. While the concept of
using a Std_SimFlags package as the basis for controlling the timing
characteristics of a design are still valid, the facilities of the Std_SimFlags
package are largely unnecessary under the new VITAL compliant timing styl

Instead of using the Std_SimFlags package, a package should be created
appropriately named for the design at large. Within that package, a number
switches and default values can be established with deferred constant value
will allow each of the switches or values to be reset in the package body. Th
re-compiling the package body, the design which references the package wil
on the newly established switch settings and timing values.

Std_SimFlags is an example of a package which can be written to provide ov
control of a given design.

Std_SimFlags

The Std_SimFlags package has been designed to specify system global tim
parameters for a hierarchical group of models. The advantages of this appro
that (a) you can globally derate an entire design, (b) specify local instance–b
instance derating, (c) specify global selection of t_minimum, t_typical or
t_maximum timing, and (d) specify local instance–by–instance timing overrid
Std_DevelopersKit User’s Manual, V2.24-114

Std_Timing Std_SimFlags - a “UserDefinedTimingDataPackage”

e

ntrol
ch
dy.

 in

ow
Each model, in order to benefit from this design must include every one of th
parameters given below.

--
-- System wide defaults are established. To override the
-- default, simply associate your own values into the
-- generic map of the instance or configuration of this
-- component where you wish a change to take place
--
TimeMode: TimeModeType:= t_typical;
FunctionCheck: BOOLEAN := DefaultFunctionCheck;
CheckTiming: BOOLEAN := DefaultTimingCheck;
XPropagation: BOOLEAN := DefaultXPropagation;
WarningsCheck: BOOLEAN := DefaultWarningsOn;
DeviceVoltage: Voltage := DefaultVoltage;
DeviceTemp: Temperature := DefaultTemperature;
--

Global Flags and Recompiling the Std_SimFlags Body

Std_SimFlags contains a number of deferred constants which are used to co
the behavior and timing of the models built according to this specification. Ea
of the constants has a corresponding value in the Std_SimFlags package bo

Note

If you wish to change any of the deferred constant values, do so
the package body and RECOMPILE ONLY THE PACKAGE
BODY.Any models which currently reference the package will n
operate with the new values.
Std_DevelopersKit User’s Manual, V2.2 4-115

Std_SimFlags - a “UserDefinedTimingDataPackage” Std_Timing

ded
Std_SimFlags Source Code

LIBRARY IEEE;
USE IEEE.Std_Logic_1164.ALL;
-- Reference the STD_Logic system
LIBRARY Std_DevelopersKit;
USE Std_DevelopersKit.Std_Timing.ALL;
-- Reference the Std Timing system
--
PACKAGE Std_SimFlags IS

 -- DefaultTimeMode

 -- t_minimum == Models will use minimum timing
 -- t_typical == Models will use typical timing
 -- t_maximum == Models will use maximum timing

Std_SimFlags

Entity My_model is
generic (TimeMode : TimeModeType := DefaultTimeMode;

ChipVoltage : Voltage := DefaultVoltage;
ChipDeratingCoeff : DerateCoeffArray := SysCoeff;
tplh_clk_q : MinTypMaxTime := DefaultMinTypMaxTime
);

end My_model;

Sim_Flags constants are used to establish
“default” values for the model

Now, when you instantiate this model, you can choose to accept the defaults as provi
in Std_SimFlags, or you can provide your own values.
-- This instantiation chooses non-default values for all but the derating coefficients

U1 : My_Model
generic map (TimeMode => t_maximum,

ChipVoltage => 4.5 v,
tplh_clk_q => (2.2 ns, 2.5 ns, 2.7 ns,

DefaultDelay)
);

-- This instantiation chooses the defaults for everything but the voltage
Std_DevelopersKit User’s Manual, V2.24-116

Std_Timing Std_SimFlags - a “UserDefinedTimingDataPackage”
 -- t_special == Models will use user provided timing

 CONSTANT DefaultTimeMode: TimeModeType ;

 -- DefaultFunctionCheck

 -- TRUE == Functional Assertions checking is ON;
 -- FALSE == Functional Assertions checking is OFF;

 CONSTANT DefaultFunctionCheck: BOOLEAN;

 -- DefaultTimingCheck

 -- TRUE == Timing Assertions checking is ON;
 -- FALSE == Timing Assertions checking is OFF;

 CONSTANT DefaultTimingCheck: BOOLEAN;

 -- DefaultXAssertion

 -- TRUE == Assertions are issued upon detecting an X
 -- FALSE == Assertions are NOT issued upon detecting an X

 CONSTANT DefaultXAssertion: BOOLEAN;

 -- DefaultXPropagation

 -- TRUE == X's are generated upon violations
 -- FALSE == X's are not generated upon violations

 CONSTANT DefaultXPropagation: BOOLEAN;

 -- DefaultWarningsOn

 -- TRUE == Warning issued when functionality is unusual
 -- FALSE == Warnings are not issued for unusual behavior

 CONSTANT DefaultWarningsOn: BOOLEAN;

 -- Timing Defaults

Std_DevelopersKit User’s Manual, V2.2 4-117

Std_SimFlags - a “UserDefinedTimingDataPackage” Std_Timing
 CONSTANT DefaultDelay: TIME;
 CONSTANT DefaultDelayPair: DelayPair;
 -- Base Incremental Delays
 CONSTANT DefaultBIDelay: BaseIncrDlyPair;
 CONSTANT DefaultBaseIncrDelay: BaseIncrDelay;
 CONSTANT ZeroBIDelay: BaseIncrDlyPair;
 CONSTANT ZeroBaseIncrDelay: BaseIncrDelay;
 -- Straight Forward Propagation Delays
 CONSTANT DefaultMinTypMaxTime: MinTypMaxTime;
 CONSTANT ZeroMinTypMaxTime: MinTypMaxTime;
 -- Timing Violations
 CONSTANT DefaultSetupTime: MinTypMaxTime;
 CONSTANT DefaultHoldTime: MinTypMaxTime;
 CONSTANT DefaultReleaseTime: MinTypMaxTime;
 CONSTANT DefaultPulseTime: MinTypMaxTime;

 -- System Parameters

 CONSTANT DefaultVoltage: Voltage;
 CONSTANT DefaultTemperature: Temperature;

 -- Derating Coefficients

 -- Environmental Factors
 CONSTANT DefaultFanoutDrive: NaturalReal;
 CONSTANT DefaultFaninLoad: NaturalReal;
 CONSTANT DefaultCLoad: Capacitance;
 --
 -- Note : Run "polyregress" to obtain these coefficients
 --
 -- Capacitance Derating Polynomial Coefficients
 CONSTANT SysCapDerateCoeff_lh: PolynomialCoeff ;
 CONSTANT SysCapDerateCoeff_hl: PolynomialCoeff ;
 -- Temperature Derating Polynomial Coefficients
 CONSTANT SysTempDerateCoeff_lh: PolynomialCoeff ;
 CONSTANT SysTempDerateCoeff_hl: PolynomialCoeff ;
 -- Voltage Derating Polynomial Coefficients
 CONSTANT SysVoltageDerateCoeff_lh: PolynomialCoeff ;
 CONSTANT SysVoltageDerateCoeff_hl: PolynomialCoeff ;
 CONSTANT SysDeratingCoeffDefault: PolynomialCoeff ;
 CONSTANT SysCoeff: DerateCoeffArray;
END Std_SimFlags;
Std_DevelopersKit User’s Manual, V2.24-118

Index

INDEX
*, 3-22
**, 3-37
/, 3-25
/=, 3-43
<, 3-55
<=, 3-59
=, 3-39
>, 3-47
>=, 3-51

A
abs,3-11
Address, examine,2-25
Address_U_Map,2-4, 2-9
Address_X_Map,2-4, 2-9
Architecture Dev’mt. (Timing Utility

Functions),4-112
Architecture Development,4-47

Path Delay Section,4-96
Timing Violation Section,4-49

Architecture Topology,4-47
Architectures,4-2
Assertion Messages

Regular,4-51
Soft,4-51

AssignPathDelay,4-30

B
Back-Annotation,4-34
block write,2-32

C
CalcDelay,4-99
ConvertMode,3-63
Copyfile - ASCII_TEXT,1-93
Copyfile - TEXT,1-94

D
Data_U_Map,2-4, 2-9

Data_X_Map,2-4, 2-9
DerateOutput,4-45
Derating Timing values,4-38
DeratingFactor,4-43
DRAM_Initialize, 2-18
DRAMs, 2-16
Drive, 4-103
Dynamic Memory allocation,2-6, 2-89
Dynamic RAMs,2-16

E
End_of_line_marker,1-4
Entity, 4-1
Extended_Ops,2-4

F
fgetc - ASCII_TEXT,1-122
fgetc - TEXT,1-123
fgetline - ASCII_TEXT,1-128
fgetline - TEXT,1-130
fgets - ASCII_TEXT,1-124
fgets - TEXT,1-126
Find_Char,1-136
flash write,2-32
fprint - ASCII_TEXT,1-95
fprint - string buffer,1-103
fprint - TEXT, 1-99
fputc - ASCII_TEXT,1-132
fputc - TEXT,1-133
fputs - ASCII_TEXT,1-134
fputs - TEXT,1-135
From_BinString () return bit_vector,1-23
From_HexString () return bit_vector,1-27
From_OctString () return bit_vector,1-25
From_String - General Description,1-5
From_String () return bit,1-8
From_String () return Boolean,1-7
From_String () return Character,1-11
From_String () return Integer,1-12
From_String () return Real,1-13
Std_DevelopersKit User’s Manual, V2.2 Index-1

INDEX [continued]

Index
From_String () return Severity_level,1-9
From_String () return std_logic_vector,1-21
From_String () return std_ulogic,1-17
From_String () return std_ulogic_vector,1-19
From_String () return Time,1-15
fscan - ASCII_TEXT,1-107
fscan - string buffer,1-117
fscan - TEXT,1-112

G
Global Constants

Address_U_Map,2-4
Address_X_Map,2-4
Data_U_Map,2-4
Data_X_Maps,2-4
End_of_line_marker,1-3
Extended_Ops,2-4
Max_Str_Len,2-4
Max_string_length,1-3
Mem_Dump_Time,2-4
Mem_Warnings_on,2-4
Words_Per_Line,2-4

H
Hierarchical Pathname,4-24
HoldCheck,4-58
HoldViolation,4-56

I
Intel 21010-06 Dynamic Ram,2-113
Intel 2716 EPROM,2-131
Intel 51256S/L Static RAM,2-121
Interconnect Modeling,4-26
Introduction

Std_IOpak,1-1
Std_Mempak,2-2
Std_Timing,4-1

Is_Alpha,1-68
Is_Digit, 1-71
Is_Lower,1-70

Is_Space,1-72
Is_Upper,1-69

M
Max_Str_Len,2-4
Max_string_len,1-4
MAXIMUM, 4-112
Mem_Access,2-25
Mem_Active_SAM_Half,2-88
Mem_Block_Write,2-43
Mem_Dump,2-89, 2-105
Mem_Dump_Time,2-4
Mem_Get_SPtr,2-82
Mem_Load,2-89, 2-103
Mem_RdSAM,2-63
Mem_RdTrans,2-52
Mem_Read,2-91
Mem_Refresh,2-22
Mem_Reset,2-100
Mem_Row_Refresh,2-23
Mem_Row_Write,2-48
Mem_Set_SPtr,2-84
Mem_Set_WPB_Mask,2-41
Mem_Split_RdSAM,2-65
Mem_Split_RdTrans,2-57
Mem_Split_WrtSAM,2-80
Mem_Split_WrtTrans,2-72
Mem_Valid,2-107
Mem_Wake_Up,2-21
Mem_Warnings_On,2-4
Mem_Write,2-95
Mem_WrtSam,2-78
Mem_WrtTrans,2-67
Memory Access,2-3
Memory Files,2-109
Memory Models,2-113

Intel 2716 EPROM,2-131
Intel 51256S/L Static RAM,2-121
Intel21010-06 Dynamic RAM,2-113

Memory word width,2-109
Std_DevelopersKit User’s Manual, V2.2Index-2

Index

INDEX [continued]
MINIMUM, 4-113
mod,3-29
Model Interface Specification,4-6

Generic Parameters,4-9
Port Declarations,4-24

Multiple Bidir Driver-Multiple Bidir Receiver,
4-33

Multiple Driver-Multiple Receiver,4-32

P
Packages

Referencing Std_Mempak,2-2
TEXTIO, 1-3

Passing timing data,4-36
Passing Timing Info,4-3
Path Delay Section,4-96
PeriodCheck,4-89
Procedures

Common memory,2-89
PulseCheck,4-92

R
RAMs

Dynamic,2-16
Static,2-13
Video,2-29

Referencing Std_Mempak package,2-2
Referencing Std_Timing,4-5
Referencing VITAL_Timing,4-5
Refresh

DRAMs, 2-22
Row of DRAM,2-23
VRAMS, 2-6

RegAbs,3-65
RegAdd,3-69
RegDec,3-75
RegDiv,3-77
RegEqual,3-85
RegExp,3-91
RegFill,3-95

RegGreaterThan,3-97
RegGreaterThanOrEqual,3-102
RegInc,3-107
RegLessThan,3-109
RegLessThanOrEqual,3-114
RegMod,3-119
RegMult,3-127
RegNegate,3-133
RegNotEqual,3-135
RegRem,3-140
RegShift,3-148
RegSub,3-156
Regular Assertion Messages,4-51
ReleaseCheck,4-85
ReleaseViolation,4-82
rem,3-33
ROM_Initialize,2-11
ROMs,2-10

S
SAM, 2-29

full size,2-29
half size,2-29
serial pointer,2-29
split register mode,2-29
split register read transfer,2-31
split register write transfer,2-31
taps,2-29

Sample Memory file,2-111
Serial Access Memory,2-29
serial pointer,2-29
SetupCheck,4-54
SetupViolation,4-52
SignExtend,3-162
Single Driver-Multiple Receiver,4-26
SkewCheck,4-94
Soft Assertion Messages,4-51
SpikeCheck,4-93
split register mode,2-29
SRAMs,2-13
Std_DevelopersKit User’s Manual, V2.2 Index-3

INDEX [continued]

Index
SRegAbs,3-67
SRegAdd,3-72
SRegDiv,3-81
SRegExp,3-93
SRegMod,3-123
SRegMult,3-130
SRegRem,3-144
SRegShift,3-152
SRegSub,3-159
Static RAMs,2-13
Std_IOpak

ASCII_TEXT, 1-3
File I/O,1-2
Function Dictionary,1-4
Global constants,1-3
String conversion,1-1
String definition,1-2
String Functions,1-2
Text procedures,1-3
Text processing,1-2

Std_Mempak
Common procedures,2-89
Data specification,2-110
Dynamic allocation,2-6, 2-89
Dynamic RAMs,2-16
File format,2-109
File programmability,2-3
General Information,2-4
Global constants,2-3
Known discrepancies,2-2
Memory Access,2-3
Memory files,2-109
Memory models,2-113
ROM_Initialize,2-11
ROMs,2-10
Row and Column organization,2-6
Sample Memory file,2-111
Static RAMs,2-13
Subroutines,2-7
Using,2-1

Video RAMs,2-29
Word specification,2-110
word width,2-109
X-Handling,2-3
X-handling,2-8

Std_Regpak
Introduction,3-2
Referencing,3-2
Using,3-1

Std_SimFlags,4-114
Std_Timing

Architecture Development,4-47
Architectures,4-2
Back-Annotation,4-34
Entity, 4-1
Generic parameters,4-9
Hierarchical Paths,4-24
Interconnect Modeling,4-26
Introduction,4-1
Model Interface Specification,4-6
Model Organization,4-1
Path Delay,4-96

StrCat,1-77
StrCmp,1-83
StrCpy,1-80
StrLen,1-92
StrNCat,1-78
StrNcCmp,1-89
StrNCmp,1-86
StrNCpy,1-81
Sub_Char,1-137

T
TEXTIO, 1-3
Timing data, passing,4-36
Timing Values

Derating,4-38
Timing Violation section,4-49
TimingCheck,4-78
TimingViolation,4-75
Std_DevelopersKit User’s Manual, V2.2Index-4

Index

INDEX [continued]
To_BitVector,3-165
To_Integer,3-167
To_Lower (character),1-75
To_Lower (string),1-76
To_OnesComp,3-169
To_Segment,2-86
To_SignMag,3-171
To_StdLogicVector,3-173
To_StdULogicVector,3-175
To_String - General Description,1-29
To_String (bit),1-37
To_String (bit_vector),1-56
To_String (Character),1-40
To_String (Integer),1-47
To_String (Real),1-50
To_String (std_logic_vector),1-62
To_String (std_ulogic),1-60
To_String (std_ulogic_vector),1-65
To_String (Time),1-53
To_String(Boolean),1-34
To_String(Severity_Level),1-44
To_TwosComp,3-177
To_Unsign,3-179
To_Upper (character),1-73
To_Upper (string),1-74
Topology, Architecture,4-47

U
UserDefinedTimingDataPackage,4-114
Using Std_IOpak,1-1
Using Std_Mempak,2-1
Using Std_Regpak,3-1

V
Video RAM Support,2-5
Video RAMs,2-29
VitalCalcDelay,4-97
VitalExtendToFillDelay,4-104
VitalGlitchOnDetect,4-107
VitalGlitchOnEvent,4-105

VitalPeriodCheck,4-87
VitalPropagatePathDelay,4-109
VitalPropagateWireDelay,4-28
VitalReportRlseRmvlViolation,4-73
VitalReportSetupHoldViolation,4-71
VitalSetupHoldCheck,4-67
VitalTimingCheck,4-60
VRAM, 2-29

block write,2-32
data structure,2-30
flash write,2-32
read transfer,2-30
write transfer,2-30

VRAM_Initialize, 2-37

W
Words_Per_Line,2-4
write mask register,2-32
write-per-bit mask register,2-32

X
X-Handling,2-3

Addresses,2-9
Input data,2-8
Output data,2-8
Std_DevelopersKit User’s Manual, V2.2 Index-5

INDEX [continued]

Index
Std_DevelopersKit User’s Manual, V2.2Index-6

	CONTENTS
	INDEX
	Std_DevelopersKit User's Manual
	About This Manual
	Introduction
	Contents

	Chapter 1 Std_IOpak
	Using Std_IOpak
	Command Summary
	String Conversion
	String Functions
	File I/O and Text Processing
	String Definition
	ASCII_TEXT

	Function Dictionary
	From_String
	From_String (boolean)
	From_String (bit)
	From_String (severity_level)
	From_String (character)
	From_String (integer)
	From_String (real)
	From_String (time)
	From_String (std_ulogic)
	From_String (std_ulogic_vector)
	From_String (std_logic_vector)
	From_BinString
	From_OctString
	From_HexString
	To_String
	To_String (boolean)
	To_String (bit)
	To_String (character)
	To_String (severity_level)
	To_String (integer)
	To_String (real)
	To_String (time)
	To_String (bit_vector)
	To_String (std_ulogic)
	To_String (std_logic_vector)
	To_String (std_ulogic_vector)
	Is_Alpha
	Is_Upper
	Is_Lower
	Is_Digit
	Is_Space
	To_Upper (one ASCII char)
	To_Upper (all ASCII chars)
	To_Lower (one ASCII char)
	To_Lower (all ASCII chars)
	StrCat
	StrNCat
	StrCpy
	StrNCpy
	StrCmp
	StrNCmp
	StrNcCmp
	StrLen
	Copyfile (ASCII_TEXT)
	Copyfile (TEXT)
	fprint (to ASCII_TEXT file)
	fprint (to TEXT file)
	fprint (to string_buf)
	fscan (from ASCII_TEXT file)
	fscan (from TEXT file)
	fscan (from string_buf)
	fgetc (ASCII_TEXT)
	fgetc (TEXT)
	fgets (ASCII_TEXT)
	fgets (TEXT)
	fgetline (ASCII_TEXT)
	fgetline (TEXT)
	fputc (ASCII_TEXT)
	fputc (TEXT)
	fputs (ASCII_TEXT)
	fputs (TEXT)
	Find_Char
	Sub_Char

	Chapter 2 Std_Mempak
	Using Std_Mempak
	Referencing the Std_Mempak Package

	Known Discrepancies
	Introduction
	Memory Access
	X-Handling
	File Programmability
	Globally Defined Constants

	General Information
	Video RAM Support
	Refreshing of DRAMs and VRAMs
	Dynamic Allocation
	Row and Column Organization
	Subroutines
	X-Handling

	ROMs
	ROM_Initialize

	Static RAMs
	SRAM_Initialize

	Dynamic RAMs
	DRAM_Initialize
	Mem_Wake_Up
	Mem_Refresh
	Mem_Row_Refresh
	Mem_Access

	Video RAMs
	General Information
	VRAM_Initialize
	Mem_Set_WPB_Mask
	Mem_Block_Write
	Mem_Row_Write
	Mem_RdTrans
	Mem_Split_RdTrans
	Mem_RdSAM
	Mem_Split_RdSAM
	Mem_WrtTrans
	Mem_Split_WrtTrans
	Mem_WrtSAM
	Mem_Split_WrtSAM
	Mem_Get_SPtr
	Mem_Set_SPtr
	To_Segment
	Mem_Active_SAM_Half

	Common Procedures
	Mem_Read
	Mem_Write
	Mem_Reset
	Mem_Load
	Mem_Dump
	Mem_Valid

	Memory Files
	File Format
	Sample Memory File

	Memory Models
	Intel 21010-06 Dynamic RAM with Page Mode
	INTEL 51256S/L-07 Static RAM
	INTEL 2716 EPROM

	Chapter 3 Std_Regpak
	Using Std_Regpak
	Referencing the Std_Regpak Package

	Introduction
	Overloaded Built-In Functions
	Arithmetic and Logical Functions
	Conversion Functions
	Globally Defined Constants
	Selecting the Arithmetic Data Representation
	Selecting the Level of Error Checking
	Setting the System’s Integer Length
	Vector Parameters

	Function Dictionary
	Function Summary
	abs
	+
	- (Unary Operator)
	- (binary operator)
	*
	/
	mod
	rem
	**
	=
	/=
	>
	>=
	<
	<=
	ConvertMode
	RegAbs
	SRegAbs
	RegAdd
	SRegAdd
	RegDec
	RegDiv
	SRegDiv
	RegEqual
	RegExp
	SRegExp
	RegFill
	RegGreaterThan
	RegGreaterThanOrEqual
	RegInc
	RegLessThan
	RegLessThanOrEqual
	RegMod
	SRegMod
	RegMult
	SRegMult
	RegNegate
	RegNotEqual
	RegRem
	SRegRem
	RegShift
	SRegShift
	RegSub
	SRegSub
	SignExtend
	To_BitVector
	To_Integer
	To_OnesComp
	To_SignMag
	To_StdLogicVector
	To_StdULogicVector
	To_TwosComp
	To_Unsign

	Chapter 4 Std_Timing
	Introduction
	Model Organization
	Passing Timing Information into a circuit of VHDL ...
	Referencing the Std_Timing and VITAL_Timing Packag...

	Model Interface Specification
	General Philosophy
	Model Entity Development Guidelines
	Generic Parameters
	BaseIncrToTime
	BaseIncrToMinTypMaxTime

	Hierarchical Pathname
	Port Declarations

	Interconnect Modeling
	Simple Unidirectional Single Driver-Multiple Recei...
	VitalPropagateWireDelay
	AssignPathDelay
	Multiple Driver-Multiple Receiver
	Multiple Bidirectional Driver-Multiple Bidirection...

	Back-Annotation
	Mechanism for passing timing data
	Derating of Timing Values
	DeratingFactor
	DerateOutput

	Architecture Development
	Architecture Topology
	Timing Violation Section
	SetupViolation
	SetupCheck
	HoldViolation
	HoldCheck
	VitalTimingCheck
	VitalSetupHoldCheck
	VitalReportSetupHoldViolation
	VitalReportRlseRmvlViolation
	TimingViolation
	TimingCheck
	ReleaseViolation
	ReleaseCheck
	VitalPeriodCheck
	PeriodCheck
	PulseCheck
	SpikeCheck
	SkewCheck
	Path Delay Section
	VitalCalcDelay
	CalcDelay
	Drive
	VitalExtendToFillDelay
	VitalGlitchOnEvent
	VitalGlitchOnDetect
	VitalPropagatePathDelay
	MAXIMUM
	MINIMUM

	Std_SimFlags - a “UserDefinedTimingDataPackage”
	Std_SimFlags

	SEARCH

