
ModelSim EE/SE

Command Reference

V e r s i o n 5 . 3

T h e M o d e l S i m E l i t e a n d S p e c i a l E d i t i o n s

f o r V H D L , V e r i l o g , a n d M i x e d - H D L S i m u l a t i o n

ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are produced by
Model Technology Incorporated. Unauthorized copying, duplication, or other reproduction is
prohibited without the written consent of Model Technology.

The information in this manual is subject to change without notice and does not represent a
commitment on the part of Model Technology. The program described in this manual is
furnished under a license agreement and may not be used or copied except in accordance with
the terms of the agreement. The online documentation provided with this product may be
printed by the end-user. The number or copies that may be printed is limited to the number of
licenses purchased.

ModelSim is a trademark of Model Technology Incorporated. PostScript is a registered
trademark of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T in the USA
and other countries. FLEXlm is a trademark of Globetrotter Software, Inc. IBM, AT, and PC are
registered trademarks, AIX and RISC System/6000 are trademarks of International Business
Machines Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
USA and other countries. SPARC is a registered trademark and SPARCstation is a trademark
of SPARC International, Inc. Sun Microsystems is a registered trademark, and Sun, SunOS and
OpenWindows are trademarks of Sun Microsystems, Inc. All other trademarks and registered
trademarks are the properties of their respective holders.

Copyright (c) 1990 -1999, Model Technology Incorporated.
All rights reserved. Confidential. Online documentation may be printed by licensed customers
of Model Technology Incorporated for internal business purposes only.

Software Version: 5.3a

Published: September 1999

Model Technology Incorporated
10450 SW Nimbus Avenue / Bldg. R-B
Portland OR 97223-4347 USA

phone: 503-641-1340
fax: 503-526-5410
e-mail: support@model.com, sales@model.com
home page: http://www.model.com

EE Command Reference - Part # M16545 US$50
2

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

Software License Agreement
This is a legal agreement between you, the end user, and Model Technology Incorporated
(MTI). By opening the sealed package you are agreeing to be bound by the terms of this
agreement. If you do not agree to the terms of this agreement, promptly return the unopened
package and all accompanying items to the place you obtained them for a full refund.

Model Technology Software License
1. LICENSE. MTI grants to you the nontransferable, nonexclusive right to use one copy of
the enclosed software program (the "SOFTWARE") for each license you have purchased. The
SOFTWARE must be used on the computer hardware server equipment that you identified in
writing by make, model, and workstation or host identification number and the equipment
served, in machine-readable form only, as allowed by the authorization code provided to you
by MTI or its agents. All authorized systems must be used within the country for which the
systems were sold. ModelSim licenses must be located at a single site, i.e. within a one-
kilometer radius identified in writing to MTI. This restriction does not apply to single ModelSim
PE licenses locked by a hardware security key, and such ModelSim PE products may be
relocated within the country for which sold.

2. COPYRIGHT. The SOFTWARE is owned by MTI (or its licensors) and is protected by United
States copyright laws and international treaty provisions. Therefore you must treat the
SOFTWARE like any other copyrighted material, except that you may either (a) make one copy
of the SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE to a
single hard disk provided you keep the original solely for backup or archival purposes. You may
not copy the written materials accompanying the SOFTWARE.

3. USE OF SOFTWARE. The SOFTWARE is licensed to you for internal use only. You shall
not conduct benchmarks or other evaluations of the SOFTWARE without the advance written
consent of an authorized representative of MTI. You shall not sub-license, assign or otherwise
transfer the license granted or the rights under it without the prior written consent of MTI or its
applicable licensor. You shall keep the SOFTWARE in a restricted and secured area and shall
grant access only to authorized persons. You shall not make software available in any form to
any person other than your employees whose job performance requires access and who are
specified in writing to MTI. MTI may enter your business premises during normal business
hours to inspect the SOFTWARE, subject to your normal security.

4. PERMISSION TO COPY LICENSED SOFTWARE. You may copy the SOFTWARE only as
reasonably necessary to support an authorized use. Except as permitted by Section 2, youmay
not make copies, in whole or in part, of the SOFTWARE or other material provided by MTI
without the prior written consent of MTI. For such permitted copies, you will include all notices
and legends embedded in the SOFTWARE and affixed to its medium and container as received
3

from MTI. All copies of the SOFTWARE, whether provided by MTI or made by you, shall remain
the property of MTI or its licensors.

You will maintain a record of the number and location of all copies of the SOFTWARE made,
including copes that have been merged with other software, and will make those records
available to MTI or its applicable licensor upon request.

5. TRADE SECRET. The source code of the SOFTWARE is trade secret or confidential
information of MTI or its licensors. You shall take appropriate action to protect the confidentiality
of the SOFTWARE and to ensure that any user permitted access to the SOFTWARE does not
provide it to others. You shall take appropriate action to protect the confidentiality of the source
code of the SOFTWARE. You shall not reverse-assemble, reverse-compile or otherwise
reverse-engineer the SOFTWARE in whole or in part. The provisions of this section shall
survive the termination of this Agreement.

6. TITLE. Title to the SOFTWARE licensed to you or copies thereof are retained by MTI or third
parties from whom MTI has obtained a licensing right.

7. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE. You shall not
mortgage, pledge or encumber the SOFTWARE in any way. You shall ensure that all support
service is performed by MTI or its designated agents. You shall notify MTI of any loss of the
SOFTWARE.

8. TERMINATION. MTI may terminate this Agreement, or any license granted under it, in the
event of breach or default by you. In the event of such termination, all applicable SOFTWARE
shall be returned to MTI or destroyed.

9. EXPORT. You agree not to allow the MTI SOFTWARE to be sent or used in any other
country except in compliance with this license and applicable U.S. laws and regulations. If you
need advice on export laws and regulations, you should contact the U.S. Department of
Commerce, Export Division, Washington, DC 20230, USA for clarification.

Important Notice
Any provision of Model Technology Incorporated SOFTWARE to the U.S. Government is with
"Restricted Rights" as follows: Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer-
Restricted Rights clause at FAR 2.227-19 when applicable, or in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clauses in the NASA FAR Supplement. Any
provision of Model Technology documentation to the U.S. Government is with Limited Rights.
Contractor/manufacturer is Model Technology Incorporated, 10450 SW Nimbus Avenue / Bldg.
R-B, Portland, Oregon 97223 USA.
4

Limited Warranty

LIMITED WARRANTY. MTI warrants that the SOFTWARE will perform substantially in
accordance with the accompanying written materials for a period of 30 days from the date of
receipt. Any implied warranties on the SOFTWARE are limited to 30 days. Some states do not
allow limitations on duration of an implied warranty, so the above limitation may not apply to
you.

CUSTOMER REMEDIES. MTI’s entire liability and your exclusive remedy shall be, at MTI’s
option, either (a) return of the price paid or (b) repair or replacement of the SOFTWARE that
does not meet MTI’s Limited Warranty and which is returned to MTI. This Limited Warranty is
void if failure of the SOFTWARE has resulted from accident, abuse or misapplication. Any
replacement SOFTWARE will be warranted for the remainder of the original warranty period or
30 days, whichever is longer.

NO OTHER WARRANTIES. MTI disclaims all other warranties, either express or implied,
including but not limited to implied warranties of merchantability and fitness for a particular
purpose, with respect to the SOFTWARE and the accompanying written materials. This limited
warranty gives you specific legal rights. You may have others, which vary from state to state.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall MTI or its suppliers be
liable for any damages whatsoever (including, without limitation, damages for loss of business
profits, business interruption, loss of business information, or other pecuniary loss) arising out
of the use of or inability to use these MTI products, even if MTI has been advised of the
possibility of such damages. Because some states do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation may not apply to you.
5

Table of Contents

coverage report CR-61

ModelSim Commands (CR-9)

Command reference table CR-10

abort CR-19

add button CR-20

add list CR-22

add_menu CR-26

add_menucb CR-28

add_menuitem CR-30

add_separator CR-31

add_submenu CR-32

add wave CR-33

alias CR-37

batch_mode CR-38

bd CR-39

bp CR-40

cd CR-42

change CR-43

change_menu_cmd CR-44

check contention add CR-45

check contention config CR-46

check contention off CR-47

check float add CR-48

check float config CR-49

check float off CR-50

check stable on CR-51

check stable off CR-52

checkpoint CR-53

configure CR-54

coverage clear CR-59

coverage reload CR-60

delete CR-62

describe CR-63

disablebp CR-64

disable_menu CR-65

disable_menuitem CR-66

do CR-67

down | up CR-70

drivers CR-73

dumplog64 CR-74

echo CR-75

edit CR-76

enablebp CR-77

enable_menu CR-78

enable_menuitem CR-79

environment CR-80

examine CR-81

exit CR-84

find CR-85

force CR-87

getactivecursortime CR-90

getactivemarkertime CR-91

lecho CR-92

log CR-93

lshift CR-95

lsublist CR-96

macro_option CR-97

modelsim CR-98

.main clear CR-99

next CR-100

noforce CR-101
6 - Table of Contents ModelSim EE/SE Command Reference

nolog CR-102

notepad CR-104

nowhen CR-105

onbreak CR-106

onElabError CR-107

onerror CR-108

pause CR-109

play CR-110

power add CR-111

power report CR-112

power reset CR-113

printenv CR-114

profile clear CR-115

profile interval CR-116

profile off CR-117

profile on CR-118

profile option CR-119

profile report CR-120

project CR-121

property list CR-123

property wave CR-124

pwd CR-126

quietly CR-127

quit CR-128

radix CR-129

record CR-130

report CR-131

restart CR-133

restore CR-134

resume CR-135

right | left CR-136

run CR-139

search and next CR-141

searchLog CR-144

seetime CR-146

shift CR-147

show CR-148

splitio CR-149

status CR-150

step CR-151

stop CR-152

tb CR-153

toggle add CR-154

toggle reset CR-155

toggle report CR-156

transcribe CR-157

transcript CR-158

tssi2mti CR-159

vcd add CR-160

vcd checkpoint CR-161

vcd comment CR-162

vcd file CR-163

vcd flush CR-165

vcd limit CR-166

vcd off CR-167

vcd on CR-168

vcom CR-169

vdel CR-175

vdir CR-177

vgencomp CR-178

view CR-180

virtual delete|describe|define CR-182
ModelSim EE/SE Command Reference Table of Contents - 7

virtual expand CR-183

virtual function CR-184

virtual hide|nohide CR-188

virtual log|nolog CR-189

virtual region CR-190

virtual save CR-191

virtual show|count CR-192

virtual signal CR-193

virtual type CR-196

vlib CR-198

vlog CR-199

vmake CR-205

vmap CR-207

vsim CR-208

vsim<info> CR-219

vsource CR-220

.wave.tree zoomfull CR-221

.wave.tree zoomrange CR-222

wlf2log CR-223

when CR-226

where CR-230

write format CR-231

write list CR-232

write preferences CR-233

write report CR-234

write transcript CR-235

write tssi CR-236

write wave CR-238

Command Syntax and Conven-
tions (CR-241)

Syntax conventions CR-242

Comments in argument files loaded with -f
<filename> CR-242

Command return values CR-243

Numbering conventions CR-244

HDL item pathnames CR-245

Wildcard characters CR-248

ModelSim variables CR-248

Simulation time units CR-249

GUI_expression_format CR-250

Index (CR-257)
8 - Table of Contents ModelSim EE/SE Command Reference

C R ModelSim Commands

Chapter contents

Command reference table 10

ModelSim Commands 19

The simulator commands used to control the ModelSim simulator are described in
this chapter. These commands are only valid after loading a design with the vsim
command (CR-208) or via the ModelSim graphical interface. The commands here
are entered either in macro files or on the command line of the Main window.
Some commands are automatically entered on the command line when you use the
ModelSim graphical user interface.

Note that in addition to the simulation commands documented in this section, you
can add the Tcl commands described in the Tcl man pages (use the Main window
menu selection: Help > Tcl Man Pages).

Command syntax

See "Command Syntax and Conventions" (CR-241) for complete command syntax
information.

Note: All commands entered within ModelSim must be entered in lower case.

Tcl and FLEXlm commands

Documentation for Tcl commands, and FlexLM commands are available in these
locations:

• Tcl man pages
available in HTML format - use this Main window menu selection:
Help > Tcl man pages

• FLEXlm commands
for tools available within ModelSim see "License administration tools" (D-434)
in the User’s Manual; the complete FLEXlm user’s manuals is available at:
http://www.globetrotter.com/manual.htm
ModelSim EE/SE Command Reference ModelSim Commands CR-9

http://www.globetrotter.com/manual.htm

Command reference table
Command reference table

The following table provides a brief description of each ModelSim command.
Command details, arguments and examples can be found at the page numbers
given in the Command name column.

Command name Action

.main clear (CR-99) clears the Main window (10-158) transcript

.wave.tree zoomfull (CR-221) redraws the display to show the entire simulation from time 0 to the
current simulation time

.wave.tree zoomrange (CR-222) enter the beginning and ending times for a range of time units to be
displayed

abort (CR-19) halts the execution of a macro file interrupted by a breakpoint or
error

add button (CR-20) adds a user-defined button to the Main window button bar

add list (CR-22) lists VHDL variables, and Verilog nets and registers, and their
values in the List window

add log also known as the log command. See log (CR-93)

add wave (CR-33) adds VHDL signals, and Verilog nets and registers to the Wave
window

add_menu (CR-26) adds a menu to the menu bar of the specified window, using the
specified menu name

add_menucb (CR-28) creates a checkbox within the specified menu of the specified
window

add_menuitem (CR-30) creates a menu item within the specified menu of the specified
window

add_separator (CR-31) adds a separator as the next item in the specified menu path in the
specified window

add_submenu (CR-32) creates a cascading submenu within the specified menu_path of the
specified window

alias (CR-37) creates a new Tcl procedure that evaluates the specified commands
CR-10 ModelSim Commands ModelSim EE/SE Command Reference

Command reference table
batch_mode (CR-38) returns a 1 if VSIM is operating in batch mode, otherwise returns a 0

bd (CR-39) deletes a breakpoint

bp (CR-40) sets a breakpoint

cd (CR-42) changes the VSIM local directory to the specified directory

change (CR-43) modifies the value of a VHDL variable or Verilog register variable

change_menu_cmd (CR-44) changes the command to be executed for a specified menu item
label, in the specified menu, in the specified window

check contention add (CR-45) enables contention checking for the specified nodes

check contention config (CR-46) write checking messages to a file

check contention off (CR-47) disables contention checking for the specified nodes

check float add (CR-48) enables float checking for the specified nodes

check float config (CR-49) write checking messages to a file

check float off (CR-50) disables float checking for the specified nodes

check stable off (CR-52) disables stability checking

check stable on (CR-51) enables stability checking on the entire design

checkpoint (CR-53) saves the state of your simulation

configure (CR-54) invokes the List or Wave widget configure command for the current
default List or Wave window

coverage clear (CR-59) clears all coverage data obtained during previous run commands

coverage reload (CR-60) seeds the coverage statistics with the output of a previous coverage
report command

coverage report (CR-61) produces a textual output of the coverage statistics that have been
gathered up to this point

delete (CR-62) removes HDL items from either the List or Wave window

describe (CR-63) displays information about the specified HDL item

Command name Action
ModelSim EE/SE Command Reference ModelSim Commands CR-11

Command reference table
disable_menu (CR-65) disables the specified menu within the specified window

disable_menuitem (CR-66) disables a specified menu item within the specified menu_path of
the specified window

disablebp (CR-64) temporarily turns off all existing breakpoints

do (CR-67) executes commands contained in a macro file

down | up (CR-70) searches for signal transitions or values in the specified List window

drivers (CR-73) displays in the Main window the current value and scheduled future
values for all the drivers of a specified VHDL signal or Verilog net

dumplog64 (CR-74) dumps the contents of the vsim.wav file in a readable format

echo (CR-75) displays a specified message in the Main window

edit (CR-76) invokes the editor specified by the EDITOR environment variable

enable_menu (CR-78) enables a previously-disabled menu

enable_menuitem (CR-79) enables a previously-disabled menu item

enablebp (CR-77) turns on all breakpoints turned off by the disablebp command (CR-

64)

environment (CR-80) display or change the current region/signal environmen

examine (CR-81) examines one or more HDL items, and displays current values (or
the values at a specified previous time) in the Main window

exit (CR-84) exits the simulator and the ModelSim application

find (CR-85) displays the full pathnames of all HDL items in the design whose
names match the name specification you provide

force (CR-87) allows you to apply stimulus to VHDL signals and Verilog nets
interactively

getactivecursortime (CR-90) gets the time of the active cursor in the Wave window

getactivemarkertime (CR-91) gets the time of the active marker in the List window

lecho (CR-92) takes one or more Tcl lists as arguments and pretty-prints them to
the Transcript window

Command name Action
CR-12 ModelSim Commands ModelSim EE/SE Command Reference

Command reference table
log (CR-93) creates a logfile containing simulation data for all HDL items whose
names match the provided specifications

lshift (CR-95) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-96) returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

macro_option (CR-97) controls the speed and delay of macro (DO file) playback, plus the
level of debugging feedback

modelsim (CR-98) starts the ModelSim GUI without prompting you to load a design;
valid only for Windows platforms

next (CR-100) see "search and next" (CR-141)

noforce (CR-101) removes the effect of any active force (CR-87) commands on the
selected HDL items

nolog (CR-102) suspends writing of data to the logfile for the specified signals

notepad (CR-104) calls up a simple text editor

nowhen (CR-105) deactivates selected when (CR-226) commands

onbreak (CR-106) used within a macro; it specifies a command to be executed when
running a macro that encounters a breakpoint in the source code

onElabError (CR-107) specifies one or more commands to be executed when an error is
encountered during elaboration

onerror (CR-108) used within a macro; it specifies one or more commands to be
executed when a running macro encounters an error

pause (CR-109) placed within a macro; interrupts the execution of that macro

play (CR-110) plays a sequence of keyboard and mouse actions, which were
previously saved to a file with the record command (CR-130)

power add (CR-111) specifies the signals or nets to track for power information

power report (CR-112) writes out the power information for the specified signals or nets

Command name Action
ModelSim EE/SE Command Reference ModelSim Commands CR-13

Command reference table
power reset (CR-113) selectively resets power information to zero for the signals or nets
specified with the power add command (CR-111)

printenv (CR-114) echoes to the Transcript window the current names and values of all
environment variables

profile clear (CR-115) clear any data that has been gathered during previous run
commands

profile interval (CR-116) select the frequency with which the profiler collects samples during
a run command

profile off (CR-117) discontinue runtime profiling

profile on (CR-118) enable runtime analysis of where your simulation is spending its
time

profile option (CR-119) allows various profiling options to be changed

profile report (CR-120) produce a textual output of the profiling statistics that have been
gathered up to this point

project (CR-121) performs common operations on new projects

property list (CR-123) changes one or more properties of the specified signal, net or
register in the List window (10-174)

property wave (CR-124) changes one or more properties of the specified signal, net or
register in the Wave window (10-212)

pwd (CR-126) displays the current directory path in the Main transcript window

quietly (CR-127) turns off transcript echoing for the specified command

quit (CR-128) exits the simulator

radix (CR-129) specifies the default radix to be used

record (CR-130) starts recording a replayable trace of all keyboard and mouse actions

report (CR-131) displays the value of all simulator control variables, or the value of
any simulator state variables relevant to the current simulation

restart (CR-133) reloads the design elements and resets the simulation time to zero

Command name Action
CR-14 ModelSim Commands ModelSim EE/SE Command Reference

Command reference table
restore (CR-134) restores the state of a simulation that was saved with a checkpoint
command (CR-53) during the current invocation of VSIM

resume (CR-135) resume execution of a macro file after a pause command (CR-109),
or a breakpoint

right | left (CR-136) searches right (next) or left (previous) for signal transitions or
values in the specified Wave window

run (CR-139) advances the simulation by the specified number of timesteps

search and next (CR-141) search the specified window for one or more items matching the
specified pattern(s)

searchLog (CR-144) searches one or more of the currently open logfiles for a specified
condition

seetime (CR-146) scrolls the List or Wave window to make the specified time visible

shift (CR-147) shifts macro parameter values down one place

show (CR-148) lists HDL items and subregions visible from the current
environment

splitio (CR-149) operates on a VHDL inout or out port to create a new signal having
the same name as the port suffixed with "__o"

status (CR-150) lists all current interrupted macros

step (CR-151) steps to the next HDL statement

stop (CR-152) used with the when command (CR-226) to stop simulation in batch
files

tb (CR-153) displays a stack trace for the current process in the Main transcript
window

toggle add (CR-154) enables collection of toggle statistics for the specified nodes

toggle report (CR-156) displays to the screen a list of all nodes that have not transitioned to
both 0 and 1 at least once

toggle reset (CR-155) resets the toggle counts to zero for the specified nodes

Command name Action
ModelSim EE/SE Command Reference ModelSim Commands CR-15

Command reference table
transcribe (CR-157) displays a command in the Main window, then executes the
command

transcript (CR-158) controls echoing of commands executed in a macro file; also works
at top level in batch mode

tssi2mti (CR-159) converts a vector file in Summit Design Standard Events Format
into a sequence of VSIM force (CR-87) and run (CR-139) commands

vcd add (CR-160) adds the specified items to the VCD file

vcd checkpoint (CR-161) dumps the current values of all VCD variables to the VCD file

vcd comment (CR-162) inserts the specified comment in the VCD file

vcd file (CR-163) specifies the filename and state mapping for the VCD file created by
a vcd add command (CR-160)

vcd flush (CR-165) flushes the contents of the VCD file buffer to the VCD file

vcd limit (CR-166) specifies the maximum size of the VCD file

vcd off (CR-167) turns off VCD dumping and records all VCD variable values as x

vcd on (CR-168) turns on VCD dumping and records the current values of all VCD
variables

vcom (CR-169) compiles VHDL design units

vdel (CR-175) deletes a design unit from a specified library

vdir (CR-177) selectively lists the contents of a design library.

vgencomp (CR-178) writes a Verilog module’s equivalent VHDL component declaration
to standard output; invoked from DOS prompt only

view (CR-180) opens a ModelSim window and brings it to the front of the display

virtual delete|describe|define
(CR-182)

delete removes the matching virtuals; describe prints a complete
description of the data type of one or more virtual signals; define
prints the definition of the virtual signal or function in the form of a
command that can be used to re-create the object

virtual expand (CR-183) produces a list of all the non-virtual objects contained in the virtual
signal(s)

Command name Action
CR-16 ModelSim Commands ModelSim EE/SE Command Reference

Command reference table
virtual function (CR-184) creates a new signal that consists of logical operations on existing
signals and simulation time

virtual hide|nohide (CR-188) hide sets a flag in the specified real or virtual signals so that the
signals do not appear in the Signals window; nohide resets the flag

virtual log|nolog (CR-189) log causes the sim-mode dependent signals of the specified virtual
signals to be logged by the kernel; nolog causes the specified virtual
signals to be un-logged by the kernel

virtual region (CR-190) creates a new user-defined design hierarchy region

virtual save (CR-191) saves the definitions of virtuals to a file

virtual show|count (CR-192) show lists the full path names of all the virtuals explicitly defined;
count counts the number of explicitly declared virtuals that have not
been saved and that were not read in using a macro file

virtual signal (CR-193) creates a new signal that consists of concatenations of signals and
subelements

vlib (CR-198) selectively lists the contents of a design library

vlib (CR-198) creates a design library

vlog (CR-199) compiles Verilog design units

vmake (CR-205) use a UNIX or Windows MAKE program to maintain libraries;
invoked from UNIX or DOS prompt only

vmap (CR-207) defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file

vsim (CR-208) loads a new design into the simulator

vsim<info> (CR-219) returns information about the current VSIM executable

vsource (CR-220) displays an HDL source file in the VSIM Source window

wlf2log (CR-223) translates a ModelSim logfile (vsim.wav) to a QuickSim II logfile

when (CR-226) instruct VSIM to perform actions when the specified conditions are
met

where (CR-230) displays information about the system environment

Command name Action
ModelSim EE/SE Command Reference ModelSim Commands CR-17

Command reference table
write format (CR-231) records the names and display options of the HDL items currently
being displayed in the List or Wave window

write list (CR-232) records the contents of the most recently opened, or specified List
window in a list output file

write preferences (CR-233) saves the current GUI preference settings to a Tcl preference file

write report (CR-234) prints a summary of the design being simulated

write transcript (CR-235) writes the contents of the Main window transcript to the specified
file

write tssi (CR-236) ecords the contents of the default or specified List window in a
“TSSI format” file

write wave (CR-238) records the contents of the most currently opened, or specified
Wave window in PostScript format

Command name Action
CR-18 ModelSim Commands ModelSim EE/SE Command Reference

abort
ModelSim Commands

abort

The abort command halts the execution of a macro file interrupted by a
breakpoint or error. When macros are nested, you may choose to abort the last
macro only, abort a specified number of nesting levels, or abort all macros. The
abort command may be used within a macro to return early.

Syntax

abort

[<n> | all]

Arguments

None.

<n> | all

An integer giving the number of nested macro levels to abort; all aborts all levels.
Optional. Default is 1.

See also

onbreak command (CR-106), restore command (CR-134), and the run command
(CR-139)
ModelSim EE/SE Command Reference ModelSim Commands CR-19

add button
add button

The add button command adds a user-defined button to the Main window button
bar. New buttons are added to the right end of the bar. You can also add buttons
with a ModelSim tool: "The Button Adder" (10-265).

Returns the path name of the button widget created.

Syntax

add button

<Text> <Cmd> [Disable | NoDisable] [{option value ...}]

Arguments

<Text>

The label to appear on the face of the button. Required.

<Cmd>

The command to be executed when the button is clicked with the left mouse
button. To echo the command and display the return value in the Main window,
prefix the command with the transcribe command (CR-157). Transcribe will also
echo the results to the transcript window. Required.

Disable | NoDisable

If Disable, the button will be grayed-out during a run and not active. If NoDisable,
the button will continue to be active during a run. Optional. The default is Disable.

Note: The transcribe command (CR-157) will not work when the simulator is running, therefore don’t use
transcribe with NoDisable.

{option value ...}

A list of option-value pairs that will be applied to the button widget. Optional. Any
properties belonging to Tk button widgets may be set. Useful options are
foreground color (-fg), background color (-bg), width (-width) and relief (-relief).

For a complete list of available options, use the configure command addressed to
the newly-created widget. For example:

.controls.button_7 config
CR-20 ModelSim Commands ModelSim EE/SE Command Reference

add button
Note: Because the arguments are positional, a Disable | NoDisable option must be specified in order to use
the options argument.

Examples

add button pwd {transcribe pwd} NoDisable

Creates a button labeled "pwd" that invokes the transcribe command (CR-157) with the
pwd Tcl command, and echoes the command and its results to the Main window. The
button remains active during a run.

The pwd button
example is available in
the following DO file:
<install_dir>/
modeltech/examples/
addbutton.do. You can
run the DO file to add
the pwd button shown
in the illustration, or
modify the file for
different results.

To execute the DO file, select Macro > Execute Macro from the Main window
menu bar, or use the do command (CR-67) from the ModelSim command line.

add button date {transcribe exec date} Disable {-fg blue -bg yellow

-activebackground red}

Creates a button labeled "date" that echoes the system date to the Main window. The button
is disabled during a run; its colors are: blue foreground, yellow background, and red active
background.

add button doit {run 1000 ns; echo did it} Disable {-underline 1}

Creates a "doit" button and underlines the second character of the label, the "o" of "doit".

.controls.button_7 config -command {run 10000} -bg red

Changes the button command to "run 10000" and changes the button background color to
red.

See also

transcribe command (CR-157), and the "The Button Adder" (10-265) tool
ModelSim EE/SE Command Reference ModelSim Commands CR-21

add list
add list

The add list command lists VHDL variables, and Verilog nets and registers, and
their values in the List window. If no port mode is specified, all interface items
and internal items are listed. Without arguments, the command displays the List
window. The add list command also allows specification of user-defined buses.

Syntax

add list-out

[-window <wname>] [-recursive] [-in] [-out]
[-inout] [-internal] [-ports] [-<radix>]
[-notrigger | -trigger] [-width <n>] [-label <name>]
[<item_name> | {<item_name> <options>{sig1 sig2 sig3 ...}}] ...]
...]

Arguments

-strobe, -collapse, -delta, -nodelta

These options are no longer part of the add list (formerly the list command). Use the
configure list command instead. The command equivalents for the -collapse, -delta, and -
nodelta options are shown below; see the configure command (CR-54) for more detail.

-window <wname>

Adds HDL items to the specified List window <wname> (i.e., list2). Optional.
Used to specify a particular window when multiple instances of that window type
exist. Selects an existing window; does not create a new window. Use the view
command (CR-180) with the -new option to create a new window.

-recursive

For use with wild card searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional; if omitted, the search is limited to the
selected region.

5.0 or newer 4.6x

configure list -delta collapse list -collapse

configure list -delta all list -delta

configure list -delta none list -nodelta
CR-22 ModelSim Commands ModelSim EE/SE Command Reference

add list
-in

For use with wild card searches. Specifies that the scope of the search is to include
ports of mode IN if they match the item_name specification. Optional.

-out

For use with wild card searches. Specifies that the scope of the search is to include
ports of mode OUT if they match the item_name specification. Optional.

-inout

For use with wild card searches. Specifies that the scope of the search is to include
ports of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wild card searches. Specifies that the scope of the search is to include
internal items if they match the item_name specification. Optional.

-ports

For use with wild card searches. Specifies that the scope of the search is to include
all ports. Optional. Has the same effect as specifying -in, -out, and -inout together.

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid
entries (or unique abbreviations) are:

binary
octal
decimal (or signed)
unsigned
hexadecimal
ascii

If no radix is specified for an enumerated type, the default representation is used.

If you specify a radix for an array of a VHDL enumerated type, VSIM converts
each signal value to 1, 0, Z, or X.

-notrigger

Specifies that items are to be listed, but does not cause the List window to be
updated when the item changes. Optional.

-trigger

Specifies that items are to be listed and causes the List window to be updated when
the item changes. Optional. This switch is the default.

-width <n>

Specifies column width in characters. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-23

add list
-label <name>

Specifies an alternative signal name to be displayed as a column heading in the
listing. Optional. This alternative name is not valid in a force (CR-87) or examine
(CR-81) command, however. It can optionally be used in a search and next
command (CR-141) with the list option.

<item_name>

Specifies the name of the item to be listed. Optional. Wildcard characters are
allowed. Variables may be added if preceded by the process name. For example,

add list myproc/int1

{<item_name> <options>{sig1 sig2 sig3 ...}}

Creates a user-defined bus in place of <item_name>; ‘sigi’ are signals to be
concatenated within the user-defined bus. Optional. Specified items may be either
scalars or various sized arrays as long as they have the same element enumeration
type. The following option is available:

-keep

The original specified items are not removed; otherwise they are removed.

Note: You can use the Edit > Combine selection from the "List window" (10-174) menu to create a user-
defined bus.

Examples

add list -r /*

Lists all items in the design.

add list *

Lists all items in the region.

add list -in *

Lists all input ports in the region.

add list a -label sig /top/lower/sig array_sig(9 to 23)
Displays a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list clk -not a b c d

Lists clk, a, b, c, and d only when clk changes.

add list -not clk a b c d

Lists clk, a, b, c, and d every 100 time units.
CR-24 ModelSim Commands ModelSim EE/SE Command Reference

add list
add list -hex {mybus {msb opcode(8 downto 1) data}}

Creates a user-defined bus named "mybus" consisting of three signals; the bus is displayed
in hex.

add list vec1 -hex vec2 -dec vec3 vec4

Lists the item vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

See also

log command (CR-93)
ModelSim EE/SE Command Reference ModelSim Commands CR-25

add_menu
add_menu

The add_menu command adds a menu to the menu bar of the specified window,
using the specified menu name. The menu may be justified to the left or right side
of the menu bar. Use the add_menuitem (CR-30), add_separator (CR-31),
add_menucb (CR-28), and add_submenu (CR-32) commands to complete the
menu.

Returns the full Tk pathname of the new menu.

Color and other Tk properties of the menu may be changed, after creating the
menu, using the Tk menu widget configure command.

Syntax

add_menu

<window_name> <menu_name> [<shortcut>] [<side>]

Arguments

<window_name>

Tk path of the window to contain the menu. Required.

<menu_name>

Name to be given to the Tk menu widget. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut.
Numbering starts with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.).
Optional. Default is "-1", which indicates no shortcut is to be used.

<side>

Justify the menu "left" or "right". Optional. Default is "left".

Examples

The following Tcl code is an example of creating user-customized menus. It adds
a menu containing a top-level item labeled "Do My Own Thing...", which prints
"my_own_thing.signals"; adds a cascading submenu labeled "changeCase" with
two entries, "To Upper" and "To Lower", which echo "my_to_upper" and
"my_to_lower" respectively. A # checkbox that controls the value of myglobalvar
(.signals:one) is also added.

view signals
set myglobalvar(.signals:one) 0
set myglobalvar(.signals:two) 1
proc AddMyMenus {wname} {
CR-26 ModelSim Commands ModelSim EE/SE Command Reference

add_menu
global myglobalvar
set cmd1 "echo my_own_thing $wname"
set cmd2 "echo my_to_upper $wname"
set cmd3 "echo my_to_lower $wname"

WindowName Menu MenuItem label Command
---------- ---- -------------------- -------
add_menu $wname mine 0;# 0th letter (M) is underlined
add_menuitem $wname mine "Do My Own Thing..." $cmd1
add_separator $wname mine ;#----------------------------
add_submenu $wname mine changeCase
add_menuitem $wname mine.changeCase "To Upper" $cmd2
add_menuitem $wname mine.changeCase "To Lower" $cmd3
add_submenu $wname mine vars
add_menucb $wname mine.vars "Feature One" -variable

myglobalvar($wname:one)
-onvalue 1 -offvalue 0 -indicatoron 1

}
AddMyMenus .signals

This example is available in the
following DO file: <install_dir>/
modeltech/examples/addmenu.do. You
can run the DO file to add the "Mine"
menu shown in the illustration, or
modify the file for different results.

To execute the DO file, select Macro >
Execute Macro from the Main window
menu bar, or use the do command (CR-

67) from the ModelSim command line.

See also

add_menucb command (CR-28), add_menuitem command (CR-30),
add_separator command (CR-31), add_submenu command (CR-32), and the
change_menu_cmd command (CR-44)
ModelSim EE/SE Command Reference ModelSim Commands CR-27

add_menucb
add_menucb

The add_menucb command creates a checkbox within the specified menu of the
specified window. A checkbox is a small box with a label. Clicking on the box will
toggle the state, from on to off or the reverse. When the box is "on", the Tcl global
variable <var> is set to <onval>. When the box is "off", the global variable is set
to <offval>. Also, if something else changes the global variable, its current state
is reflected in the state of the checkbox. Returns nothing.

Syntax

add_menucb

<window_name> <menu_name> <Text> -variable <var> -onvalue <onval>
-offvalue <offval> [-indicatoron <val>]

Arguments

<window_name>

Tk path of the window containing the menu. Required.

<menu_name>

Name of the Tk menu widget. Required.

<Text>

Text to be displayed next to the checkbox. Required.

-variable <var>

Global Tcl variable to be reflected and changed. Required.

-onvalue <onval>

Value to set the global Tcl variable to when the box is "on". Required.

-offvalue <offval>

Value to set the global Tcl variable to when the box is "off". Required.

-indicatoron <val>

0 or 1. If 1, the status indicator is displayed. Otherwise not displayed. Optional.
The default is 1.
CR-28 ModelSim Commands ModelSim EE/SE Command Reference

add_menucb
Examples

add_menucb $wname mine.vars "Feature One" -variable myglobalvar($wname:one) \
-onvalue 1 -offvalue 0 -indicatoron 1

See also

add_menu command (CR-26), add_menuitem command (CR-30), add_separator
command (CR-31), add_submenu command (CR-32), and the change_menu_cmd
command (CR-44)

The add_menucb command is also used as part of the add_menu (CR-26)
example.
ModelSim EE/SE Command Reference ModelSim Commands CR-29

add_menuitem
add_menuitem

The add_menuitem command creates a menu item within the specified menu of
the specified window. May be used within a submenu. Returns nothing.

Syntax

add_menuitem

<window_name> <menu_path> <Text> <Cmd> [<accel_key>]

Arguments

<window_name>

Tk path of the window containing the menu. Required.

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

<Text>

Text to be displayed. Required.

<Cmd>

The command to be executed when the menu item is selected with the left mouse
button. To echo the command and display the return value in the Main window,
prefix the command with the transcribe command (CR-157). Transcribe will also
echo the results to the transcript window. Required.

<accel_key>

A number, starting from 0, of the letter to underline in the menu text. Used to
indicate a keyboard shortcut key. Optional. Default is to pick the first character in
<Text> that is unique across the menu items within the menu.

If accel_key = 1, no letter is underlined and no acceleration key will be defined.

Examples
add_menuitem $wname user "Save Results As..." $my_save_cmd

See also
add_menu command (CR-26), add_menucb command (CR-28), add_separator
command (CR-31), add_submenu command (CR-32), and the change_menu_cmd
command (CR-44)

The add_menuitem command is also used as part of the add_menu (CR-26)
example.
CR-30 ModelSim Commands ModelSim EE/SE Command Reference

add_separator
add_separator

The add_separator command adds a separator as the next item in the specified
menu path in the specified window. Returns nothing.

Syntax

add_separator

<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

Examples

add_separator $wname user

See also

add_menu command (CR-26), add_menucb command (CR-28), add_menuitem
command (CR-30), add_submenu command (CR-32), and the change_menu_cmd
command (CR-44)

The add_separator command is also used as part of the add_menu (CR-26)
example.
ModelSim EE/SE Command Reference ModelSim Commands CR-31

add_submenu
add_submenu

The add_submenu command creates a cascading submenu within the specified
menu_path of the specified window. May be used within a submenu.

Returns the full Tk path to the new submenu widget.

Syntax

add_submenu

<window_name> <menu_path> <name> [<accel_key>]

Arguments

<window_name>

Tk path of the window containing the menu. Required.

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

<name>

Name to be displayed on the submenu. Required.

<accel_key>

A number, starting from 0, of the letter to underline in the menu text. Used to
indicate a keyboard shortcut key. Optional. Default is to pick the first character in
<Text> that is unique across the menu items within the submenu.

If accel_key = -1, no letter is underlined and no acceleration key will be defined.

See also

add_menu command (CR-26), add_menucb command (CR-28), add_menuitem
command (CR-30), add_separator command (CR-31), and the
change_menu_cmd command (CR-44)

The add_submenu command is also used as part of the add_menu (CR-26)
example.
CR-32 ModelSim Commands ModelSim EE/SE Command Reference

add wave
add wave

The add wave command adds VHDL signals, and Verilog nets and registers to the
Wave window. It also allows specification of user defined buses.

Syntax

add wave

[-window <wname>] [-expand <signal_name>] [-expandall
<signal_name>] [-recursive] [-in] [-out]
[-inout] [-internal] [-ports] [-<radix>]
[-<format>] [-height <pixels>]
[-color <standard_color_name>] [-offset <offset>]
[-scale <scale>] [-label <name>] [<item_name> |
{<item_name> [-flatten] {sig1 sig2 sig3 ...}}] ...] ...

Arguments

-window <wname>

Adds HDL items to the specified window <wname> (i.e., wave2). Optional. Used
to specify a particular window when multiple instances of that window type exist.
Selects an existing window; does not create a new window. Use the view
command (CR-180) with the -new option to create a new window.

-expand <signal_name>

Causes a compound signal to be expanded immediately, but only one level down.
Optional. The <signal_name> is required, and may include wildcards.

-expandall <signal_name>

Causes a compound signal to be fully expanded immediately. Optional. The
<signal_name> is required, and may include wildcards.

-recursive

For use with wild card searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional; if omitted, the search is limited to the
selected region.

-in

For use with wild card searches. Specifies that the scope of the search is to include
ports of mode IN if they match the item_name specification. Optional.

-out

For use with wild card searches. Specifies that the scope of the search is to include
ports of mode OUT if they match the item_name specification. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-33

add wave
-inout

For use with wild card searches. Specifies that the scope of the search is to include
ports of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wild card searches. Specifies that the scope of the search is to include
internal items if they match the item_name specification. Optional.

-ports

For use with wild card searches. Specifies that the scope of the listing is to include
ports of modes IN, OUT, or INOUT. Optional.

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid
entries (or any unique abbreviation) are:

binary
octal
decimal (or signed)
unsigned
hexadecimal
symbolic
ascii

If no radix is specified for an enumerated type, the default representation is used.

If you specify a radix for an array of a VHDL enumerated type, ModelSim
converts each signal value to 1, 0, Z, or X. See also, "Preference variables located
in TCL files" (B-406).

-<format>

Specifies type of items:

literal
logic
analog-step
analog-interpolated
analog-backstep

Optional. Literal waveforms are displayed as a box containing the item value.
Logic signals may be U, X, 0, 1, Z, W, L, H, or ‘-’.

The way each state is displayed is specified by the logic type display preferences,
see "Preference variables located in INI and MPF files" (B-394). Analog signals are
sized by -scale and by -offset. Analog-step changes to the new time before
plotting the new Y. Analog-interpolated draws a diagonal line. Analog-backstep
plots the new Y before moving to the new time. See "Editing and formatting HDL
items in the Wave window" (10-226).
CR-34 ModelSim Commands ModelSim EE/SE Command Reference

add wave
-height <pixels>

Specifies the height (in pixels) of the waveform. Optional.

-color <standard_color_name>

Specifies the color used to display a waveform. Optional. These are the standard
X Window color names, or rgb value (e.g., #357f77); enclose 2-word names
(“light blue”) in quotes.

-offset <offset>

Modifies an analog waveform’s position on the display. Optional. The offset value
is part of the wave positioning equation (see -scale below).

-scale <scale>

Scales analog waveforms. Optional. The scale value is part of the wave
positioning equation shown below.

The position and size of the waveform is given by:

(signal_value + <offset>) * <scale>

If signal_value + <offset> = 0, the waveform will be aligned with its name. The
<scale> value determines the height of the waveform, 0 being a flat line.

-label <name>

Specifies an alternative name for the signal being added to the Wave window.
Optional. For example,

add wave -label c clock

adds the clock signal, labeled as "c", to the Wave window.

This alternative name is not valid in a force (CR-87) or examine (CR-81) command,
however. It can optionally be used in a search and next command (CR-141) with
the wave option.

<item_name>

Specifies the names of HDL items to be included in the Wave window display.
Optional. Wildcard characters are allowed. Variables may be added if preceded by
the process name. For example,

add list myproc/int1

{<item_name> [-flatten] {sig1 sig2 sig3 ...}}

Creates a user-defined bus in place of <item_name>; ‘sigi’ are signals to be
concatenated within the user-defined bus. Optional. The following option is
available:

-flatten

Creates an array signal that cannot be expanded to show waveforms of
ModelSim EE/SE Command Reference ModelSim Commands CR-35

add wave
individual elements. Gives greater flexibility in the types of elements that can
be combined, but loses the original element names. Without the -flatten option,
all items must be either all scalars or all arrays of the same size. With -flatten,
specified items may be either scalars or various sized arrays as long as they have
the same element enumeration type.

Note: You can use the Edit > Combine selection from the "Wave window" (10-212) menu to create a user-
defined bus.

Examples

add wave -logic -color gold out2

Displays an item named out2. The item is specified as being a logic item presented in gold.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

Displays a user-defined, hex formatted bus named address.
CR-36 ModelSim Commands ModelSim EE/SE Command Reference

alias
alias

The alias command creates a new Tcl procedure that evaluates the specified
commands. Used to create a user-defined alias. Any arguments passed on
invocation of the alias will be passed through to the specified commands. Returns
nothing.

Syntax

alias

<aka> "<cmds>"

Arguments

<aka>

Specifies the new procedure name to be used when invoking the commands.
Required.

"<cmds>"

Specifies the command or commands to be evaluated when the alias is invoked.
Required.

Examples

alias myquit "write list ./mylist.save; quit -f"

Creates a Tcl procedure, "myquit", that when executed, writes the contents of the
List window to the file mylist.save by invoking write list (CR-232), and quits
ModelSim by invoking quit (CR-128).
ModelSim EE/SE Command Reference ModelSim Commands CR-37

batch_mode
batch_mode

The batch_mode command returns a 1 if VSIM is operating in batch mode,
otherwise returns a 0. It is typically used as a condition in an if statement.

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that
will work in or out of batch mode you can also use the batch_mode command to
determine which command to use. For example:

if [batch_mode] {

log /*

} else {

add wave /*

}

See also

"Running command-line and batch-mode simulations" (E-440)
CR-38 ModelSim Commands ModelSim EE/SE Command Reference

bd
bd

The bd command deletes a breakpoint.

Syntax

bd

<filename> <line_number>

Arguments

<filename>

Specifies the name of the source file in which the breakpoint is to be deleted.
Required. The filename must match the one used to previously set the breakpoint,
including whether a full pathname or a relative name was used.

<line_number>

Specifies the line number of the breakpoint to be deleted. Required.

Examples

bd alu.vhd 127

Deletes the breakpoint at line 127 in the source file named alu.vhd.

See also

bp command (CR-40), and the onbreak command (CR-106)
ModelSim EE/SE Command Reference ModelSim Commands CR-39

bp
bp

The bp or breakpoint command sets a breakpoint. If the source file name and line
number are omitted, or the -query option is used, this command lists all the
breakpoints that are currently set. Otherwise, the command sets a breakpoint in the
specified file at the specified line. Once set, the breakpoint affects every instance
in the design.

Syntax

bp

[-query <filename>] [<filename>] [<line_number> [{<command>...}]]

Arguments

-query<filename>

Returns a list of the currently set breakpoints. Optional.

<filename>

Specifies the name of the source file in which the breakpoint is to be set. Required
when -query is used; otherwise, it is optional. If omitted, all current breakpoints
are listed.

<line_number>

Specifies the line number at which the breakpoint is to be set. Optional; if omitted,
all current breakpoints are listed.

{<command>...}

Specifies one or more commands that are to be executed at the breakpoint.
Optional. Multiple commands must be separated by semicolons (;) or placed on
multiple lines. The entire command must be placed in curly braces.

Any commands that follow a run (CR-139), or step (CR-151) command will be
ignored. The run, or step command terminates the breakpoint sequence. This
applies if macros are used with the bp command string as well. A restore (CR-134)
command should not be used.

If many commands are needed after the breakpoint, they can be placed in a macro
file.
CR-40 ModelSim Commands ModelSim EE/SE Command Reference

bp
Examples

bp

Lists all existing breakpoints in the design, together with the source file names and any
commands that have been assigned to breakpoints.

bp -query testadd.vhd

Lists the line number of all breakpoints in testadd.vhd.

bp alu.vhd 147

Sets a breakpoint in the source file alu.vhd at line 147.

bp alu.vhd 147 {do macro.do}
Executes the macro.do macro file after the breakpoint.

bp test.vhd 22 {echo [exa var1]; echo [exa var2]}
Sets a breakpoint at line 22 of the file test.vhd and examines the values of the two variables
var1 and var2.

bp test.vhd 14 {if {$now /= 100} then {cont}}

Sets a breakpoint in every instantiation of the file test.vhd at line 14. When that breakpoint
is executed, the command is run. This command causes the simulator to continue if the
current simulation time is not 100.

Note: Any breakpoints set in VHDL code and called by either resolution functions or functions that appear
in a port map are ignored.

See also

add button command (CR-20), bd command (CR-39), disablebp command (CR-

64), enablebp command (CR-77), and the onbreak command (CR-106), and the
when command (CR-226)
ModelSim EE/SE Command Reference ModelSim Commands CR-41

cd
cd

The Tcl cd command changes the VSIM local directory to the specified directory.
See the Tcl man pages (Main window: Help > Tcl Man Pages) for any cd
command options. Returns nothing.

Syntax

cd

<dir>

Description

After you change the directory with cd, VSIM continues to write the vsim.wav file
in the directory where the first add wave (CR-33), add list (CR-22) or log (CR-93)
command was executed. After completing simulation of one design, you can use
the cd command to change to a new design, then use the vsim command (CR-208)
to load a new design.

Use the where command (CR-230) or the Tcl pwd command (see the Tcl man
pages, Main window: Help > Tcl Man Pages) to confirm the current directory.

See also

where command (CR-230), vsim command (CR-208), and the Tcl man page for the
cd, pwd and exec commands

CR-42 ModelSim Commands ModelSim EE/SE Command Reference

change
change

The change command modifies the value of a VHDL variable or Verilog register
variable. The simulator must be at a breakpoint or paused after a step command
(CR-151) to change a VHDL variable.

Syntax

change

<variable> <value>

Arguments

<variable>

Specifies the name of a variable. Required. The variable name must specify a
scalar type or a one-dimensional array of character enumeration. You may also
specify a record sub-element, an indexed array, or a sliced array as long as the type
is one of the above.

<value>

Defines a value for the variable. Required. The specified value must be
appropriate for the type of the variable.

Examples

change count 16#FFFF

Changes the value of the variable count to the hexadecimal value FFFF.

See also

force command (CR-87)
ModelSim EE/SE Command Reference ModelSim Commands CR-43

change_menu_cmd
change_menu_cmd

The change_menu_cmd command changes the command to be executed for a
specified menu item label, in the specified menu, in the specified window. The
menu_path and label must already exist for this command to function. Returns
nothing.

Syntax

change_menu_cmd

<window_name> <menu_path> <label> <Cmd>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

<menu_path>

Name of an existing Tk menu widget plus any submenu path. Required.

<label>

Current label on the menu item. Required.

<Cmd>

New Tcl command to be executed when selected. Required.

See also

add_menu command (CR-26), add_menucb command (CR-28), add_menuitem
command (CR-30), add_separator command (CR-31), and the add_submenu
command (CR-32)
CR-44 ModelSim Commands ModelSim EE/SE Command Reference

check contention add
check contention add

The check contention add command enables contention checking for the
specified nodes. The allowed nodes are Verilog nets and VHDL signals of
std_logic and std_logic_vector. Any other node types and nodes that don’t have
multiple drivers are silently ignored by the command.

Syntax

check contention add

[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that contention checking is enabled recursively into subregions.
Optional; if omitted, contention check enabling is limited to the current region.

-in

Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-inout

Enables checking on nodes of mode INOUT. Optional.

-internal

Enables checking on internal items. Optional.

-ports

Enables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

See also

"Bus contention checking" (E-446)
ModelSim EE/SE Command Reference ModelSim Commands CR-45

check contention config
check contention config

The check contention config command allow you to write checking messages to
a file (default displays the message on your screen). You may also configure the
contention time limit.

Syntax

check contention config

[-file <filename>] [-time <limit>]

Arguments

-file <filename>

Specifies a file to write contention messages to. Optional. If this option is selected,
the messages are not displayed to the screen.

-time <limit>

Specifies a time limit that a node may be in contention. Optional. Contention is
detected if a node is in contention for as long or longer than the limit. The default
limit is 0.

See also

"Bus contention checking" (E-446)
CR-46 ModelSim Commands ModelSim EE/SE Command Reference

check contention off
check contention off

The check contention off command disables contention checking for the
specified nodes.

Syntax

check contention off

[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-all

Disables contention checking for all nodes that have checking enabled. Optional.

-r

Specifies that contention checking is disabled recursively into subregions.
Optional; if omitted, contention check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-inout

Disables checking on nodes of mode INOUT. Optional.

-internal

Disables checking on internal items. Optional.

-ports

Disables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

"Bus contention checking" (E-446)
ModelSim EE/SE Command Reference ModelSim Commands CR-47

check float add
check float add

The check float add command enables float checking for the specified nodes. The
allowed nodes are Verilog nets and VHDL signals of type std_logic and
std_logic_vector (other types are silently ignored).

Syntax

check float add

[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that float checking is enabled recursively into subregions. Optional; if
omitted, float check enabling is limited to the current region.

-in

Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-inout

Enables checking on nodes of mode INOUT. Optional.

-internal

Enables checking on internal items. Optional.

-ports

Enables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

See also

"Bus float checking" (E-447)
CR-48 ModelSim Commands ModelSim EE/SE Command Reference

check float config
check float config

The check float config command allows you to write checking messages to a file
(default displays the message on your screen). You may also configure the float
time limit.

Syntax

check float config

[-file <filename>] [-time <limit>]

Arguments

-file <filename>

Specifies a file to write float messages to. Optional. If this option is selected, the
messages are not displayed to the screen.

-time <limit>

Specifies a time limit that a node may be floating. Optional. An error is detected
if a node is floating for as long or longer than the limit. The default limit is 0.

See also

"Bus float checking" (E-447)
ModelSim EE/SE Command Reference ModelSim Commands CR-49

check float off
check float off

The check float off command disables float checking for the specified nodes.

Syntax

check float off

[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-all

Disables float checking for all nodes that have checking enabled. Optional.

-r

Specifies that float checking is disabled recursively into subregions. Optional; if
omitted, float check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-inout

Disables checking on nodes of mode INOUT. Optional.

-internal

Disables checking on internal items. Optional.

-ports

Disables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

Bus float checking (E-447)
CR-50 ModelSim Commands ModelSim EE/SE Command Reference

check stable on
check stable on

The check stable on command enables stability checking on the entire design.
Design stability checking detects when circuit activity has not settled within a
user-defined period for synchronous designs.

Syntax

check stable on

[-file <filename>] [-period <time>] [-strobe <time>]

Arguments

-file <filename>

Specifies a file to write the error messages to. If this option is selected, the
messages are not displayed to the screen. Optional.

-period <time>

Specifies the clock period (which is assumed to begin at the time the check stable
on command is issued). Optional. This option is required the first time you invoke
the check stable on command. It is not required if you later enable checking after
it was disabled with the check stable off command (CR-52). See the check stable
off command (CR-52).

-strobe <time>

Specifies the elapsed time within each clock cycle that the stability check is
performed. Optional. The default strobe time is the period time. If the strobe time
falls on a period boundary, then the check is actually performed one timestep
earlier. Normally the strobe time is specified as less than or equal to the period,
but if it is greater than the period, then the check will skip cycles.

Examples

check stable on -period "100 ps" -strobe "199 ps"

Performs a stability check 99 ps into each even numbered clock cycle (cycle numbers start
at 1).

See also

"Design stability checking" (E-447)
ModelSim EE/SE Command Reference ModelSim Commands CR-51

check stable off
check stable off

The check stable off command disables stability checking. You may later enable
it with check stable on (CR-51), and meanwhile, the clock cycle numbers and
boundaries are still tracked. See the check stable on command (CR-51).

Syntax

check stable off

Arguments

None.

See also

"Design stability checking" (E-447)
CR-52 ModelSim Commands ModelSim EE/SE Command Reference

checkpoint
checkpoint

The checkpoint command saves the state of your simulation. The checkpoint
command saves the simulation kernel state, the vsim.wav file, the list of the HDL
items shown in the List and Wave windows, the file pointer positions for files
opened under VHDL and the Verilog $fopen system task, and the states of foreign
architectures. Changes you made interactively while running VSIM are not saved;
for example, VSIM macros, command-line interface additions like user-defined
commands, and states of graphical user interface windows are not saved.

Once saved, a checkpoint file may be used with the restore command (CR-134)
during the same simulation to restore the simulation to a previous state. A VSIM
session may also be started with a checkpoint file by using the vsim -restore
command (CR-208).

Syntax

checkpoint

<filename>

Arguments

<filename>

Specifies the name of the checkpoint file. Required.

See also

restore command (CR-134), restart command (CR-133), vsim command (CR-208),
and see "The difference between checkpoint/restore and restarting" (E-439) for a
discussion of the difference between restart and checkpoint/restore.
ModelSim EE/SE Command Reference ModelSim Commands CR-53

configure
configure

The configure (config) command invokes the List or Wave widget configure
command for the current default List or Wave window. To change the default
window, use the view command (CR-180).

Returns the values of all attributes if no options, or the value of one attribute when
one option and no value.

Syntax

configure

list|wave [-window <wname>] [<option> <value>]
[-delta [all | collapse | none]] [-gateduration <duration_open>]
[-gateexpr {<expression>]] [-usegating] [-strobeperiod]
[-strobestart] [-usesignaltriggers] [-usestrobe] [-timecolor]
[-vectorcolor] [-gridcolor]

Arguments

list|wave

Specifies either the List or Wave widget to configure. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the configure
command (the view command (CR-180) allows you to create more than one List or
Wave window). Optional. If no window is specified the default window is used;
the default window is determined by the most recent invocation of the view
command (CR-180).

<option> <value>

-bg

Specifies the window background color. Optional.

-fg

Specifies the window foreground color. Optional.

-selectbackground

Specifies the window background color when selected. Optional.

-selectforeground

Specifies the window foreground color when selected. Optional.
CR-54 ModelSim Commands ModelSim EE/SE Command Reference

configure
-font

Specifies the font used in the widget. Optional.

-height

Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta [all | collapse | none]

The all option displays a new line for each time step on which items change,
collapse displays the final value for each time unit, and none turns off the display
of the delta column. To use -delta, -usesignaltriggers must be set to 1 (on).
Optional.

-gateduration <duration_open>

The duration for gating to remain open beyond when -gateexpr (below) becomes
false, expressed in x number of timescale units. Extends gating beyond the back
edge (the last list row in which the expression evaluates to true). Optional. The
default value for normal synchronous gating is zero. If -gateduration is set to a
non-zero value, a simulation value will be displayed after the gate expression
becomes false (if you don’t want the values displayed, set -gateduration to zero).

-gateexpr {<expression>]

Specifies the expression for trigger gating. The expression is evaluated when the
List window would normally have displayed a row of data. Optional. See the
"GUI_expression_format" (CR-250) for information on expression syntax.

-usegating

Enables triggers to be gated on (a value of 1) or off (a value of 0) by an overriding
expression. The default is off. See "Setting List window display properties" (10-

177) for additional information on using gating with triggers.

-strobeperiod

Specifies the period of the list strobe. (When using a time unit, the time value and
unit must be placed in curly brackets.) Optional.

-strobestart

Specifies the start time of the list strobe. Optional.

-usesignaltriggers

If 1, uses signals as triggers; if 0, not. Optional.

-usestrobe

If 1, uses the strobe to trigger; if 0, not. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-55

configure
Arguments, Wave window only

-timecolor

Specifies the time axis color; the default is green. Optional.

-vectorcolor

Specifies the vector waveform color; the default is yellow. Optional.

-gridcolor

Specifies the background grid color; the default is grey50. Optional.

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that
attribute

• with one or more option-value pairs it changes the values of the specified
attributes to the new values

The returned information has five fields for each attribute:

• the command-line switch

• the Tk widget resource name

• the Tk class name

• the default value

• and the current value

Note: To get a more readable listing of all attributes and current values, use the lecho (CR-92) command,
which pretty-prints a Tcl list (see example below).

lecho [config list]

Returns a pretty-printed list of the List window attributes and current values as
shown below:

VSIM 46> lecho [config list]
{
{
-adjustdividercommand adjustdividercommand Command {} VListPlaceDivider
}
{
-background background Background {light blue}
CR-56 ModelSim Commands ModelSim EE/SE Command Reference

configure
#d9dfff
}
{-bd borderWidth}
{-bg background}
{-borderwidth borderWidth BorderWidth 2 2}
{
-cursor cursor Cursor {} {}
}
{-busycursor busycursor BusyCursor watch watch}
{-delta delta Delta all all}
{
-timeunits timeunits TimeUnits {} ns
}
{-fastload fastload FastLoad 0 0}
{-fastscroll fastscroll FastScroll 0 0}
{-foreground foreground Foreground black Black}
{-fg foreground}
{-fixwidth fixwidth Width 52 130}
{-fixoffset fixoffset Offset 0 0}
{-font font Font *courier-medium-r-normal-*-12-* -adobe-courier-medium-r-

normal--12-*-*-*-*-*}
{-h height}
{-height height Height 15 187}
{-highlightcolor highlightColor HighlightColor white white}
{-highlightthickness highlightThickness HighlightThickness 2 2}
{
-logfile logfile Filename {} vsim.wav
}
{-namelimit namelimit NameLimit 5 5}
{-relief relief Relief ridge ridge}
{-selectbackground selectBackground Background grey20 Blue}
{-selectforeground selectForeground Foreground grey20 White}
{-selectwidth selectWidth BorderWidth 2 2}
{-shortnames shortnames ShortNames 0 0}
{-signalnamewidth signalnamewidth SignalNameWidth 0 0}
{
-strobeperiod strobePeriod StrobeTime {0 ns}
{0 ns}
}
{
-strobestart strobeStart StrobeTime {0 ns}
{0 ns}
}
{-usesignaltriggers usesignaltriggers UseSignalTriggers 1 1}
{-usestrobe usestrobe UseStrobe 0 0}
{-w width}
{-width width Width 200 363}
{
-xscrollcommand xscrollcommand Command {} {.list.xscroll set}
}
ModelSim EE/SE Command Reference ModelSim Commands CR-57

configure
{
-yscrollcommand yscrollcommand Command {} {.list.yscroll set}
}
}
VSIM 47>

Examples

config list -strobeperiod

Displays the current value of the strobeperiod attribute.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

Sets the strobe waveform and turns it on.

config wave -vectorcolor blue

Sets the wave vector color to blue.

See also

view command (CR-180)
CR-58 ModelSim Commands ModelSim EE/SE Command Reference

coverage clear
coverage clear

The coverage clear command is used to clear all coverage data obtained during
previous run commands. After this command is executed all line number
execution count data will be reset.

Syntax

coverage clear

Arguments

None.

See also

coverage reload command (CR-60), coverage report command (CR-61)
ModelSim EE/SE Command Reference ModelSim Commands CR-59

coverage reload
coverage reload

The coverage reload command is used to seed the coverage statistics with the
output of a previous coverage report command. This allows you (for example) to
gather statistics from multiple simulation runs into a single report.

Syntax

coverage reload

<filename> [-keep]

Arguments

<filename>

Specifies the file containing data to reload. Required. This file should be the output of a
previous COVERAGE REPORT -lines command.

-keep

By default, source files listed in the file being reloaded that do NOT exist in the
current design will have their coverage data discarded.

By specifying the -keep option, the data will be kept, even though it does not
correspond to any file or line in the current design.

The coverage reload command allows the accumulation of coverage statistics for
multiple simulation invocations.

By doing a coverage report -lines at the end of each simulation, and then a
coverage reload -keep right at the start of each subsequent invocation of the
simulator, one can accumulate coverage data for a suite of different designs.

See also

coverage clear command (CR-59), coverage report command (CR-61)
CR-60 ModelSim Commands ModelSim EE/SE Command Reference

coverage report
coverage report

The coverage report command is used to produce a textual output of the coverage
statistics that have been gathered up to this point. (The View > Other > Source
Coverage menu pick allows you to view this data more interactively.)

Syntax

coverage report

[-file <filename>] [-lines]

Arguments

-file <filename>

Specifies a file name for the report. Optional. Default is to write report to the Transcript
Window.

-lines

Specifies whether to report coverage information for individual lines as well as
summarizing on a per file basis. Optional. Default is to only summarize by files.

If you are intending to use the coverage reload command, you should specify this
switch.

The report is given in tabular format. For each source file that had design elements
simulated, a summary consisting of file name, number of executable lines, number
of lines that were actually executed and a percentage of coverage are given.

If the -lines switch is specified then following each file summary line is a list of
executable lines in that file, along with how many times that line was executed.

See also

coverage clear command (CR-59), coverage reload command (CR-60)
ModelSim EE/SE Command Reference ModelSim Commands CR-61

delete
delete

The delete command removes HDL items from either the List or Wave window.

Syntax

delete

list | wave [-window <wname>] <item_name>

Arguments

list | wave

Specifies the target window for the delete command. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the delete command
(the view command (CR-180) allows you to create more than one List or Wave
window). Optional. If no window is specified the default window is used; the
default window is determined by the most recent invocation of the view command
(CR-180).

<item_name>

Specifies the name of an item. Required. Must match the item name used in the
add list (CR-22) or add wave (CR-33) command. Multiple item names may be
specified. Wildcard characters are allowed.

Examples

delete list -window list2 vec2

Removes the item vec2 from the list2 window.

See also

add list command (CR-22), add wave command (CR-33), and "Wildcard
characters" (CR-248)
CR-62 ModelSim Commands ModelSim EE/SE Command Reference

describe
describe

The describe command displays information about the specified HDL item. The
description is displayed in the Main window (10-158). The following kinds of items
can be described:

• VHDL
signals, variables, and constants

• Verilog
nets and registers

All but VHDL variables and constants may be specified as hierarchical names.
VHDL variables and constants can be described only when visible from the
current process that is either selected in the Process window or is the currently
executing process (at a breakpoint for example).

Syntax

describe

<name>

Arguments

<name>

Specifies the name of an HDL item. Multiple names and wildcards are accepted.
Required.
ModelSim EE/SE Command Reference ModelSim Commands CR-63

disablebp
disablebp

The disablebp command temporarily turns off all existing breakpoints. To turn
the breakpoints back on again, use the enablebp command (CR-77).

Syntax

disablebp

Arguments

None.

See also

bd command (CR-39), bp command (CR-40), onbreak command (CR-106), and the
restore command (CR-134)
CR-64 ModelSim Commands ModelSim EE/SE Command Reference

disable_menu
disable_menu

The disable_menu command disables the specified menu within the specified
window. The disabled menu will become grayed-out, and nonresponsive. Returns
nothing.

Syntax

disable_menu

<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window may be expressed as main or "". All other
window pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. Required.

Examples

disable_menu "" file

Disables the file menu of the Main VSIM window.

disable_menu .mywindow file

Disables the file menu of the mywindow window.

See also

enable_menu command (CR-78)
ModelSim EE/SE Command Reference ModelSim Commands CR-65

disable_menuitem
disable_menuitem

The disable_menuitem command disables a specified menu item within the
specified menu_path of the specified window. The menu item will become
grayed-out, and nonresponsive. Returns nothing.

Syntax

disable_menuitem

<window_name> <menu_path> <label>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

<menu_path>

Name of the Tk menu-widget path. The path may include a submenu as shown in
the example below. Required.

<label>

Menu item text. Required.

Examples

disable_menuitem .mywindow file.save "Save Results As..."

This command locates the mywindow window, and disables the Save Results As... menu
item in the save submenu of the file menu.

See also

enable_menuitem command (CR-79)
CR-66 ModelSim Commands ModelSim EE/SE Command Reference

do
do

The do command executes commands contained in a macro file. A macro file can
have any name and extension. An error encountered during the execution of a
macro file causes its execution to be interrupted, unless an onerror command (CR-

108), or onbreak command (CR-106) has specified the resume command (CR-135).

Syntax

do

<filename> [<parameter_value>]

Arguments

<filename>

Specifies the name of the macro file to be executed. Required. The name can be a
pathname or a relative file name.

Pathnames are relative to the current working directory if the do command is
executed from the command line. If the do command is executed from another
macro file, pathnames are relative to the directory of the calling macro file. This
allows groups of macro files to be moved to another directory and still work.

<parameter_value>

Specifies values that are to be passed to the corresponding parameters $1 through
$9 in the macro file. Optional. Multiple parameter values must be separated by
spaces. If you specify fewer parameter values than the number of parameters used
in the macro, the unspecified values are treated as empty strings in the macro.

Note that there is no limit on the number of parameters that can be passed to
macros, but only nine values are visible at one time. You can use the shift
command (CR-147) to see the other parameters. The argc (B-420) returns the
number of parameters passed.

Examples

do macros/stimulus 100

This command executes the file macros/stimulus, passing the parameter value 100 to $1 in
the macro file.

do testfile design.vhd 127

If the macro file testfile contains the line bp $1 $2, this command would place a breakpoint
in the source file named design.vhd at line 127.
ModelSim EE/SE Command Reference ModelSim Commands CR-67

do
Using other VSIM commands with macros

If you are executing a macro (DO file) when your simulation hits a breakpoint or
causes a run-time error, VSIM interrupts the macro and returns control to the
command line, where the following commands may be useful. (Any other legal
command may be executed as well.)

Using the Tcl source command with DO files
Either the do command or Tcl source command can execute a DO file, but they
behave differently.

With the source command, the DO file is executed exactly as if the commands in
it were typed in by hand at the prompt. Each time a breakpoint is hit the Source
window is updated to show the breakpoint. This behavior could be inconvenient
with a large DO file containing many breakpoints.

When a do commmand is interrupted by an error or breakpoint, it does not update
any windows, and keeps the DO file "locked". This keeps the Source window from
flashing, scrolling, and moving the arrow when a complex DO file is executed.
Typically an onbreak resume command is used to keep the macro running as it
hits breakpoints. Add an onbreak abort, command to the DO file if you want to
exit the macro and update the Source window.

command result

 run (CR-139) -continue continue as if the breakpoint had not been executed, completes the run command
(CR-139) that was interrupted

restore (CR-134) continue running the macro

onbreak (CR-106) specify a command to run when you hit a breakpoint within a macro

onElabError (CR-107) specify a command to run when an error is encountered during elaboration

onerror (CR-108) specify a command to run when an error is encountered within a macro

status (CR-150) get a traceback of nested macro calls when a macro is interrupted

abort (CR-19) terminate a macro once the macro has been interrupted or paused

pause (CR-109) cause the macro to be interrupted, the macro can be resumed by entering a resume
command (CR-135) via the command line

toggle add (CR-154) control echoing of macro commands to the Transcript window
CR-68 ModelSim Commands ModelSim EE/SE Command Reference

do
See also
VSIM can search for DO files based on the path list specified by the DOPATH (B-

391). A DO file can also be called by modelsim.ini at startup, see "Using a startup
file" (B-404). The Main transcript can be saved as a macro, see the write transcript
command (CR-235).
ModelSim EE/SE Command Reference ModelSim Commands CR-69

down | up
down | up

The down | up command searches for signal transitions or values in the specified
List window. It executes the search on signals currently selected in the window,
starting at the time of the active cursor. A condition to search for may also be
identified by an expression using the -expr command option. The active cursor
moves to the found location.

Use this command to move to consecutive transitions or to find the time at which
a signal takes on a particular value, or an expression of multiple signals evaluates
to true. Use the mouse to select the desired signal and click on the desired starting
location using the left mouse button. Then issue the down | up command. (The
seetime command (CR-146) can initially position the cursor from the command
line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

down/up

[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is
limited to signals that have been logged in the referenced List window. A signal
may be specified either by its full path or by the shortcut label displayed in the List
window.

See "GUI_expression_format" (CR-250) for the format of the expression. The
expression must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal.
If it is not a scalar signal, the option will be ignored. Optional.

-noglitch

Specifies that delta-width glitches are to be ignored. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If
it is not a scalar signal, the option will be ignored. Optional.
CR-70 ModelSim Commands ModelSim EE/SE Command Reference

down | up
-value <sig_value>

Specify a value of the signal to match. Optional. Must be specified in the same
radix that the selected signal is displayed. Case is ignored, but otherwise must be
an exact string match -- don’t-care bits are not yet implemented.

-window <wname>

Use this option to specify an instance of the List window that is not the default.
Optional. Otherwise, the default List window is used. Use the view command (CR-

180) to change the default window.

<n>

Specifies to find the nth match. Optional. If less than n are found, the number
found is returned with a warning message, and the marker is positioned at the last
match.

Examples

Returns 1 if a match is found, 0 if not. If the nth match is requested and only m are
found,
m < n, then it returns m.

down -noglitch -value FF23

Finds the next time which the selected vector transitions to FF23, ignoring glitches.

up

Goes to the previous transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal
attributes, paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-250) and can be built with the aid of the "The GUI
Expression Builder" (10-272).

down -expr {clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)}

Searches down for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr is
equal to the specified 32-bit hex constant; otherwise is 0.

down -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches down for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/adder equals hex ac.

down -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)}

Searches down for an expression that evaluates to a boolean 1 when logfile time is between
ModelSim EE/SE Command Reference ModelSim Commands CR-71

down | up
23 and 54 microseconds, and clock just changed from low to high and signal mode is
enumeration writing.

See also

"GUI_expression_format" (CR-250), view command (CR-180), and the seetime
command (CR-146)
CR-72 ModelSim Commands ModelSim EE/SE Command Reference

drivers
drivers

The drivers command displays in the Main window the current value and
scheduled future values for all the drivers of a specified VHDL signal or Verilog
net. The driver list is expressed relative to the top most design signal/net
connected to the specified signal/net. If the signal/net is a record or array, each
sub-element is displayed individually. This command reveals the operation of
transport and inertial delays and assists in debugging models.

Syntax

drivers

<item_name>

Arguments

<item_name>

Specifies the name of the signal or net whose values are to be shown. Required.
All signal or net types are valid. Multiple names and wild cards are accepted.
ModelSim EE/SE Command Reference ModelSim Commands CR-73

dumplog64
dumplog64

The dumplog64 command dumps the contents of the vsim.wav file in a readable
format.

Syntax

dumplog64

<filename>

Arguments

<filename>

The name of the dump file created. Required.
CR-74 ModelSim Commands ModelSim EE/SE Command Reference

echo
echo

The echo command displays a specified message in the Main window.

Syntax

echo

<text_string>

Arguments

<text_string>

Specifies the message text to be displayed. Required. If the text string is
surrounded by quotes, blank spaces are displayed as entered. If quotes are omitted,
two or more adjacent blank spaces are compressed into one space.

Examples

echo “The time is $now ns.”

If the current time is 1000 ns, this command produces the message:

The time is 1000 ns.

If the quotes are omitted, all blank spaces of two or more are compressed into one
space.

echo The time is $now ns.

If the current value of counter is 21, this command produces the message:

The time is 1000 ns.

echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15.
ModelSim EE/SE Command Reference ModelSim Commands CR-75

edit
edit

The edit command invokes the editor specified by the EDITOR environment
variable.

Syntax

edit

[<filename>]

Arguments

<filename>

Specifies the name of the file to edit. Optional. If the <filename> is omitted, the
editor opens the current source file.

See also

notepad command (CR-104), and the EDITOR (B-391)
CR-76 ModelSim Commands ModelSim EE/SE Command Reference

enablebp
enablebp

The enablebp command turns on all breakpoints turned off by the disablebp
command (CR-64).

Syntax

enablebp

Arguments

None.

See also

bd command (CR-39), bp command (CR-40), onbreak command (CR-106), and the
restore command (CR-134)
ModelSim EE/SE Command Reference ModelSim Commands CR-77

enable_menu
enable_menu

The enable_menu command enables a previously-disabled menu. The menu will
be changed from grayed-out to normal, and will become responsive. Returns
nothing.

Syntax

enable_menu

<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window may be expressed as main or "". All other
window pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. Required.

Examples

enable_menu "" file

Enables the previously-disabled file menu of the Main VSIM window.

enable_menu .mywindow file

Enables the previously-disabled file menu of the mywindow window.

See also

disable_menu command (CR-65)
CR-78 ModelSim Commands ModelSim EE/SE Command Reference

enable_menuitem
enable_menuitem

The enable_menuitem command enables a previously-disabled menu item. The
menu item will be changed from grayed-out to normal, and will become
responsive. Returns nothing.

Syntax

enable_menuitem

<window_name> <menu_path> <label>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window may be expressed as main or "". All other
window pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. The path may include a submenu as shown in
the example below. Required.

<label>

Menu item text. Required.

Examples

enable_menuitem .mywindow file.save "Save Results As..."

This command locates the mywindow window, and enables the previously-disabled Save
Results As... menu item in the save submenu of the file menu.

See also

disable_menuitem command (CR-66)
ModelSim EE/SE Command Reference ModelSim Commands CR-79

environment

The environment, or env command, allows you to display or change the current
region/signal environment.

Syntax

environment

[-dataset] [-nodataset] [<pathname>]

Arguments

-dataset

Displays the specified environment pathname with a dataset prefix. Optional.
Dataset prefixes are displayed by default if more than one dataset is open during
a simulation session.

-nodataset

Displays the specified environment pathname without a dataset prefix. Optional.

<pathname>

Specifies the pathname to which the current region/signal environment is to be
changed. Optional; if omitted, the command causes the pathname of the current
region/signal environment to be displayed.

Multiple levels of a pathname must be separated by the character specified in the
PathSeparator (B-400). A single path separator character can be entered to indicate
the top level. Two dots (..) can be entered to move up one level.

Examples

env

Displays the pathname of the current region/signal environment.

env ..

Moves up one level in the design hierarchy.

env blk1/u2

Moves down two levels in the design hierarchy.

env /

Moves to the top level of the design hierarchy.
CR-80 ModelSim Commands ModelSim EE/SE Command Reference

examine
examine

The examine, or exa command, examines one or more HDL items, and displays
current values (or the values at a specified previous time) in the Main window (10-

158). It optionally can compute the value of an expression of one or more items.

 The following items can be examined at any time:

• VHDL
signals and process variables

• Verilog
nets and register variables

To examine a VHDL variable, the simulator must be paused after a step command
(CR-151), a breakpoint, or you can specify a process label with the name. To
display a previous value, specify the desired time using the -time option. To
compute an expression, use the -expr option. The -expr and the -time options may
be used together.

Virtual signals and functions may also be examined within the GUI (actual signals
are examined in the kernel).

Syntax

examine

[-time <time>] [-context] [-delta <delta>] [-env <path>] [-expr
<expression>] [-<radix>] [-value] [-name] <name>...

Arguments

-time <time>

Specifies the time value between 0 and $now for which to examine the items. If
an expression is specified it will be evaluated at that time. Optional.

The item to be examined must have been logged using the add list command (CR-

22); the log command (CR-93) is not sufficient.

If the <time> field uses a unit, the value and unit must be placed in curly brackets.
For example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

If used, -time must be the first option.

-context

Passes the region to look for signal name. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-81

examine
-delta<delta>

Specifies a simulation cycle at the specified time from which to fetch the value.
The default is to use the last delta of the time step. Optional.

-env <path>

Specifies a path to look for signal name. Optional.

-expr <expression>

An expression to be evaluated. Optional. If the -time argument is present, the
expression will be evaluated at the specified time, otherwise it will be evaluated
at the current simulation time. See "GUI_expression_format" (CR-250) for the
format of the expression. The expression must be placed within curly braces.

The expression argument to the examine statement can only involve signals that
have been logged in the List window. The signal may be specified by either the
full path, or its shortcut name displayed in the List window (if one has been
specified).

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid
entries (including unique abbreviations) are:

binary
octal
decimal (default for integers) or signed
hexadecimal
unsigned
ascii

Entries may be truncated to any length, for example, -binary could be expressed
as -b or -bin, etc.

-name

Add display of the name. Optional. Useful for wildcard patterns. Returns name(s)
as a curly-bracket separated Tcl list. Default is -value behavior.

The lecho command (CR-92) will return a list in pretty-print format.

-value

Returns value(s) as a curly-bracket separated Tcl list. Default. Use to toggle off a
previous use of -name.

<name>...

Specifies the name of any HDL item. Required(though not used if the -expr option
is used). All item types are allowed, except those of the type file. Multiple names
and wildcards are accepted. To examine a VHDL variable you can add a process
label to the name. For example (make certain to use two underscore characters):
CR-82 ModelSim Commands ModelSim EE/SE Command Reference

examine
exa line__36/i

Examples

examine -time {3450 us} -expr {/top/bus and $bit_mask}

In this example the -expr option specifies a signal path from the List window and user-
defined Tcl variable. The expression will be evaluated at 3450us.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Because -time is not specified, this expression will be evaluated at the current simulation
time. Note the signal attribute and array constant specified in the expression.

Commands like find (CR-85) and examine return their results as a Tcl list (just a
blank-separated list of strings). You can do things like:

foreach sig [find ABC*] {echo "Signal $sig is [exa $sig]" ...}

if {[examine -bin signal_12] == “11101111XXXZ”} {...}

examine -hex [find *]

Note: The Tcl variable array, $examine (), can also be used to return values. For example, $examine (/clk).
You can also examine an item in the Source window (10-200) by selecting it with the right mouse button.

See also

"GUI_expression_format" (CR-250)
ModelSim EE/SE Command Reference ModelSim Commands CR-83

exit
exit

The exit command exits the simulator and the ModelSim application.

Syntax

exit

[-force]

Argument

-force

Quits without asking for confirmation. Optional; if this argument is omitted,
ModelSim asks you for confirmation before exiting.

Note: If you want to stop the simulation using a when command (CR-226), you must use a stop command
(CR-152) within your when statement. DO NOT use an exit commad or a quit command (CR-128). The stop
command acts like a breakpoint at the time it is evaluated.
CR-84 ModelSim Commands ModelSim EE/SE Command Reference

find
find

The find command displays the full pathnames of all HDL items in the design
whose names match the name specification you provide. If no port mode is
specified, all interface items and internal items are found (that is, all items of
modes IN, OUT, INOUT, and INTERNAL).

Syntax

find

[-recursive] [-in] [-out] [-inout]
[-internal] [-ports] <item_name> ...

Arguments

-recursive

Specifies that the scope of the search is to descend recursively into subregions.
Optional; if omitted, the search is limited to the selected region.

-in

Specifies that the scope of the search is to include ports of mode IN. Optional.

-out

Specifies that the scope of the search is to include ports of mode OUT. Optional.

-inout

Specifies that the scope of the search is to include ports of mode INOUT.
Optional.

-internal

Specifies that the scope of the search is to include internal items. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional. Has the same
effect as specifying -in, -out, and -inout together.

<item_name> ...

Specifies the name for which you want to search. Required. Multiple names and
wildcard characters are allowed.
ModelSim EE/SE Command Reference ModelSim Commands CR-85

find
Examples

find -r /*

Finds all items in the entire design.

find *

Displays the names of all items in the current region.

Additional search options

To search for HDL items within a specific display window, use the search and
next (CR-141) or the menu sequence: Edit > Find

See also

"Wildcard characters" (CR-248)
CR-86 ModelSim Commands ModelSim EE/SE Command Reference

force
force

The force command allows you to apply stimulus to VHDL signals and Verilog
nets interactively. Since force commands (like all VSIM commands) can be
included in a macro file, it is possible to create complex sequences of stimuli.

Forcing of Virtual signals (9-145) is supported if the number of bits correspond to
the signal value; forcing of virtual functions is not supported.

Syntax

force

[-freeze | -drive | -deposit] [-cancel <period>] [-repeat <period>]
<item_name> <value> [<time>] [, <value> <time> ...]

Arguments

-freeze

Freezes the item at the specified value until it is forced again or until it is unforced
with a noforce command (CR-101). Optional.

-drive

Attaches a driver to the item and drives the specified value until the item is forced
again or until it is unforced with a noforce command (CR-101). Optional.

This option is illegal for unresolved signals.

-deposit

Sets the item to the specified value. The value remains until there is a subsequent
driver transaction, or until the item is forced again, or until it is unforced with a
noforce command (CR-101). Optional.

If one of the -freeze, -drive, or -deposit options is not used, then -freeze is the
default for unresolved items and -drive is the default for resolved items.

If you prefer -freeze as the default for resolved and unresolved VHDL signals, you
can change the default force kind in the imodelsim.tcl file (see "Preference
variables located in INI and MPF files" (B-394)), or by using the DefaultForceKind
(B-398).

-cancel <period>

Cancels the force command after the specified <period> of current time units.
Cancellation occurs at the last simulation delta cycle of a time unit. A value of zero
cancels the force at the end of the current time period. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-87

force
-repeat <period>

Repeats the force command, where <period> is the amount of time of the repeat
period. A repeating force command will force a value before other non-repeating
force commands that occur in the same time step. Optional.

<item_name>

Specifies the name of the HDL item to be forced. Required. A wildcard is
permitted only if it matches one item. See "HDL item pathnames" (CR-245) for the
full syntax of an item name. The item name must specify a scalar type or a one-
dimensional array of character enumeration. You may also specify a record sub-
element, an indexed array, or a sliced array, as long as the type is one of the above.
Required.

<value>

Specifies the value that the item is forced to. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a
sequence of character literals or as a based number with a radix of 2, 8, 10 or 16.
For example, the following values are equivalent for a signal of type bit_vector (0
to 3):

Note: For based numbers in VHDL, ModelSim converts each 1 or 0 in the value to one of the values in the
enumerated type.This translation is specified by the force mapping preferences in the imodelsim.tcl file , see
"Preference variables located in INI and MPF files" (B-394). If ModelSim cannot find a translation for 0 or 1,
it uses the left bound of the signal type (type’left) for that value.

<time>

Specifies the time that the value is applied. The time is relative to the current time
unless an absolute time is specified by preceding the value with the character @.

Value Description

1111 character literal sequence

2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix
CR-88 ModelSim Commands ModelSim EE/SE Command Reference

force
If the time units are not specified, then the default is the resolution units selected
at simulation start-up. Optional.

A zero-delay force command causes the change to occur in the current (rather than
the next) simulation delta cycle.

Examples

force input1 0

Forces input1 to 0 at the current simulator time.

force bus1 01XZ 100 ns

Forces bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 16#f @200

Forces bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force input1 1 10, 0 20 -r 100

Forces input1 to 1 at 10 time units after the current simulator time and to 0 at 20 time units
after the current simulation time. This repeats every 100 time units, so the next transition is
to 1 at 110 time units afterwards.

force input1 1 10 ns, 0 {20 ns} -r 100ns

Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force s 1 0, 0 100 -repeat 200 -cancel 1000

Forces signal s to alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of a time unit. So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

See also

noforce command (CR-101), and change command (CR-43)
ModelSim EE/SE Command Reference ModelSim Commands CR-89

getactivecursortime
getactivecursortime

The getactivecursortime command gets the time of the active cursor in the Wave
window.

Returns the time value.

Syntax

getactivecursortime

[-window <wname>]

Arguments

-window <wname>

Use this option to specify an instance of the Wave window that is not the default.
Otherwise, the default Wave window is used. Optional. Use the view command
(CR-180) to change the default window.

Examples

getactivecursortime

Returns:

980 ns

See also

right | left command (CR-136)
CR-90 ModelSim Commands ModelSim EE/SE Command Reference

getactivemarkertime
getactivemarkertime

The getactivemarkertime command gets the time of the active marker in the List
window.

Returns the time value. If -delta is specified, returns time and delta.

Syntax

getactivemarkertime

[-window <wname>] [-delta]

Arguments

-window <wname>

Use this option to specify an instance of the List window that is not the default.
Otherwise, the default List window is used. Optional. Use the view command (CR-

180) to change the default window.

-delta

Also return the delta value. Valid for the List window only. Optional. Default is
to return only the time.

Examples

getactivemarkertime -delta

Returns:

980 ns, delta 0

See also

right | left command (CR-136), and the disable_menuitem command (CR-66)
ModelSim EE/SE Command Reference ModelSim Commands CR-91

lecho
lecho

The lecho command takes one or more Tcl lists as arguments and pretty-prints
them to the Transcript window. Returns nothing.

Syntax

lecho

<args> ...

Arguments

<args> ...

Any Tcl list created by a VSIM command or user procedure.

Examples

lecho [configure wave]

Prints the Wave window configuration list to the Transcript window.
CR-92 ModelSim Commands ModelSim EE/SE Command Reference

log
log

The log command creates a logfile containing simulation data for all HDL items
whose names match the provided specifications. Items (VHDL variables, and
Verilog nets and registers) that are displayed using the add list (CR-22) and add
wave (CR-33) commands are automatically recorded in the logfile.

If no port mode is specified, the logfile contains data for all items in the selected
region whose names match the item name specification.

The logfile is the source of data for the List and Wave output windows. An item
that has been logged and is subsequently added to the List or Wave window will
have its complete history back to the start of logging available for listing and
waving.

Syntax

log

[-recursive] [-in] [-out] [-inout] [-ports]
[-internal] [-howmany] <item_name>

Arguments

-recursive

Specifies that the scope of the search is to descend recursively into subregions.
Optional; if omitted, the search is limited to the selected region.

-in

Specifies that the logfile is to include data for ports of mode IN whose names
match the specification. Optional.

-out

Specifies that the logfile is to include data for ports of mode OUT whose names
match the specification. Optional.

-inout

Specifies that the logfile is to include data for ports of mode INOUT whose names
match the specification. Optional.

-ports

Specifies that the scope of the search is to include all port. Optional.

-internal

Specifies that the logfile is to include data for internal items whose names match
the specification. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-93

log
-howmany

Returns an integer indicating the number of signals found. Optional.

<item_name>

Specifies the item name which you want to log. Required. Multiple item names
may be specified. Wildcard characters are allowed.

Examples

log -r /*

Logs all items in the design.

log -out *

Logs all output ports in the current design unit.

See also

add list command (CR-22), add wave command (CR-33), nolog command (CR-

102), and "Wildcard characters" (CR-248)
CR-94 ModelSim Commands ModelSim EE/SE Command Reference

lshift
lshift

The lshift command takes a Tcl list as argument and shifts it in-place one place to
the left, eliminating the 0th element. The number of shift places may also be
specified. Returns nothing.

Syntax

lshift

<list> [<amount>]

Arguments

<list>

Specifies the Tcl list to target with lshift. Required.

<amount>

Specifies more than one place to shift. Optional. Default is 1.

Examples

proc myfunc args {

 # throws away the first two arguments

 lshift args 2

 ...

 }

See also

See the Tcl man pages (Main window: Help > Tcl Man Pages) for details.
ModelSim EE/SE Command Reference ModelSim Commands CR-95

lsublist
lsublist

The lsublist command returns a sublist of the specified Tcl list that matches the
specified Tcl glob pattern.

Syntax

lsublist

<list> <pattern>

Arguments

<list>

Specifies the Tcl list to target with lsublist. Required.

<pattern>

Specifies the pattern to match within the <list> using Tcl glob-style matching.
Required.

Examples

In the example below, variable ‘t’ returns "structure signals source".

set window_names "structure signals variables process source wave list dataflow"

set t [lsublist $window_names s*]

See also

The set command is a Tcl command. See the Tcl man pages (Main window: Help
> Tcl Man Pages) for details.
CR-96 ModelSim Commands ModelSim EE/SE Command Reference

macro_option
macro_option

This command is available for UNIX only.

The macro_option command controls the speed and delay of macro (DO file)
playback, plus the level of debugging feedback. If invoked without any options
macro_option returns all current settings; returns a specific setting if invoked
with an option and no argument.

Syntax

macro_option

[speed fast | demo] | [delay <delay_time>] | [debug <level>]

Arguments

speed fast | demo

Set the macro playback speed to fast or demo. Optional.

delay <delay_time>

Set the delay time in milliseconds; delay is the time between events in demo mode.
Optional.

debug <level>

Set debug level from 1 to 9; 9 giving the most feedback. Optional.

See also

play command (CR-110), and the run command (CR-139)
ModelSim EE/SE Command Reference ModelSim Commands CR-97

modelsim
modelsim

The modelsim command starts the ModelSim GUI without prompting you to load
a design. This command is valid only for Windows platforms, and may be invoked
in one of three ways:

from the DOS prompt
from a ModelSim shortcut
from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the
shortcut’s properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the MODELSIM prompt after the GUI
starts or from a DO file called by modelsim.

Syntax

modelsim

[-do <macrofile>] [-project <project file>]

Arguments

-do <macrofile>

Specifies the DO file to execute when modelsim is invoked. Optional.

Note: In addition to the macro called by this argument, if a DO file is specified by the STARTUP variable
in modelsim.ini, it will be called when the vsim command (CR-208) is invoked.

-project <project file>

Specifies the modelsim.ini file to load for this session. Optional.

See also

vsim command (CR-208), do command (CR-67), and "Using a startup file" (B-404)
CR-98 ModelSim Commands ModelSim EE/SE Command Reference

.main clear
.main clear

The .main clear command clears the Main window (10-158) transcript. The
behavior is the same as the Main window File > Clear Transcript menu
selection.

Syntax

.main clear

Arguments

None.
ModelSim EE/SE Command Reference ModelSim Commands CR-99

next
next

See "search and next" (CR-141) for information on the next command.
CR-100 ModelSim Commands ModelSim EE/SE Command Reference

noforce
noforce

The noforce command removes the effect of any active force (CR-87) commands
on the selected HDL items. The noforce command also causes the item’s value to
be re-evaluated.

Syntax

noforce

<item_name> ...

Arguments

<item_name>

Specifies the name of a item. Required. Must match the item name used in the
force command (CR-87). Multiple item names may be specified. Wildcard
characters are allowed.

See also

force command (CR-87), and "Wildcard characters" (CR-248)
ModelSim EE/SE Command Reference ModelSim Commands CR-101

nolog
nolog

The nolog command suspends writing of data to the logfile for the specified
signals. A flag is written into the logfile for each signal turned off, and the gui
displays question marks for the signal until logging (for the signal) is turned back
on.

Logging can be turned back on by issuing another log command (CR-93) or by
doing a nolog -reset.

Because use of the nolog command adds new information to the logfile, logfiles
created when using the nolog command cannot be read by older versions of the
simulator. If you are using dumplog64.c, you will need to get an updated version.

Syntax

nolog

[-all] [-reset] [-recursive] [-in] [-out] [-inout] [-ports]
[-internal] [-howmany] <item_name> ...

Arguments

-all

Turns off logging for all signals currently logged.Optional.

-reset

Turns logging back on for all signals unlogged. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions.
Optional; if omitted, the search is limited to the selected region.

-in

Specifies that the logfile is to exclude data for ports of mode IN whose names
match the specification. Optional.

-out

Specifies that the logfile is to exclude data for ports of mode OUT whose names
match the specification. Optional.

-inout

Specifies that the logfile is to exclude data for ports of mode INOUT whose names
match the specification. Optional.

-ports

Specifies that the scope of the search is to exclude all port. Optional.
CR-102 ModelSim Commands ModelSim EE/SE Command Reference

nolog
-internal

Specifies that the logfile is to exclude data for internal items whose names match
the specification. Optional.

-howmany

Returns an integer indicating the number of signals found. Optional.

<item_name>

Specifies the item name which you want to unlog. Required. Multiple item names
may be specified. Wildcard characters are allowed.

Examples

nolog -r /*

Unlogs all items in the design.

nolog -out *

Unlogs all output ports in the current design unit.

See also

log command (CR-93)
ModelSim EE/SE Command Reference ModelSim Commands CR-103

notepad
notepad

The notepad command is a simple text editor. It may be used to view and edit ascii
files or create new files. When a file is specified on the command line, the editor
will initially come up in read-only mode. This mode can be changed from the
Notepad Edit menu. See "Editing the command line, the current source file, and
notepads" (10-167) for a list of editing shortcuts.

Returns nothing.

Syntax

notepad

<filename> [-r | -edit]

Arguments

<filename>

Name of the file to be displayed.

-r | -edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode.
Optional. Read-only is default.
CR-104 ModelSim Commands ModelSim EE/SE Command Reference

nowhen
nowhen

The nowhen command deactivates selected when (CR-226) commands.

Syntax

nowhen

[<label>]

Arguments

<label>

Used to identify individual when commands. Optional.

Examples

when -label 99 b {echo “b changed”}
…
nowhen 99

This nowhen command deactivates the when (CR-226) command labeled 99.

nowhen *

This nowhen command deactivates all when (CR-226) commands.
ModelSim EE/SE Command Reference ModelSim Commands CR-105

onbreak
onbreak

The onbreak command is used within a macro; it specifies a command to be
executed when running a macro that encounters a breakpoint in the source code.
Using the onbreak command without arguments will return the current onbreak
command string. Use an empty string to change the onbreak command back to its
default behavior (i.e., onbreak ""). In that case, the macro will be interrupted after
a breakpoint occurs (after any associated bp command (CR-40) string is executed).

onbreak commands can contain macro calls.

Syntax

onbreak

{[<command> [; <command>] ...]}

Arguments

<command>

Any VSIM command can be used as an argument to onbreak. If you want to use
more than one command, use a semicolon to separate the commands, or place
them on multiple lines. The entire command string must be placed in curly braces.
It is an error to execute any commands within an onbreak command string
following a run (CR-139), run -continue, or step (CR-151) command. This
restriction applies to any macros or Tcl procedures used in the onbreak command
string. Optional.

Examples

onbreak {exa data ; cont}

Examine the value of the HDL item data when a breakpoint is encountered. Then continue
the run command (CR-139).

onbreak {resume}

Resume execution of the macro file on encountering a breakpoint.

See also

abort command (CR-19), bd command (CR-39), bp command (CR-40), do
command (CR-67), onerror command (CR-108), resume command (CR-135), and
the status command (CR-150)
CR-106 ModelSim Commands ModelSim EE/SE Command Reference

onElabError
onElabError

The onElabError command specifies one or more commands to be executed
when an error is encountered during elaboration. The command is used by placing
it within the modelsim.tcl file or a macro. During initial design load onElabError
may be invoked from within the modelsim.tcl file; during a simulation restart
onElabError may be invoked from a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError

{[<command> [; <command>] ...]}

Arguments

<command>

Any VSIM command can be used as an argument to onElabError. If you want to
use more than one command, use a semicolon to separate the commands, or place
them on multiple lines. The entire command string must be placed in curly braces.
Optional.

See also

do command (CR-67)
ModelSim EE/SE Command Reference ModelSim Commands CR-107

onerror
onerror

The onerror command is used within a macro; it specifies one or more commands
to be executed when a running macro encounters an error. Using the onerror
command without arguments will return the current onerror command string. Use
an empty string to change the onerror command back to its default behavior (i.e.,
onbreak ""). Use onerror with a resume command (CR-135) to allow an error
message to be printed without halting the execution of the macro file.

Syntax

onerror

{[<command> [; <command>] ...]}

Arguments

<command>

Any VSIM command can be used as an argument to onerror. If you want to use
more than one command, use a semicolon to separate the commands, or place
them on multiple lines. The entire command string must be placed in curly braces.
Optional.

See also

do command (CR-67), onbreak command (CR-106), resume command (CR-135),
and the status command (CR-150)
CR-108 ModelSim Commands ModelSim EE/SE Command Reference

pause
pause

The pause command placed within a macro interrupts the execution of that macro.

Syntax

pause

Arguments

None.

Description

When you execute a macro and that macro gets interrupted, the prompt will
change to:

VSIM (pause)7>

This “pause” prompt reminds you that a macro has been interrupted.

When a macro is paused, you may invoke another macro, and if that one gets
interrupted, you may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command (CR-150). It
will show you which macros are interrupted, at what line number, and show you
the interrupted command.

To resume the execution of the macro, use the resume command (CR-135). To
abort the execution of a macro use the abort command (CR-19).

See also

abort command (CR-19), resume command (CR-135), and the run command (CR-

139)
ModelSim EE/SE Command Reference ModelSim Commands CR-109

play
play

This command is available for UNIX only.

The play command replays a sequence of keyboard and mouse actions, which
were previously saved to a file with the record command (CR-130). Returns
nothing.

Note: Play returns immediately; the playback proceeds in the background. Caution must be used when
putting play commands in do (macro) files.

Syntax

play

<filename>

Arguments

<filename>

Specifies the recorded file to replay. Required.

Playback controls

The following Tcl set commands control the playback type and speed by setting
the play_macro() global variables. The commands are invoked from the
ModelSim command line.

set play_macro(speed)

Specify the playback speed: either demo (with the delay specified below), or fast (no
delays).

set play_macro(delay)

Specifies the delay time in milliseconds. Controls the speed of playback in demo mode.

See also

macro_option command (CR-97), and the record command (CR-130)
CR-110 ModelSim Commands ModelSim EE/SE Command Reference

power add
power add

The power add command is used prior to the power report command (CR-112).
Data produced by these commands can be translated (by a Synopsys utility) to
drive the Synopsys power analysis tools. This command specifies the signals or
nets to track for power information. Returns nothing.

Syntax

power add

[-in] [-out] [-internal] [-internal] [-r] <signalsOrNets> ...

Arguments

-in

Select only inputs. Optional.

-out

Select only outputs. Optional.

-internal

Select only design internal signals or nets. Optional.

-ports

Select only design ports. Optional.

-r

Do the wildcard search recursively. Optional.

<signalsOrNets> ...

Specifies the signal or net to track. Required. Multiple names or wildcards may be
used. When using wildcards, switches filter the qualifying signals. The switches
select inputs, outputs, internal signals, or ports. If more than one switch is used,
the logical OR of the option is performed. This argument must refer to VHDL
signals of type bit, std_logic, or std_logic_vector, or to Verilog nets.

See also

power report command (CR-112), and the power reset command (CR-113)

See the Synopsys Power documentation for more information.
ModelSim EE/SE Command Reference ModelSim Commands CR-111

power report
power report

The power report command is used subsequent to the power add command (CR-

111). Data produced by these commands can be translated (by a Synopsys utility)
to drive the Synopsys power analysis tools. This command writes out the power
information for the specified signals or nets. The report can be written to a file or
to the Transcript window. Returns nothing.

Syntax

power report

[-all] [-noheader] [-file <filename>]

Arguments

-all

Writes information on all items logged. Optional.

-noheader

Suppresses the header to aid in post processing. Optional.

-file <filename>

Specifies a filename for the power report. Optional. Default is to write the report
to the Transcript window.

Description

The report format for each line is:

signal path, toggle count, hazard count, time at a 1, time at a 0, time at an X

• toggle count is the number of 0->1 and 1->0 transitions

• hazard count is the number of 0/1->X, and X->0/1 transitions

• times are the times spent at each of the three respective states

You will also need to know the total simulation time.

 See also

power add command (CR-111), and the power reset command (CR-113)

See the Synopsys Power documentation for more information.
CR-112 ModelSim Commands ModelSim EE/SE Command Reference

power reset
power reset

The power reset command selectively resets power information to zero for the
signals or nets specified with the power add command (CR-111). Returns nothing.

Syntax

power reset

[-in] [-out] [-internal] [-internal] [-r] <signalsOrNets> ...

Arguments

-in

Reset only inputs. Optional.

 -out

Reset only outputs. Optional.

-internal

Reset only design internal signals or nets. Optional.

-ports

Reset only design ports. Optional.

-r

Do the wildcard search recursively. Optional.

<signalsOrNets> ...

Specifies the signal or net to reset. Required. Multiple names or wildcards may be
used.

See also

power add command (CR-111), and the power report command (CR-112)

See the Synopsys Power documentation for more information.
ModelSim EE/SE Command Reference ModelSim Commands CR-113

printenv
printenv

The printenv command echoes to the Transcript window the current names and
values of all environment variables. If variable names are given as arguments,
prints only the names and values of the specified variables. Returns nothing. All
results go to the Transcript window.

Syntax

printenv

[<var>...]

Arguments

<var>...

Specifies the name(s) of the environment variable to print. Optional.

Examples

printenv

Prints all environment variable names and their current values (usually a dozen or
so):

CC = gcc
DISPLAY = srl:0.0
...

printenv USER HOME

Prints the specified environment variables:

USER = vince

HOME = /scratch/srl/vince
CR-114 ModelSim Commands ModelSim EE/SE Command Reference

profile clear
profile clear

The profile clear command is used to clear any data that has been gathered during
previous run commands. After this command is executed, all profiling data will
be reset.

This command has no effect on the current profiling session. The last profile on
or profile off command will still be in effect.

Syntax

profile clear

Arguments

None

See also

profile interval command (CR-116), profile off command (CR-117), profile on
command (CR-118), profile option command (CR-119), profile report command
(CR-120)

Note: Profiling must be active when this command is invoked. Use the profile on command (CR-118) to
begin profiling.
ModelSim EE/SE Command Reference ModelSim Commands CR-115

profile interval
profile interval

The profile interval command allows you to select the frequency with which the
profiler collects samples during a run command.

Syntax

profile interval

[sample-frequency]

Arguments

sample-frequency

An integer value from 1 to 999 that represents how many milliseconds to wait between each
sample collected during a profiled simulation run. Default is 10 ms.

If the sample-frequency is not supplied, the profile interval command returns the
current sample frequency.

See also

profile clear command (CR-115), profile off command (CR-117), profile on
command (CR-118), profile option command (CR-119), profile report command
(CR-120)

Note: Profiling must be active when this command is invoked. Use the profile on command (CR-118) to
begin profiling.
CR-116 ModelSim Commands ModelSim EE/SE Command Reference

profile off
profile off

The profile off command is used to discontinue runtime profiling.

Syntax

profile off

Arguments

None

See also

profile clear command (CR-115), profile interval command (CR-116), profile on
command (CR-118), profile option command (CR-119), profile report command
(CR-120)
ModelSim EE/SE Command Reference ModelSim Commands CR-117

profile on

The profile on command is used to enable runtime analysis of where your
simulation is spending its time. After this command is executed, every subsequent
run command will be profiled.

Syntax

profile on

Arguments

None

See also

profile clear command (CR-115), profile interval command (CR-116), profile off
command (CR-117), profile option command (CR-119), profile report command
(CR-120)
CR-118 ModelSim Commands ModelSim EE/SE Command Reference

profile option
profile option

The profile option command allows various profiling options to be changed.

Syntax

profile option

[collapse_sections] [raw_data]

Arguments

collapse_sections

By default all profiling data is reported on a per line basis. This option allows you
to group the data by section. A section consists of regions of code such as VHDL
processes, functions or Verilog always blocks.

By specifying this option the current setting is toggled. The default is to not
collapse sections.

Note: This option must be specified before the run command (CR-139) is executed.

raw_data

By default all profiling results are reported on a percentage basis. This option allows
reporting based on the raw number of samples that occurred in a line or a section.

By specifying this option the current setting is toggled. The default is to display
results as percentages.

See also

profile interval command (CR-116), profile interval command (CR-116), profile
off command (CR-117), profile on command (CR-118), profile report command
(CR-120)

Note: Profiling must be active when this command is invoked. Use the profile on command (CR-118) to
begin profiling.
ModelSim EE/SE Command Reference ModelSim Commands CR-119

profile report
profile report

The profile report command is used to produce a textual output of the profiling
statistics that have been gathered up to this point. (The View > Other >
Hierarchical Profile and View > Other > Ranked Profile menu picks allow you
to view this data more interactively.)

Syntax

profile report

[-hierarchical | -ranked] [-file <filename>] [-cutoff
<percentage>]

Arguments

-hierarchical

Report a hierarchical listing (Default). Optional.

-ranked

Report a ranked listing. Optional.

-file <filename>

Specifies a file name for the report. Optional. Default is to write report to the Transcript
Window.

-cutoff <percentage>

Filter entries in the report that had less than <percentage> of time spent in them. Optional.
Default is report all entries (i.e. 0%).

See also

profile interval command (CR-116), profile interval command (CR-116), profile
off command (CR-117), profile on command (CR-118), profile option command
(CR-119)

Note: Profiling must be active when this command is invoked. Use the profile on command (CR-118) to
begin profiling.
CR-120 ModelSim Commands ModelSim EE/SE Command Reference

project
project

The project command is used to perform common operations on new projects.
The command is to be used outside of a simulation session.

Syntax

project

[history] [compile] [close] [env] [save] [copy <src_project>
<dest_dir> <proj_name>] [new <home_dir> <proj_name>] [delete
<project> [-force]] [open <project>]

Arguments

history

Lists a history of manipulated projects.

new <home_dir> <proj_name>

Creates a new project under a specified home directory with a specified name.

copy <src_project> <dest_dir> <proj_name>

Copies an existing project to a destination directory with a specified name.

open <project>

Opens a specified project file making it the current project. Changes the current
working directory to the project’s directory.

env

Returns the current project file.

compile

Compile the current project. This is done by taking the project’s list of work
libraries (Work_Libs variable in project section) and executing the associated
build script for each library (<libname>_script variable in the project section).

delete <project> [-force]

Deletes a specified project.

close

Close the current project.

save

Update the current project’s .mpf file with the current vsim settings.
ModelSim EE/SE Command Reference ModelSim Commands CR-121

project
Examples

The following commands make a copy of /user/georges/design/test3 project at /
user/georges/design/test4.

vsim> project history
0 /user/george/design/test3/test3.mpf
1 /user/george/design/test2/test2.mpf
2 /user/george/design/test1/test1.mpf
3 /home/prod/release/5.3/modeltech/examples/projects/mixed/mixed.mpf
4 /home/prod/release/5.3/modeltech/examples/projects/verilog/verilog.mpf
5 /home/prod/release/5.3/modeltech/examples/projects/vhdl/vhdl.mpf
vsim> project copy !0 /user/georges/design test4

The following command makes /user/george/design/test3 the current project and
changes the current working directory to /user/george/design/test3.

vsim> project open /user/george/design/test3/test3.mpf

The folowing command causes execution of current project library build scripts.

 vsim> project compile

The following command writes the current vsim tool settings to the current project
file.

vsim> project save

The following commands delete /user/georges/test2/test2.mpf

vsim> project history
0 /user/george/design/test4/test4.mpf
1 /user/george/design/test3/test3.mpf
2 /user/george/design/test2/test2.mpf
3 /user/george/design/test1/test1.mpf
4 /home/prod/release/5.3/modeltech/examples/projects/mixed/mixed.mpf
5 /home/prod/release/5.3/modeltech/examples/projects/verilog/verilog.mpf
6 /home/prod/release/5.3/modeltech/examples/projects/vhdl/vhdl.mpf
vsim> project delete !2
CR-122 ModelSim Commands ModelSim EE/SE Command Reference

property list
property list

The property list command changes one or more properties of the specified
signal, net or register in the List window (10-174). The properties correspond to
those than can be specified using the List window Prop > Display Props menu
selection. At least one argument must be used.

Syntax

property list

[-window <wname>>] [-label <label>] [-radix <radix>]
[-trigger <setting>] [-width <number>] <pattern>

Arguments

-window <wname>

Used to specify a particular List window when multiple instances of the window
exist (i.e., list2). Optional. If no window is specified the default window is used;
the default window is determined by the most recent invocation of the view
command (CR-180).

-label <label>

Specifies the label to appear at the top of the List window column. Optional.

-radix <radix>

The listed value <radix> can be specified as: Symbolic, Bin, Oct, Dec or Hex.
Optional.

-trigger <setting>

Valid settings are 0 or 1. Setting trigger to 1 will enable the list window to be
triggered by changes on this signal. Optional.

-width <number>

Valid numbers are 1 through 256. Specifies the desired column width for the listed
<pattern>. Optional.

<pattern>

Specifies a name or wildcard pattern to match the full path names of the signals,
nets or registers for which you are defining the property change. Required.

To change the time or delta column widths, use these patterns:

TIME or DELTA
ModelSim EE/SE Command Reference ModelSim Commands CR-123

property wave
property wave

The property wave command changes one or more properties of the specified
signal, net or register in the Wave window (10-212). The properties correspond to
those than can be specified using the Wave window Prop > Display Props menu
selection. At least one argument must be used.

Syntax

property wave

[-window <wname>] [-color <color>] [-format <format>] [-height
<number>] [-offset <number>] [-radix <radix>] [-scale <float>]
<pattern>

Arguments

-window <wname>

Used to specify a particular Wave window when multiple instances of the window
exist (i.e., wave2). Optional. If no window is specified the default window is used;
the default window is determined by the most recent invocation of the view
command (CR-180).

-color <color>

Specifies any valid system color name. Optional.

-format <format>

The waveform <format> can be expressed as:

analog

Displays a waveform whose height and position is determined by the -scale and
-offset values (shown below). Optional.

literal

Displays the waveform as a box containing the item value (if the value fits the
space available). Optional.

logic

Displays values as 0, 1, X, or Z. Optional.

-height <number>

Specifies the height (in pixels) of the waveform. Optional.

-offset <number>

Specifies the waveform position offset in pixels. Valid only when -format is
specified as analog. Optional.
CR-124 ModelSim Commands ModelSim EE/SE Command Reference

property wave
-radix <radix>

The <radix> can be expressed as: Symbolic, Bin, Oct, Dec or Hex. Choosing
symbolic means that item values are not translated. Optional.

-scale <float>

Specifies the waveform scale relative to the unscaled size value of 1. Valid only
when -format is specified as analog. Optional.

<pattern>

Specifies a name or wildcard pattern to match the full path names of the signals,
nets or registers for which you are defining the property change. Required.
ModelSim EE/SE Command Reference ModelSim Commands CR-125

pwd
pwd

The Tcl pwd command displays the current directory path in the Main transcript
window.

Returns nothing.

Syntax

pwd

Arguments

None.
CR-126 ModelSim Commands ModelSim EE/SE Command Reference

quietly
quietly

The quietly command turns off transcript echoing for the specified command.

Syntax

quietly

<command>

Arguments

<command>

Specifies the command for which to disable transcript echoing. Required. Any
results normally echoed by the specified command will not be written to the Main
window transcript. To disable echoing for all commands use the transcript
command (CR-158) with the -quietly option.

See also

transcript command (CR-158)
ModelSim EE/SE Command Reference ModelSim Commands CR-127

quit
quit

The quit command exits the simulator.

Syntax

quit

[-f or -force] [-sim]

Arguments

-f or -force

Quits without asking for confirmation. Optional; if this argument is omitted,
VSIM asks you for confirmation before exiting. (The -f and -force arguments are
equivalent.)

-sim

Unloads the current design in the simulator without exiting ModelSim. All files
opened by the simulation will be closed including the logfile (vsim.wav).

Note: If you want to stop the simulation using a when command (CR-226), you must use a stop command
(CR-152) within your when statement. DO NOT use an exit command (CR-84) or a quit command. The stop
command acts like a breakpoint at the time it is evaluated.
CR-128 ModelSim Commands ModelSim EE/SE Command Reference

radix
radix

The radix command specifies the default radix to be used. The command can be
used at any time. The specified radix is used for all commands (force (CR-87),
examine (CR-81), change (CR-43), etc.) as well as for displayed values in the
Signals, Variables, Dataflow, List, and Wave windows.

Syntax

radix

[-symbolic | -binary | -octal | -decimal | -hexadecimal |
-unsigned | -ascii]

Arguments

Entries may be truncated to any length, for example, -symbolic could be expressed
as -s or -sy, etc. Optional.

Also, -signed may be used as an alias for -decimal. The -unsigned radix will
display as unsigned decimal. The -ascii radix will display a Verilog item as a
string equivalent using 8 bit character encoding.

If no arguments are used, the command returns the current default radix.
ModelSim EE/SE Command Reference ModelSim Commands CR-129

record
record

This command is available for UNIX only.

The record command starts recording a replayable trace of all keyboard and
mouse actions. Record and play operations may also be run from the macro-helper
menu item of the macro menu. Returns nothing.

Syntax

record

[<filename>]

Arguments

<filename>

Specifies the file for the saved recording. If <filename> is not specified, the
recording terminates.

See also

macro_option command (CR-97), and the play command (CR-110)
CR-130 ModelSim Commands ModelSim EE/SE Command Reference

report
report

The report command displays the value of all simulator control variables, or the
value of any simulator state variables relevant to the current simulation.

Syntax

report

simulator control | simulator state

Arguments

simulator control

Displays the current values for all simulator control variables.

simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

report simulator control

Displays all simulator control variables.

UserTimeUnit = ns

RunLength = 100

IterationLimit = 5000

BreakOnAssertion = 3

DefaultForceKind = default

IgnoreNote = 0

IgnoreWarning = 0

IgnoreError = 0

IgnoreFailure = 0

CheckpointCompressMode = 1

NumericStdNoWarnings = 0

StdArithNoWarnings = 0

PathSeparator = /

DefaultRadix = symbolic

DelayFileOpen = 0

WaveSignalNameWidth = 0

ListDefaultShortName = 1

ListDefaultIsTrigger = 1
ModelSim EE/SE Command Reference ModelSim Commands CR-131

report
report simulator state

Displays all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

now = 0.0

delta = 0

library = work

entity = type_clocks

architecture = full

resolution = 1ns

Viewing preference variables

Preference variables have more to do with the way things look (but not entirely)
rather then controlling the simulator. You can view preference variables from the
Preferences dialog box. Select the Main menu: Options > Edit Preferences, or see
"Setting variables with the GUI" (B-413).

See also

"Preference variables located in INI and MPF files" (B-394), and "Preference
variables located in TCL files" (B-406)
CR-132 ModelSim Commands ModelSim EE/SE Command Reference

restart
restart

The restart command reloads the design elements and resets the simulation time
to zero. Only design elements that have changed are reloaded.

Syntax

restart

[-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments

-force

Specifies that the simulation will be restarted without requiring confirmation in a
popup window. Optional (unless being used in a macro file).

-nobreakpoint

Specifies that all breakpoints will be removed when the simulation is restarted.
Optional. The default is for all breakpoints to be reinstalled after the simulation is
restarted.

-nolist

Specifies that the current List window environment will not be maintained after
the simulation is restarted. Optional. The default is for all currently listed HDL
items and their formats to be maintained.

-nolog

Specifies that the current logging environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently logged items to
continue to be logged.

-nowave

Specifies that the current Wave window environment will not be maintained after
the simulation is restarted. Optional. The default is for all items displayed in the
Wave window to remain in the window with the same format.

See also

checkpoint (CR-53), and "How to use checkpoint/restore" (E-438).
ModelSim EE/SE Command Reference ModelSim Commands CR-133

restore
restore

The restore command restores the state of a simulation that was saved with a
checkpoint command (CR-53) during the current invocation of VSIM (called a
"warm restore").

The items restored are: simulation kernel state, vsim.wav file, HDL items listed in
the List and Wave windows, file pointer positions for files opened under VHDL
and under Verilog $fopen, and the saved state of foreign architectures.

If you want to restore while running VSIM, use this command. If you want to start
up VSIM and restore a previously-saved checkpoint, use the -restore switch with
the vsim command (CR-208), this we call a "cold restore".

Note: Checkpoint/restore allows a cold restore, followed by simulation activity, followed by a warm
restore back to the original cold-restore checkpoint file. Warm restores to checkpoint files that were not
created in the current run are not allowed except for this special case of an original cold restore file.

Syntax

restore

[-nocompress] <filename>

Arguments

-nocompress

Specifies that the checkpoint file was not compressed when saved. Optional.

<filename>

Specifies the name of the checkpoint file. Required.

See also

checkpoint command (CR-53), and "The difference between checkpoint/restore
and restarting" (E-439).
CR-134 ModelSim Commands ModelSim EE/SE Command Reference

resume
resume

The resume command is used to resume execution of a macro file after a pause
command (CR-109), or a breakpoint. It may be input manually or placed in an
onbreak (CR-106) command string. (Placing a resume command in a bp (CR-40)
command string does not have this effect.) The resume command can also be used
in an onerror (CR-108) command string to allow an error message to be printed
without halting the execution of the macro file.

Syntax

resume

Arguments

None.

See also

abort command (CR-19), pause command (CR-109), and the do command (CR-67)
ModelSim EE/SE Command Reference ModelSim Commands CR-135

right | left
right | left

The right | left command searches right (next) or left (previous) for signal
transitions or values in the specified Wave window. It executes the search on
signals currently selected in the window, starting at the time of the active cursor.
A condition to search for may also be identified by an expression using the -expr
command option. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which
a waveform takes on a particular value, or an expression of multiple signals
evaluates to true. Use the mouse to select the desired waveform and click on the
desired starting location using the left mouse button. Then issue the right | left
command. (The seetime command (CR-146) can initially position the cursor from
the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

right | left

[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The waveform display will be searched until the expression evaluates to a boolean
true condition. Optional. The expression may involve more than one signal, but is
limited to signals that have been logged in the referenced Wave window. A signal
may be specified either by its full path or by the shortcut label displayed in the
Wave window.

See "GUI_expression_format" (CR-250) for the format of the expression. The
expression must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal.
If it is not a scalar signal, the option will be ignored. Optional.

-noglitch

Looks at signal values only on the last delta of a time step. For use with -value
option only. Optional.
CR-136 ModelSim Commands ModelSim EE/SE Command Reference

right | left
-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If
it is not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specify a value of the signal to match. Must be specified in the same radix that the
selected waveform is displayed. Case is ignored, but otherwise must be an exact
string match -- don’t-care bits are not yet implemented. Only one signal may be
selected, but that signal may be an array. Optional.

-window <wname>

Use this option to specify an instance of the Wave window that is not the default.
Optional. Otherwise, the default Wave window is used. Use the view command
(CR-180) to change the default window.

<n>

Specifies to find the nth match. If less than n are found, the number found is
returned with a warning message, and the cursor is positioned at the last match.
Optional. The default is 1.

Examples
right -noglitch -value FF23 2

Finds the second time to the right at which the selected vector transitions to FF23, ignoring
glitches.

left

Goes to the previous transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal
attributes, paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-250) and can be built with the aid of the "The GUI
Expression Builder" (10-272).

right -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==

32’habcd1234)}

Searches right for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr is
equal to the specified 32-bit hex constant; otherwise is 0.

right -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches right for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/adder equals hex ac.
ModelSim EE/SE Command Reference ModelSim Commands CR-137

right | left
right -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)}

Searches right for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, and clock just changed from low to high and signal mode is
enumeration writing.

Note: Wave window keyboard shortcuts (10-237) are also available for next and previous edge searches.
Tab searches right (next) and shift-tab searches left (previous).

See also
"GUI_expression_format" (CR-250), view command (CR-180), and the seetime
command (CR-146)
CR-138 ModelSim Commands ModelSim EE/SE Command Reference

run
run

The run command advances the simulation by the specified number of timesteps.

Syntax

run

[<timesteps> [<time_units>]]| -all | -continue | -next | -step |
-stepover]

Arguments

<timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be
fractional. Optional. In addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
VSIM session from the Options > Simulation menu option in the Main window
(see "Setting default simulation options" (10-260)). Time steps and time units may
also be set with the RunLength (B-400) and UserTimeUnit (B-401) variables in the
modelsim.ini file.

-all

Causes the simulator to run until there are no events scheduled. Optional.

-continue

Continues the last simulation run after a step (CR-151) command, step -over
command or a breakpoint. A run -continue command may be input manually or
used as the last command in a bp (CR-40) command string. Optional.

-next

Causes the simulator to run to the next event time. Optional.

-step

Steps the simulator to the next HDL statement. Optional.

-stepover

Specifies that VHDL procedures, functions and Verilog tasks are to be executed
but treated as simple statements instead of entered and traced line by line.
Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-139

run
Examples

run 1000

Advances the simulator 1000 timesteps.

run 10.4 ms

Advances the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run @8000

Advances the simulator to timestep 8000.

See also

step command (CR-151)
CR-140 ModelSim Commands ModelSim EE/SE Command Reference

search and next
search and next

The search and next commands search the specified window for one or more
items matching the specified pattern(s). The search starts at the item currently
selected, if any; otherwise starts at the window top. Default action is to search
downward until the first match, then move the selection to the item found, and
return the index of the item found. The search can be continued using the next
command.

Returns the index of a single match, or list of matching indices. Returns nothing
if no matches are found.

Syntax

search

<win_type> [-window <wname>] <pattern> [-reverse] [-all]
[-field <n>] [-toggle] [-forwards] [-backwards] [-exact] [-regexp]
[-nocase] [-count <n>]

next

<win_type> [-window <wname>]

Arguments

<win_type>

Specifies structure, signals, process, variables, wave, list, source, or a unique
abbreviation thereof. Required.

-window <wname>

Use this option to specify an instance of the window that is not the default.
Optional. Otherwise, the default window is used. Use the view command (CR-180)
to change the default window.

<pattern>

String or glob-style wild-card pattern. Required.

Arguments, for all EXCEPT the Source window

-reverse

Search in the reverse direction. Optional. Default is forward.

-all

Find all matches and return a list of the indices of all items that match. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-141

search and next
-field <n>

Selects different fields to test, depending on the window type:

Default behavior for the List window is to attempt to match the label and if that
fails, try to match the full signal name.

-toggle

Adds signals found to the selection. Does not do an initial clear selection.
Optional. Otherwise deselects all and selects only one item.

Arguments, Source window only

-forwards

Search in the forward direction. This is the default.

-backwards

Search in the reverse direction. Optional. Default is forwards.

-exact

Search for an exact match.

-regexp

Use the pattern as a Tcl regular expression. Optional.

-nocase

Ignore case. Optional. Default is to use case.

-count <n>

Search for the nth match. Optional. Default is to search for the first match.

Window n=1 n=2 n=3 default

structure instance ent/mod [arch] instance

signals name - cur. value name

process status label fullpath fullpath

variables name - cur. value name

wave name - cur. value name

list label fullname - label
CR-142 ModelSim Commands ModelSim EE/SE Command Reference

search and next
Description

With the -all option, the entire window is searched, the last item matching the
pattern is selected, and a Tcl list of all corresponding indices is returned.

With the -toggle option, items found are selected in addition to the current
selection.

For the List window, the search is done on the names of the items listed, that is,
across the header. To search for values of signals in the List window, use the down
| up command (CR-70). Likewise, in the Wave window, the search is done on
signal names. To search for signal values in the Wave window, use the right | left
command (CR-136). The Edit > Search menu selection may also be used in both
windows.

See also

view command (CR-180)
ModelSim EE/SE Command Reference ModelSim Commands CR-143

searchLog
searchLog

The searchLog command searches one or more of the currently open logfiles for
a specified condition. It can be used to search for rising or falling edges, for signals
equal to a specified value, or for when a generalized expression becomes true.

Syntax

searchLog

<options> <startTime> <pattern>

If at least one match is found, it returns the time (and optionally delta) at which
the last match occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is
specified, the delta of the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are
found, but less than the number requested, it is not considered an error condition,
and the time of the farthest match is returned, with the count of the matches found.

Arguments

-rising|falling|anyedge

Specifies an edge to look for on a scalar signal. Optional. This option is ignored
for compound signals.

-reverse

Specifies to search backwards in time from <startTime>. Optional.

-deltas

Indicates to test for match on simulation delta cycles. Otherwise, matches are only
tested for at the end of each simulation time step. Optional.

-expr{<expr>}

Specifies a general expression of signal values and simulation time. Optional.
searchLog will search until the expression evaluates to true. The expression must
have a boolean result type.

-value<string><radix>

Specifies to search until a single scalar or compound signal takes on this value.
<radix> is the radix of the value string. Optional.
CR-144 ModelSim Commands ModelSim EE/SE Command Reference

searchLog
-count<num>

Specifies to search for the <num>-th occurrence of the match condition, where
<num> is a positive integer. Optional.

-startDelta<num>

Indicates a simulation delta cycle on which to start. Optional.

-env<path>

Provides a design region to look for the signal names. Optional.

<startTime>

Specifies the simulation time at which to start the search. Required. The time may
be specified as an integer number of simulation units, or as {<num> <timeUnit>},
where <num> can be integer or with a decimal point, and <timeUnit> is one of
the standard VHDL time units (fs, ps, ns, us, ms, sec, min, hr).

<pattern>

The <pattern> argument specifies one or more signal names or wildcard patterns
of signal names to search on. Required (unless the -expr option is used).

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual delete|describe|define command (CR-182),
virtual expand command (CR-183), vmap command (CR-207), virtual log|nolog
command (CR-189), virtual save command (CR-191), virtual show|count
command (CR-192)
ModelSim EE/SE Command Reference ModelSim Commands CR-145

seetime
seetime

The seetime command scrolls the List or Wave window to make the specified
time visible. For the List window, a delta can be optionally specified as well.

Returns: nothing

Syntax

seetime

list|wave [-window <wname>] [-select] [-delta <num>] <time>

Arguments

list|wave

Specifies the target window type. Required.

-window <wname>

Use this option to specify an instance of the Wave or List window that is not the
default. Optional. Otherwise, the default wave or List window is used. Use the
view command (CR-180) to change the default window.

-select

Also move the active cursor or marker to the specified time (and optionally, delta).
Optional. Otherwise, the window is only scrolled.

-delta <num>

For the List window when deltas are not collapsed, this option specifies a delta.
Optional. Otherwise, delta 0 is selected.

<time>

Specifies the time to be made visible. Required.
CR-146 ModelSim Commands ModelSim EE/SE Command Reference

shift
shift

The shift command shifts macro parameter values down one place, so that the
value of parameter $2 is assigned to parameter $1, the value of parameter $3 is
assigned to $2, etc. The previous value of $1 is discarded.

The shift command and macro parameters are used in macro files. If a macro file
requires more than nine parameters, they can accessed using the shift command.

To determine the current number of macro parameters, use the argc (B-420).

Syntax

shift

Arguments

None.

Description

For a macro file containing nine macro parameters defined as $1 to $9, one shift
command shifts all parameter values one place to the left. If more than nine
parameters are named, the value of the tenth parameter becomes the value of $9
and can be accessed from within the macro file.

See also

do command (CR-67)
ModelSim EE/SE Command Reference ModelSim Commands CR-147

show
show

The show command lists HDL items and subregions visible from the current
environment. The items listed include:

• VHDL
signals, and instances

• Verilog
nets, registers, tasks, functions, instances and memories

The show command returns its results as a formatted Tcl string; to eliminate
formatting, use the Show command.

Syntax

show

[-all] [<pathname>]

Arguments

-all

Display all names at and below the specified path recursively. Optional.

<pathname>

Specifies the pathname of the environment for which you want the items and
subregions to be listed. Optional; if omitted, the current environment is assumed.

Examples

show

List the names of all the items and subregion environments visible in the current
environment.

show /uut

List the names of all the items and subregions visible in the environment named /uut.

show sub_region

List the names of all the items and subregions visible in the environment named sub_region
which is directly visible in the current environment.

See also

enable_menu command (CR-78), and the find command (CR-85)
CR-148 ModelSim Commands ModelSim EE/SE Command Reference

splitio
splitio

The splitio command operates on a VHDL inout or out port to create a new signal
having the same name as the port suffixed with "__o". The new signal mirrors the
output driving contribution of the port.

Syntax

splitio

[-outalso | -outonly] [-r] <signal_name> ...

Arguments

-outalso

Allows splitio to work on out ports as well as inout ports. Optional.

-outonly

Allows splitio to work only on out ports. Optional.

-r

Specifies that the port selection occurs recursively into subregions. Optional; if
omitted, included ports are limited to the current region.

<signal_name>...

Specifies the VHDL port. Operates only on inout ports by default; out ports may
be specified with the options above. Separate multiple port names with spaces.
Required.

Examples

The splitio command operates on inout or out ports and silently ignores any other
signals specified. The new signals created may be specified in any vsim (CR-208)
commands that operate on signals. These signals appear to be out ports to the
signal selection options on vsim commands. For example,

splitio /data

creates signal data_o if data is an inout port.

add list data

will list both data and data_o.
ModelSim EE/SE Command Reference ModelSim Commands CR-149

status
status

The status command lists all current interrupted macros. The listing shows the
name of the interrupted macro, the line number at which it was interrupted, and
prints the command itself. It also displays any onbreak (CR-106) or onerror (CR-

108) commands that have been defined for each interrupted macro.

Syntax

status

Arguments

None.

Examples

The transcript below contains examples of resume (CR-135), and status
commands.

VSIM (pause) 4> status
Macro resume_test.do at line 3 (Current macro)
command executing: “pause”
is Interrupted
ONBREAK commands: “resume”
Macro startup.do at line 34
command executing: “run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: “resume”
VSIM (pause) 5> resume
Resuming execution of macro resume_test.do at line 4

See also

abort command (CR-19), do command (CR-67), pause command (CR-109), and the
resume command (CR-135)
CR-150 ModelSim Commands ModelSim EE/SE Command Reference

step
step

The step command steps to the next HDL statement. Current values of local
variables may be observed at this time using the variables window. VHDL
procedures, functions and Verilog tasks can optionally be skipped over. When a
wait statement or end of process is encountered, time advances to the next
scheduled activity. The Process and Source windows will then be updated to
reflect the next activity.

Syntax

step

[-over] [<n>]

Arguments

-over

Specifies that VHDL procedures, functions and Verilog tasks are to be executed
but treated as simple statements instead of entered and traced line by line.
Optional.

<n>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also

run command (CR-139)
ModelSim EE/SE Command Reference ModelSim Commands CR-151

stop
stop

The stop command is used with the when command (CR-226) to stop simulation
in batch files. The stop command has the same effect as hitting a breakpoint. The
stop command may be placed anywhere within the body of the when command.

Syntax

stop

Arguments

None.

Note: Use the run command (CR-139) with the -continue option to continue the simulation run, or the
resume command (CR-135) to continue macro execution. If you want macro execution to resume
automatically, put the resume command at the top of your macro file:

onbreak {resume}

Note: If you want to stop the simulation using a when command (CR-226), you must use a stop command
within your when statement. DO NOT use an exit command (CR-84) or a quit command (CR-128). The stop
command acts like a breakpoint at the time it is evaluated.

See also

bp command (CR-40)
CR-152 ModelSim Commands ModelSim EE/SE Command Reference

tb
tb

The tb (traceback) command displays a stack trace for the current process in the
Main transcript window. This lists the sequence of HDL function calls that have
been entered to arrive at the current state for the active process.

Syntax

tb

Arguments

None.
ModelSim EE/SE Command Reference ModelSim Commands CR-153

toggle add
toggle add

The toggle add command enables collection of toggle statistics for the specified
nodes. The allowed nodes are Verilog nets and VHDL signals of type bit,
bit_vector, std_logic, and std_logic_vector (other types are silently ignored).

Syntax

toggle add

[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that toggle statistic collection is enabled recursively into subregions.
Optional; if omitted, toggle statistic collection is limited to the current region.

-in

Enables toggle statistic collection on nodes of mode IN. Optional.

-out

Enables toggle statistic collection on nodes of mode OUT. Optional.

-inout

Enables toggle statistic collection on nodes of mode INOUT. Optional.

-internal

Enables toggle statistic collection on internal items. Optional.

-ports

Enables toggle statistic collection on nodes of modes IN, OUT, or INOUT.
Optional.

<node_name>

Enables toggle statistic collection for the named node(s). Required. Multiple
names and wildcards are accepted.

See also

"Toggle checking" (E-447), toggle reset command (CR-155), and the toggle report
command (CR-156)
CR-154 ModelSim Commands ModelSim EE/SE Command Reference

toggle reset
toggle reset

The toggle reset command resets the toggle counts to zero for the specified nodes.

Syntax

toggle reset

[-all] [-r] [-in] [-out] [-inout] [-internal]
[-ports] <node_name>

Arguments

-all

Resets toggle statistic collection for all nodes that have toggle checking enabled.
Optional.

-r

Specifies that toggle statistic collection is reset recursively into subregions.
Optional; if omitted, the reset is limited to the current region.

-in

Resets toggle statistic collection on nodes of mode IN. Optional.

-out

Resets toggle statistic collection on nodes of mode OUT. Optional.

-inout

Resets toggle statistic collection on nodes of mode INOUT. Optional.

-internal

Resets toggle statistic collection on internal items. Optional.

-ports

Resets toggle statistic collection on nodes of modes IN, OUT, or INOUT.
Optional.

<node_name>

Resets toggle statistic collection for the named node(s). Required. Multiple names
and wildcards are accepted.

See also

"Toggle checking" (E-447), toggle add command (CR-154), and the toggle report
command (CR-156)
ModelSim EE/SE Command Reference ModelSim Commands CR-155

toggle report
toggle report

By default the toggle report command displays to the screen a list of all nodes
that have not transitioned to both 0 and 1 at least once. Also displayed is a
summary of the number of nodes checked, the number that toggled, the number
that didn’t toggle, and a percentage that toggled.

Syntax

toggle report

[-file <filename>] [-summary] [-all]

Arguments

-file <filename>

Specifies a file to write the report to. If this option is selected, the report is not
displayed to the screen. Optional.

-summary

Selects only the summary portion of the report. Optional.

-all

Lists all nodes checked along with their individual transition to 0 and 1 counts.
Optional.

See also

"Toggle checking" (E-447), toggle add command (CR-154), and the toggle reset
command (CR-155)
CR-156 ModelSim Commands ModelSim EE/SE Command Reference

transcribe
transcribe

The transcribe command displays a command in the Main window, then executes
the command. Transcribe directs commands to the Main window transcript from
an external event such as a menu pick or button selection, it may not be used from
the command line or a macro. The add button (CR-20) and add_menuitem (CR-

30) commands can utilize transcribe. Returns nothing.

Syntax

transcribe

<command>

Arguments

<command>

Specifies the command to execute. Required.

Examples

add button pwd {transcribe pwd} NoDisable

Creates a button labeled "pwd" that invokes transcribe with the pwd Tcl command, and
echoes the command and its results to the Main window. The button remains active during
a run.

See also

add button command (CR-20), and add_menu command (CR-26)
ModelSim EE/SE Command Reference ModelSim Commands CR-157

transcript
transcript

The transcript command controls echoing of commands executed in a macro file;
also works at top level in batch mode. If no option is specified, the current setting
is reported.

Syntax

transcript

[on | off | -q | quietly]

 Arguments

on

Specifies that commands in a macro file will be echoed to the Transcript window
as they are executed. Optional.

off

Specifies that commands in a macro file will not be echoed to the Transcript
window as they are executed. Optional.

-q

Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful
in a Tcl conditional expression. Optional.

quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command (CR-127). Optional.

Examples

transcript on

Commands within a macro file will be echoed to the Transcript window as they are
executed.

transcript

If issued immediately after the previous example, the message:

Macro transcripting is turned on.

would appear in the Transcript window.

See also

echo command (CR-75), and the transcribe command (CR-157)
CR-158 ModelSim Commands ModelSim EE/SE Command Reference

tssi2mti
tssi2mti

The tssi2mti command is used to convert a vector file in Summit Design Standard
Events Format into a sequence of VSIM force (CR-87) and run (CR-139)
commands. The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples
directory.

Syntax

tssi2mti

<signal_definition_file> [<sef_vector_file>]

Arguments

<signal_definition_file>

Specifies the name of the Summit Design signal definition file describing the
format and content of the vectors. Required.

<sef_vector_file>

Specifies the name of the file containing vectors to be converted. If none is
specified, standard input is used. Optional.

Examples

tssi2mti trigger.def trigger.sef > trigger.do

The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def < trigger.sef > trigger.do

This example is exactly the same as the previous one, but uses the standard input instead.

See also

force command (CR-87), run command (CR-139), and the write tssi command (CR-

236)
ModelSim EE/SE Command Reference ModelSim Commands CR-159

vcd add
vcd add

The vcd add command adds the specified items to the VCD file. The allowed
items are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored). All vcd add
commands must be executed at the same simulation time. The specified items are
added to the VCD header and their subsequent value changes are recorded in the
VCD file.

Related Verilog task: $dumpvars

Syntax

vcd add

[-r] [-in] [-out] [-inout] [-internal] [-ports] <item_name>...

Arguments

-r

Specifies that signal and port selection occurs recursively into subregions.
Optional; if omitted, included signals and ports are limited to the current region.

-in

Includes ports of mode IN. Optional.

-out

Includes ports of mode OUT. Optional.

-inout

Includes ports of mode INOUT. Optional.

-internal

Includes internal items. Optional.

-ports

Includes all ports of modes IN, OUT, or INOUT. Optional.

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple
items may be specified by separating names with spaces. Wildcards are accepted.

See also
See User’s Manual Chapter 13 - Value Change Dump (VCD) Files for more
information on VCD files. Verilog tasks are documented in the IEEE 1364
standard.
CR-160 ModelSim Commands ModelSim EE/SE Command Reference

vcd checkpoint
vcd checkpoint

The vcd checkpoint command dumps the current values of all VCD variables to
the VCD file. While simulating, only value changes are dumped.

Related Verilog task: $dumpall

Syntax

vcd checkpoint

Arguments

None.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files.
ModelSim EE/SE Command Reference ModelSim Commands CR-161

vcd comment
vcd comment

The vcd comment command inserts the specified comment in the VCD file.

Syntax

vcd comment

<comment string>

Arguments

<comment string>

Comment to be included in the VCD file. Required. Must be quoted by double
quotation marks or curly brackets.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files.
CR-162 ModelSim Commands ModelSim EE/SE Command Reference

vcd file
vcd file

The vcd file command specifies the filename and state mapping for the VCD file
created by a vcd add command (CR-160). The vcd file command is optional. If
used, it must be issued before any vcd add commands.

Related Verilog task: $dumpfile

Syntax

vcd file

[<filename>] [-nomap] [-map <mapping pairs>] [-direction]
[-dumpports]

Arguments

<filename>

Specifies the name of the VCD file that is created (the default is dump.vcd).
Optional.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files. Verilog tasks are documented in the IEEE 1364 standard.

-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of
UX01ZWLH-. This option results in a non-standard VCD file because VCD
values are limited to the four state character set of x01z. By default, the std_logic
characters are mapped as follow

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z
ModelSim EE/SE Command Reference ModelSim Commands CR-163

vcd file
-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override
the default mappings. The mapping is specified as a list of character pairs. The
first character in a pair must be one of the std_logic characters UX01ZWLH- and
the second character is the character you wish to be recorded in the VCD file. For
example, to map L and H to z:

vcd file -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command
strings that include spaces.

-direction

Affects only VHDL ports. Optional. It specifies that the variable type recorded in
the VCD header for VHDL ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

This option results in a non-standard VCD file, but is necessary if the VCD file is
to be used to stimulate a VHDL design with the vsim command (CR-208) with the
-vcdread option.

Note that the port type is specified with options to the vcd add command (CR-160)
when the VCD file is created.

-dumpports

Capture detailed port driver data for Verilog ports and VHDL std_logic ports.
Optional. This option only works on ports, and subsequent vcd add (CR-160) will
only accept qualifying ports (silently ignoring all other specified items).

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files. Verilog tasks are documented in the IEEE 1364 standard.
CR-164 ModelSim Commands ModelSim EE/SE Command Reference

vcd flush
vcd flush

The vcd flush command flushes the contents of the VCD file buffer to the VCD
file.

Related Verilog task: $dumpflush

Syntax

vcd flush

Arguments

None.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files. Verilog tasks are documented in the IEEE 1364 standard.
ModelSim EE/SE Command Reference ModelSim Commands CR-165

vcd limit
vcd limit

The vcd limit command specifies the maximum size of the VCD file (by default,
limited to available disk space). When the size of the file exceeds the limit, a
comment is appended to the file and VCD dumping is disabled.

Related Verilog task: $dumplimit

Syntax

vcd limit

<filesize>

Arguments

<filesize>

Specifies the maximum VCD file size in bytes. Required.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files. Verilog tasks are documented in the IEEE 1364 standard.
CR-166 ModelSim Commands ModelSim EE/SE Command Reference

vcd off
vcd off

The vcd off command turns off VCD dumping and records all VCD variable
values as x.

Related Verilog task: $dumpoff

Syntax

vcd off

Arguments

None.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files. Verilog tasks are documented in the IEEE 1364 standard.
ModelSim EE/SE Command Reference ModelSim Commands CR-167

vcd on
vcd on

The vcd on command turns on VCD dumping and records the current values of
all VCD variables. By default, vcd on is automatically performed at the end of the
simulation time that the vcd add (CR-160) commands are performed.

Related Verilog task: $dumpon

Syntax

vcd on

Arguments

None.

See also

See Chapter 13 - Value Change Dump (VCD) Files for more information on VCD
files. Verilog system tasks are documented in the IEEE 1364 standard.
CR-168 ModelSim Commands ModelSim EE/SE Command Reference

vcom
vcom

The vcom command is used to invoke VCOM, the Model Technology VHDL
compiler. Use VCOM to compile VHDL source code into a specified working
library (or to the work library by default).

This command may be invoked from within ModelSim or from the operating
system command prompt. This command may also be invoked during simulation.

Syntax

vcom

[-help] [-93] [-87] [-check_synthesiss] [-debugVA] [-explicit]
[-f <filename>] [-just eapbc] [-skip eapbc] [-line <number>]
[-no1164] [-noaccel <package_name>] [-nocheck]
[-nodebug[=ports]] [-nolock] [-nologo] [-novital] [-novitalcheck]
[-nowarn <number>] [-O0 | -O1 | -O4 | -O5] [-quiet] [-refresh] [-s]
[-source] [-version] [-work <library_name>] <filename>

Arguments

-help

Displays the command’s options and arguments. Optional.

-93

Specifies that the simulator is to support VHDL 1076-1993. Optional. If used,
must be the first argument. See additional discussion in the examples.

-87

Disables support for VHDL 1076-1993. This is the VCOM default. Optional. If
used, must be the first argument. See additional discussion in the examples. Note
that the default can be changed with the modelsim.ini file, see "Preference
variables located in INI and MPF files" (B-394).

-check_synthesis

Turns on limited synthesis rule compliance checking. Optional. Checks to see that
signals read by a process are in the sensitivity list.

-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it
was not, during VITAL level-1 acceleration. Optional.

-explicit

Used to ignore an error in packages supplied by some other EDA vendors; directs
the compiler to resolve ambiguous function overloading in favor of the explicit
function definition. See additional discussion in the examples.
ModelSim EE/SE Command Reference ModelSim Commands CR-169

vcom
-f <filename>

Specifies a file with more command line arguments. Allows complex arguments
to be reused without retyping. Optional.

-just eapbc

Directs the compiler to “just” include:
e - entities

a - architectures

p - packages

b - bodies

c - configurations

Any combination in any order can be used, but one choice is required if you use
this optional switch.

-skip eapbc

Directs the compiler to skip all:
e - entities

a - architectures

p - packages

b - bodies

c - configurations

Any combination in any order can be used, but one choice is required if you use
this optional switch.

-line <number>

Starts the compiler on the specified line in the VHDL source file. Optional; by
default, the compiler starts at the beginning of the file.

-no1164

Causes the source files to be compiled without taking advantage of the built-in
version of the IEEE std_logic_1164 package. Optional. This will typically result
in longer simulation times for VHDL programs that use variables and signals of
type std_logic.

-noaccel <package_name>

Turns off acceleration of the specified package in the source code using that
package.

-nocheck

Disables run time range checking. In some designs, this could result in a 2X speed
increase. Optional.
CR-170 ModelSim Commands ModelSim EE/SE Command Reference

vcom
-nodebug[=ports]

Hides the internal data of the compiled design unit. Optional. The design unit’s
source code, internal structure, signals, processes, and variables will not display
in ModelSim’s windows. In addition, none of the hidden objects may be accessed
through the Dataflow window or with VSIM commands. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this
switch until you’re done debugging.

Note that this is not a speed switch like the “nodebug” option on many other
products.

The optional =ports switch hides the ports for the lower levels of your design; it
should only be used to compile the lower levels of the design. If you hide the ports
of the top level you will not be able to simulate the design.

Note: -nodebug provides protection for proprietary model information. The Verilog ’protect compiler
directive provides similar protection, but uses a Cadence encryption algorithm that is unavailable to Model
Technology.

Design units or modules compiled with -nodebug can only instantiate design units
or modules that are also compiled -nodebug.

See additional discussion in "Source code security and -nodebug" (E-443).

-nolock

Overrides the library lock file. The lock file prevents mulitple users from
concurrently accessing the same library. If you are a single user, disabling the lock
file should not present a problem. Optional. Default is locked.

-nologo

Disables startup banner. Optional.

-novital

Causes VCOM to use VHDL code for VITAL procedures rather than the
accelerated and optimized timing and primitive packages built into the simulator
kernel. Optional.

-novitalcheck

Disables VITAL95 compliance checking if you are using VITAL 2.2b. Optional.

-nowarn <number>

Selectively disables an individual warning message. Optional. Multiple -nowarn
switches are allowed. Warnings may be disabled for all compiles via the
modelsim.ini file, see the "[vcom] VHDL compiler control variables" (B-395).
ModelSim EE/SE Command Reference ModelSim Commands CR-171

vcom
The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages

-O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use
this to work around bugs, increase your debugging visibility on a specific cell, or
when you want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional.

Enable standard EE optimizations with -O4. Default.

Enable maximum optimization with -O5. Optional. Use caution with this switch.
We recommend use of this switch with large sequential blocks only, other uses
may signifcantly increase compile times. Optional.

-quiet
Disable ’loading’ messages. Optional.

-refresh

Regenerates a library image. Optional. By default, the work library is updated; use
-work <library> to update a different library. See vcom "Examples" (CR-173) for
more information.

-s

Instructs the compiler not to load the standard package. Optional. This argument
should only be used if you are compiling the standard package itself.

-source

Displays the associated line of source code before each error message that is
generated during compilation. Optional; by default, only the error message is
displayed.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim EE vcom 5.3 DEV Compiler 1999.06 Jun 29 1999".

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the
logical library work. Optional; by default, the compiled design units are added to
CR-172 ModelSim Commands ModelSim EE/SE Command Reference

vcom
the work library. The specified pathname overrides the pathname specified for
work in the project file.

<filename>

Specifies the name of a file containing the VHDL source to be compiled. One
filename is required; multiple filenames can be entered separated by spaces or
wildcards may be used, i.e., “*.vhd”. No switches can appear after filename(s) on
the command line.

Examples

vcom example.vhd

The example compiles the VHDL source code contained in the file example.vhd.

vcom -87 o_units1 o_units2

vcom -93 n_unit91 n_unit92

ModelSim supports designs that use elements conforming to both the 1993 and the
1987 standards. Compile the design units separately using the appropriate
switches.

Note that in the example above, the -87 switch on the first line is redundant since
the VCOM default is to compile to the 1987 standard.

vcom -nodebug example.vhd

Hides the internal data of example.vhd. Models compiled with -nodebug cannot use any of
the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vcom -nodebug=ports level3.vhd levle2.vhd
vcom -nodebug top.vhd

The first line compiles and hides the internal data, plus the ports, of the lower-level design
units, level3.vhd and level2.vhd. The second line compiles the top-level unit, top.vhd,
without hiding the ports. It is important to compile the top level without =ports because
top-level ports must be visible for simulation.

See "Source code security and -nodebug" (E-443) for more details.

vcom -noaccel numeric_std example.vhd

When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -explicit example.vhd

Although it is not intuitively obvious, the = operator is overloaded in the std_logic_1164
ModelSim EE/SE Command Reference ModelSim Commands CR-173

vcom
package. All enumeration data types in VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, there is an implicit one. This implicit
declaration can be hidden by an explicit declaration of = in the same package (LRM Section
10.3). However, if another version of the = operator is declared in a different package than
that containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming, i.e.,

ARITHMETIC.”=”(left, right)

To eliminate that inconvenience, the VCOM command has the -explicit option
that allows the explicit = operator to hide the implicit one. Allowing the explicit
declaration to hide the implicit declaration is what most VHDL users expect.

vcom -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the library
image without using source code, allowing models delivered as compiled libraries without
source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains Verilog design units be sure to regenerate the library with
vlog (CR-199) and -refresh as well.

See "Regenerating your design libraries" (2-41) for more information.
CR-174 ModelSim Commands ModelSim EE/SE Command Reference

vdel
vdel

The vdel command deletes a design unit from a specified library.

Syntax

vdel

[-help] [-verbose] [-lib <library_name>] [-all | <design_unit>
[<arch_name>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-verbose

Displays progress message. Optional.

-lib <library_name>

Specifies the logical name or pathname of the library that holds the design unit to
be deleted. Optional; by default, the design unit is deleted from the work library.

-all

Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered
once deleted, and you are not prompted for confirmation.

<design_unit>

Specifies the entity, a package, configuration, or module to be deleted. Required
unless -all is used.

<arch_name>

Specifies the name of an architecture to be deleted. Optional; if omitted, all of the
architectures for the specified entity are deleted. Invalid for a configuration or a
package.
ModelSim EE/SE Command Reference ModelSim Commands CR-175

vdel
Examples

vdel -all

Deletes the work library.

vdel -lib synopsys -all

Deletes the synopsys library.

vdel xor

Deletes the entity named xor and all its architectures from the work library.

vdel xor behavior

Deletes the architecture named behavior of the entity xor from the work library.

vdel base

Deletes the package named base from the work library.
CR-176 ModelSim Commands ModelSim EE/SE Command Reference

vdir
vdir

The vdir command selectively lists the contents of a design library.

Syntax

vdir

[-help] [-l] [-lib <library_name>] [<design_unit>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-l

Prints the version of vcom or vlog that each design unit was compiled under. Also
prints the object-code version number that indicates which versions of vcom/vlog
and ModelSim are compatible. This example was printed by vdir -l for the counter
entity in the work library:

ENTITY counter
Source modified time: 930595550
Source file: counter.vhd
Version number: `0aC^@H>0f:X]@NeVdEN13
Opcode format: 5.3 DEV; VCOM EE Object version 14

-lib <library_name>

Specifies the logical name or the pathname of the library to be listed. Optional; by
default, the contents of the work library are listed.

<design_unit>

Indicates the design unit to search for within the specified library. If the design
unit is a VHDL entity, its architectures are listed. Optional; by default, all entities,
configurations, modules, and packages in the specified library are listed.

Example

vdir -lib design my_asic

Lists the architectures associated with the entity named my_asic that resides in the HDL
design library called design.
ModelSim EE/SE Command Reference ModelSim Commands CR-177

vgencomp
vgencomp

Once a Verilog module is compiled into a library, you can use the vgencomp
command to write its equivalent VHDL component declaration to standard output.
Optional switches allow you to generate bit or vl_logic port types; std_logic port
types are generated by default.

Syntax

vgencomp

[-help] [-<library_name>] [-b] [-s]
[-v] <module_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-<library_name>

Specifies the pathname of the working library. If not specified, the default library
work is used. Optional.

-b
Causes vgencomp to generate bit port types. Optional.

-s

Used for the explicit declaration of default std_logic port types. Optional.

-v
Causes vgencomp to generate vl_logic port types. Optional.

<module_name>

Specifies the name of Verilog module to be accessed. Required.
CR-178 ModelSim Commands ModelSim EE/SE Command Reference

vgencomp
Examples

This example uses a Verilog module that is compiled into the work library. The
module begins as Verilog source code:

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

and writes the following to stdout:

component top

 generic(
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector
);

end component;
ModelSim EE/SE Command Reference ModelSim Commands CR-179

view
view

The view command will open a ModelSim window and bring that window to the
front of the display. If multiple instances of a window exist, view will change the
default window of that type to the specified window. Using the -new option, view
will create an additional instance of the specified window type and set it to be the
default window for that type.

Names for windows are generated as follows:

• The first window name (automatically created without using -new) has the same
name as the window type.

• Additional window names created by -new append an integer to the window
type, starting with 1.

Syntax

view

[*] [-x <n>] [-y <n>] [-height <n>] [-width <n>] [-icon]
[-new] <window_name> ...

Arguments

*
Wildcards can be used, for example: l* (List window), s* (Signal, Source, and
Structure windows), even * alone (all windows). Optional.

-x <n>

Specify the window upper-left-hand x-coordinate in pixels. Optional

-y <n>

Specify the window upper-left-hand y-coordinate in pixels. Optional

-height <n>

Specify the window height in pixels. Optional

-width <n>

Specify the window width in pixels. Optional

-icon
Toggles the view between window and icon. Optional
CR-180 ModelSim Commands ModelSim EE/SE Command Reference

view
-new

Creates a new instance of the window type specified with the <window_name>
option. New window names are created by appending an integer to the window
type, starting with 1, then incrementing the integer.

<window_name> ...

Specifies the ModelSim window type to view. Multiple window types may be
used; at least one type (or wildcard) is required. Available window types are:

dataflow, list, process, signals, source, structure, variables, and
wave

Also creates a new instance of the specified window type when used with the -new
option. You may also specify the window(s) to view when multiple instances of
that window type exist, i.e., wave2 structure1.

Examples

view wave

Creates a window named ‘wave’. Its full Tk path is ‘.wave’.

view -new wave

Creates a window named ‘wave1’. Its full Tk path is ‘.wave1’. Wave1 is now the default
Wave window. Any add wave command (CR-33) would add items to wave1.

view wave

Changes the default window back to ‘wave’.

add wave -win .wave1 mysig

Will override the default window and add mysig to wave1.

See also

add wave command (CR-33)
ModelSim EE/SE Command Reference ModelSim Commands CR-181

virtual delete|describe|define
virtual delete|describe|define

The virtual delete command removes the matching virtuals.

The virtual describe command prints to the transcript window a complete
description of the data type of one or more virtual signals. Similar to the existing
describe command.

The virtual define command prints to the transcript window the definition of the
virtual signal or function in the form of a command that can be used to re-create
the object.

Syntax

virtual delete|describe|define

[-kind <kind>] <path>|<wildcard>

Arguments

-kind<kind>

A subset of virtuals to look at when wildcards are used. Optional. <kind> can be
any of the following: signals, functions, implicits, explicits (unique abbreviations
are accepted).

Examples

virtual define -kind explicits *

Shows the definitions of all the virtuals you have explicitly created.

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual expand command (CR-183), vmap command
(CR-207), virtual log|nolog command (CR-189), virtual save command (CR-191),
virtual show|count command (CR-192), virtual type command (CR-196),
searchLog command (CR-144)
CR-182 ModelSim Commands ModelSim EE/SE Command Reference

virtual expand
virtual expand

The virtual expand command produces a list of all the non-virtual objects
contained in the virtual signal(s). This can be used to create a list of arguments for
a command that does not accept or understand virtual signals.

Syntax

virtual expand

[-base] [<path>|<wildcard>]+

Arguments

-base

Causes the root signal parent to be output in place of a subelement. Optional. So
for:

power add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

power add signala signalb signalc

Examples

power add [virtual expand myVirtualSignal]

Adds the elements of a virtual signal to the power reporting tool.

In the Tcl language, the square brackets specify that the enclosed command should
be executed first ("virtual expand ..."), then the result substituted into the
surrounding command. So if myVirtualSignal is a contatenation of signala,
signalb.rec1 and signalc(5 downto 3), the resulting command after substitution
would be:

power add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is quoted in curly braces automatically because it contains
spaces.

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual delete|describe|define command (CR-182),
vmap command (CR-207), virtual log|nolog command (CR-189), virtual save
command (CR-191), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)
ModelSim EE/SE Command Reference ModelSim Commands CR-183

virtual function
virtual function

The virtual function command creates a new signal, known only by the GUI (not
the kernel), that consists of logical operations on existing signals and simulation
time, as described in <expressionString>. It can handle bit selects and slices of
Verilog registers.

The virtual function will show up in the wave and signals window as an
expandible object if it references more than a single scalar signal. The children
correspond to the inputs of the virtual function. This allows the virtual function to
be "expanded" in the wave window to see the values of each of the input
waveforms, which could be useful when using virtual functions to compare two
signal values.

Virtual functions can be used to gate the list window display.

Syntax

virtual function

[-env <path>] [-install <path>] [-implicit] {<expressionString>}
<name>

Arguments

(Arguments for virtual function are the same as those for virtual signal except
for the contents of the expression string.)

-env <path>

Specifies a hierarchical context for the signal names in <expressionString> so
they don’t all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -
install is not specified, the newly-created signal becomes a child of the nearest
common ancestor of all objects appearing in <expressionString>. If the
expression references more than one logfile (dataset), the virtual signal will
automatically be placed in region virtuals:/Signals. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or
Wave format. Optional.

<expressionString>

A text string expression in the MTI GUI expression format. Required. See (TBD)
for a full and updated description.
CR-184 ModelSim Commands ModelSim EE/SE Command Reference

virtual function
<name>

The name you define for the virtual signal. Required. Case is ignored unless
installed in a Verilog region. It is recommended to use alpha, numeric and
underscore characters only. Or, use VHDL extended identifier notation, in which
case <name> needs to be quoted with double quotes or with curly braces.

Examples

virtual function { not /chip/section1/clk } clk_n

Creates a signal /chip/section1/clk_n which is the inverse of /chip/section1/clk.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega } rega_slv

Creates a std_logic_vector equivalent of a verilog register "rega" and installs it as
/chip/rega_slv.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

Creates a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is
equal to hex "fab", and false otherwise. It is ok to mix VHDL signal path notation
with Verilog part-select notation.

virtual function { gate:/chip/siga XOR rtl:/chip/siga) } siga_diff

Creates a signal that is non-zero only high during times at which a signal /chip/
siga of the gate-level version of a design does not match /chip/siga of the rtl
version of a design. Because there is no common design region for the inputs to
the expression, siga_diff is installed in region virtuals:/Functions. The virtual
function siga_diff can be added to the wave window, and when expanded will
show the two original signals that are being compared.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff

This example creates a one-bit signal "outbus_diff" which is non-zero during
times at which any bit of a vector signal /chip/outbus of the gate-level version of
a design does not match the corresponding bit of the signal in the rtl version of a
design.

This expression uses the "OR-reduction" operator, which takes the logical OR of
all the bits of the vector argument.

The following is an example of a series of commands that reconstruct a bus in a
gate level design, and creates a comparison between a gate and RTL design:

virtual signal -env gate:chip { (range 7:0)&{a_07, a_06, a_05, a_04, a_03, a_02,
ModelSim EE/SE Command Reference ModelSim Commands CR-185

virtual function
a_01, a_00} } a

virtual function { | (gate:/chip/a XOR rtl:/chip/a) } a_err

virtual function { | (gate:/chip/b XOR rtl:/chip/b) } b_err

...

virtual function { a_err OR b_err OR c_err } any_error

To find the differences, you can do any of the following:

a) Add "any_error" to the wave window and tab to the transitions

b) Use the "searchLog" command to print out the time/delta of the first error:

searchLog {0 ns} any_error

 (See the "searchLog" command description below.)

c) Trigger the list window from the "any_error" signal. This will enable you to
see in the list window ONLY the times at which errors occur. For example:

configure list -usegating 1

configure list -gateexpr { any_error == ’1’ }

(A future release will make signal comparison more automatic to set up and will
allow comparisons at specified sampling points in time.)

Commands fully compatible with virtual functions

add list (CR-22) add log /log (CR-93) add wave (CR-33)

checkpoint (CR-53) delete (CR-62) describe (CR-63) ("virtual describe" is
a little faster)

down | up (CR-70) examine (CR-81) find (CR-85)

restart (CR-133) restore (CR-134) right | left (CR-136)

search and next (CR-141) searchLog (CR-144) show (CR-148)
CR-186 ModelSim Commands ModelSim EE/SE Command Reference

virtual function
Commands not currently compatible with virtual functions

See also

virtual signal command (CR-193), virtual region command (CR-190), virtual
delete|describe|define command (CR-182), virtual expand command (CR-183),
vmap command (CR-207), virtual log|nolog command (CR-189), virtual save
command (CR-191), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)

force (CR-87) check contention add (CR-45) check contention config (CR-46)

check contention off (CR-47) check float add (CR-48) check float config (CR-49)

check float off (CR-50) check stable on (CR-51) check stable off (CR-52)

drivers (CR-73) noforce (CR-101) power add (CR-111)

power report (CR-112) power reset (CR-113) toggle add (CR-154)

toggle reset (CR-155) toggle report (CR-156) vcd add (CR-160)

when (CR-226)
ModelSim EE/SE Command Reference ModelSim Commands CR-187

virtual hide|nohide
virtual hide|nohide

The virtual hide command sets a flag in the specified real or virtual signals so that
the signals do not appear in the Signals window. This is used when you want to
replace a bit-blasted buss with a user-defined bus.

The virtual nohide command resets the flag in the specified signal objects.

Syntax

virtual hide|nohide

[-kind <virtualKind>]|[-region <path>] <signalName>|<pattern>

Arguments

-kind<virtualKind>

Used to limit the scope to a particular kind of virtuals. Optional. For instance, you
can use it to hide all the explicit virtuals, no matter where they are installed in the
design hierarchy.

-region<path>

Used in place of -kind to specify a region of design space to look for the signal
names. Optional

<signalName>|<pattern>

Indicates which signal names or wildcard pattern should be used in finding the
signals to hide or expose. Required. Any number of names or wildcard patterns
may be used.

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual delete|describe|define command (CR-182),
virtual expand command (CR-183), virtual log|nolog command (CR-189), virtual
save command (CR-191), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)
CR-188 ModelSim Commands ModelSim EE/SE Command Reference

virtual log|nolog
virtual log|nolog

The virtual log command causes the sim-mode dependent signals of the specified
virtual signals to be logged by the kernel. If wildcard patterns are used, it will also
log any normal signals found, unless the -only option is used.

The virtual nolog command causes the sim-mode dependent signals of the
specified virtual signals to be un-logged by the kernel. If wildcard patterns are
used, it will also log any normal signals found, unless the -only option is used.

The action of the virtual log|nolog command can also be obtained by using the
log -virtual command or the nolog -virtual command. Also, the log and nolog
commands have a new -virtualOnly option that does the same as the -only option
below.

Syntax

virtual log|nolog

[-kind <virtualKind>]|[-region <path>] [-recursive] [-only] [-in]
[-out] [-inout] [-internal] [-ports] [<signalName>|<pattern>]+

Arguments

-only

Can be used with a wildcard to specify that only the virtual signals found by the
wildcard should be logged or unlogged. Optional.

(Other options are the same as in other virtual or log/nolog commands)

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual delete|describe|define command (CR-182),
virtual expand command (CR-183), vmap command (CR-207), virtual save
command (CR-191), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)
ModelSim EE/SE Command Reference ModelSim Commands CR-189

virtual region
virtual region

The virtual region command creates a new user-defined design hierarchy region.

Syntax

virtual region

<parentPath> <regionName>

Arguments

<parentPath>

The full path to the region that will become the parent of the new region. Required.

<regionName>

The name you give to the new region. Required

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
delete|describe|define command (CR-182), virtual expand command (CR-183),
vmap command (CR-207), virtual log|nolog command (CR-189), virtual save
command (CR-191), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)
CR-190 ModelSim Commands ModelSim EE/SE Command Reference

virtual save
virtual save

The virtual save command saves the definitions of virtuals to a file.

Syntax

virtual save

[-kind <kind>] [-append] [<filename>]

Arguments

-kind<kind>

Specifies a subset of virtuals to save. Optional.

-append

Specifies to save ONLY THOSE VIRTUALS that are neither already saved nor
those that were read in from a macro file. These unsaved virtuals are then
appended to the specified or default file. Optional.

<filename>

Used for writing the virtual definitions. Optional. If <filename> is not specified,
the default virtual filename will be used, which can be specified in the pref.tcl file,
and defaults to virtuals.do.

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual delete|describe|define command (CR-182),
virtual expand command (CR-183), vmap command (CR-207), virtual log|nolog
command (CR-189), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)
ModelSim EE/SE Command Reference ModelSim Commands CR-191

virtual show|count
virtual show|count

The virtual show command lists the full path names of all the virtuals explicitly
defined.

The virtual count command counts the number of explicitly declared virtuals that
have not been saved and that were not read in using a macro file. These are virtuals
that probably need to be saved before ModelSim quits.

Syntax

virtual show|count

[-kind <kind>]

Arguments

-kind<kind>

Specifies a subset of virtuals to look at. Optional.

See also

virtual signal command (CR-193), virtual function command (CR-184), virtual
region command (CR-190), virtual delete|describe|define command (CR-182),
virtual expand command (CR-183), vmap command (CR-207), virtual log|nolog
command (CR-189), virtual save command (CR-191), virtual type command (CR-

196), searchLog command (CR-144)
CR-192 ModelSim Commands ModelSim EE/SE Command Reference

virtual signal
virtual signal

The virtual signal command creates a new signal, known only by the GUI (not
the kernel), that consists of concatenations of signals and subelements as specified
in <expressionString>. It cannot handle bit selects and slices of Verilog registers.

Syntax

virtual signal

[-env <path>] [-install <path>] [-implicit] {<expressionString>}
<name>

Arguments

-env <path>

Specifies a hierarchical context for the signal names in <expressionString> so
they don’t all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -
install is not specified, the newly-created signal becomes a child of the nearest
common ancestor of all objects appearing in <expressionString>. If the
expression references more than one logfile (dataset), the virtual signal will
automatically be placed in region virtuals:/Signals. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or
Wave format. Optional.

<expressionString>

A text string expression in the MTI GUI expression format. Required. See (TBD)
for a full and updated description.

<name>

The name you define for the virtual signal. Required. Case is ignored unless
installed in a Verilog region. It is recommended to use alpha, numeric and
underscore characters only. Or, use VHDL extended identifier notation, in which
case <name> needs to be quoted with double quotes or with curly braces.

Examples

virtual signal -env sim:/chip/alu { (range 4 downto 0)(a_04 & a_03 & a_02 & a_01
ModelSim EE/SE Command Reference ModelSim Commands CR-193

virtual signal
& a_00) } a

This command reconstructs a bus "sim:/chip/alu/a(4 downto 0)", using VHDL
notation, assuming that a_ii are scalars all of the same type.

virtual signal -env sim:chip.alu { (range 4:0)&{a_04, a_03, a_02, a_01, a_00} } a

This command reconstructs a bus "sim:chip.alu.a[4:0]", using Verilog notation.
Note that the concatenation notation starts with "&{" rather than "{".

virtual signal -install sim:/testbench { /chipa/alu/a(19 downto 13) & \ /chipa/
decode/inst & /chipa/mode } stuff

Assuming /chipa/mode is of type integer and /chipa/alu/a is of type
std_logic_vector, and /chipa/decode/inst is a user-defined enumeration, this
example creates a signal sim:/testbench/stuff which is a record type with three
fields corresponding to the three specified signals.

virtual signal { chip.instruction[23:21] } address_mode

This creates a three-bit signal, chip.address_mode, as an alias to the specified bits.

Commands fully compatible with virtual signals

add list (CR-22) add log / log (CR-93) add wave (CR-33)

checkpoint (CR-53) delete (CR-62) describe (CR-63) ("virtual
describe" is a little faster)

down | up (CR-70) examine (CR-81) find (CR-85)

force (CR-87)/noforce (CR-101) restart (CR-133) restore (CR-134)

right | left (CR-136) search and next (CR-141) searchLog (CR-144)

show (CR-148)
CR-194 ModelSim Commands ModelSim EE/SE Command Reference

virtual signal
Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

when (CR-226)

See also

virtual function command (CR-184), virtual region command (CR-190), virtual
delete|describe|define command (CR-182), virtual expand command (CR-183),
vmap command (CR-207), virtual log|nolog command (CR-189), virtual save
command (CR-191), virtual show|count command (CR-192), virtual type
command (CR-196), searchLog command (CR-144)

check contention add (CR-45) check contention config (CR-46) check contention off (CR-47)

check float add (CR-48) check float config (CR-49) check float off (CR-50)

check stable on (CR-51) check stable off (CR-52) drivers (CR-73)

power add (CR-111) power report (CR-112) power reset (CR-113)

toggle add (CR-154) toggle reset (CR-155) toggle report (CR-156)

vcd add (CR-160)
ModelSim EE/SE Command Reference ModelSim Commands CR-195

virtual type
virtual type

The virtual type command creates a new enumerated type, known only by the
GUI, not the kernel. Virtual types are used to convert signal values to character
strings.

Syntax

virtual type

{<list_of_strings>} <name>

Arguments

{<list_of_strings>}

A space-separated list of character strings. Required. Each string is associated
with an enumeration index, starting at zero and increasing by one in the positive
direction. There is currently no restriction on the contents of each string, but if
strings contain spaces they would need to be quoted, and if they contain characters
treated specially by Tcl (square brackets, curly braces, backslashes...), they would
need to be quoted with curly braces.

<name>

The user-defined name of the virtual type. Required. Case is not ignored. It is
recommended to use alpha, numeric and underscore characters only, or use VHDL
extended identifier notation, in which case <name> needs to be quoted with
double quotes or with curly braces.

Examples

Examples of virtual types and their use in displaying signals:

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal

When myConvertedSignal is displayed in the Wave, List or Signals window, the
string "state0" will appear when mysignal == 0, and "state1" when mysignal ==
1, and "state2" when mysignal == 2, etc.

Signal mysignal may be a VHDL array of std_logic/std_ulogic/bit, or a Verilog
register or vector net, or a VHDL integer.

virtual type {idle reading writing waiting} mystateType
virtual signal {instruction[19:18]} stateDecode
virtual function {(mystateType)stateDecode} myConvertedState
add wave myConvertedState
CR-196 ModelSim Commands ModelSim EE/SE Command Reference

virtual type
When picking out a slice and converting the slice, it works best to do it in two steps
-- first define the slice, then convert the slice signal to the enumerated type.

See also

virtual function command (CR-184), virtual region command (CR-190), virtual
delete|describe|define command (CR-182), virtual expand command (CR-183),
vmap command (CR-207), virtual log|nolog command (CR-189), virtual save
command (CR-191), virtual show|count command (CR-192), virtual signal
command (CR-193), searchLog command (CR-144)
ModelSim EE/SE Command Reference ModelSim Commands CR-197

vlib
vlib

The vlib command creates a design library.

Syntax

vlib

[-help] [-dos| -short] [-unix | -long] <directory_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-dos

Specifies that subdirectories in a library have names that are compatible with
DOS. Not recommended if you use the vmake (CR-205) utility. Optional. Default
for ModelSim PE.

-short

Interchangeable with the -dos argument. Optional.

-unix

Specifies that subdirectories in a library may have long file names that are NOT
compatible with DOS. Optional. Default for ModelSim EE.

-long

Interchangeable with the -unix argument. Optional.

<directory_name>

Specifies the pathname of the library to be created. Required.

Examples

vlib design

Creates the design library called design. You can define a logical name for the library using
the vmap command (CR-207) or by adding a line to the library section of the modelsim.ini
file that is located in the same directory.

The vlib command must be used to create a library directory. Operating system
commands cannot be used to create a library directory or index file.

If the specified library already exists as a valid ModelSim library, the vlib
command will exit with an error message without touching the library.
CR-198 ModelSim Commands ModelSim EE/SE Command Reference

vlog
vlog

The vlog command is used to invoke VLOG, the Model Technology Verilog
compiler. Use vdel (CR-175) to compile Verilog source code into a specified
working library (or to the work library by default). The vlog command is used just
like vdel (CR-175), except that you do not need to compile a module before it is
referenced (unless the module is referenced from VHDL).

This command may be invoked from within ModelSim or from the operating
system command prompt. This command may also be invoked during simulation.

Syntax

vlog

[-help] [-compat] [+define+<macro_name>[=<macro_text>]]
[+delay_mode_distributed] [+delay_mode_path] [+delay_mode_unit]
[+delay_mode_zero] [-f <filename>][-hazards] [+incdir+<directory>]
[-incr] [+libext+<suffix>] [+librescan] [-line <number>]
[+mindelays] [+maxdelays] [-nodebug[=ports | =pli]] [+nolibcell]
[-noincr] [-nolock] [-nologo] [-O0 | -O1 | -O4 | -O5] [-quiet] [-R
<simargs>] [-refresh] [-source] [+typdelays] [-u] [-v
<library_file>] [-version] [-work <library_name>] [-y
<library_directory>] [-93] <filename>

Arguments

-help

Displays the command’s options and arguments. Optional.

-compat

The Verilog language does not specify the order that a simulator must execute
simultaneous events; however, some models depend on the event ordering of the
simulator that the model was developed on. The -compat switch disables
optimizations that result in an event order that is different from some other widely
used Verilog simulators. You can also use the -hazards switch to help find code
that depends on a specific event ordering.

+define+<macro_name>[=<macro_text>]

Same as compiler directive: ‘define macro_name macro_text. Optional.

+delay_mode_distributed

Use structural delays and ignore path delays. Optional.

+delay_mode_path

Set structural delays to zero and use path delays. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-199

vlog
+delay_mode_unit

Set non-zero structural delays to one. Optional.

+delay_mode_zero

Set structural delays to zero. Optional.

-f <filename>

Specifies a file with more command line arguments. Allows complex arguments
to be reused without retyping. Optional.

-hazards

Enables the run-time hazard checking code. Optional.

+incdir+<directory>

Search directory for files included with the ‘include filename compiler directive.
Optional.

-incr
Performs incremental compile. Optional. Compiles only code that has changed, or
if compile options change.

+libext+<suffix>

Specifies the suffix of files in library directory. Multiple suffixes may be used, for
example: +libext+.v+.u. Optional.

+librescan

Scan libraries in command-line order for all unresolved modules. Optional.

-line <number>

Specify the starting line number. Optional.

+mindelays

Selects minimum timing from Verilog min:typ:max expressions. Optional.

+maxdelays

Selects maximum timing from Verilog min:typ:max expressions. Optional.

-noincr
Disables incremental compile previously turned on with -incr. Optional.

-nodebug[=ports | =pli]

Hides the internal data of the compiled design unit. Optional. The design unit’s
source code, internal structure, signals, processes, and variables will not display
in ModelSim’s windows. In addition, none of the hidden objects may be accessed
through the Dataflow window or with VSIM commands. This also means that you
CR-200 ModelSim Commands ModelSim EE/SE Command Reference

vlog
cannot set breakpoints or single step within this code. Don’t compile with this
switch until you’re done debugging.

Note that this is not a speed switch like the “nodebug” option on many other
products.

The optional =ports switch hides the ports for the lower levels of your design; it
should only be used to compile the lower levels of the design. If you hide the ports
of the top level you will not be able to simulate the design.

The optional =pli switch prevents the use of pli functions to interrogate individual
modules for information; this switch may be used at any level of the design.
Combine both switches with =ports+pli or =pli+ports.

Note: -nodebug provides protection for proprietary model information. The Verilog ’protect compiler
directive provides similar protection, but uses a Cadence encryption algorithm that is unavailable to Model
Technology.

See additional discussion in "Source code security and -nodebug" (E-443).

+nolibcell

Do not automatically define library modules as cells. Optional.

-nolock

Overrides the library lock file. The lock file prevents mulitple users from
concurrently accessing the same library. If you are a single user, disabling the lock
file should not present a problem. Optional. Default is locked.

-O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use
this to work around bugs, increase your debugging visibility on a specific cell, or
when you want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional.

Enable standard EE optimizations with -O4. Default.

Enable maximum optimization with -O5. Optional. Use caution with this switch.
We recommend use of this switch with large sequential blocks only, other uses
may signifcantly increase compile times. Optional.

-quiet

Disables 'loading' messages. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-201

vlog
-R <simargs>

Causes VSIM to be invoked on the top-level Verilog modules immediately
following compilation. VSIM is invoked with the arguments specified by
<simargs> (any arguments available for vsim (CR-208)).

-refresh

Regenerates a library image. Optional. By default, the work library is updated; use
-work <library> to update a different library. See vlog examples for more
information.

-source
Displays the associated line of source code before each error message that is
generated during compilation. Optional; by default, only the error message is
displayed.

+typdelays

Selects typical timing from Verilog min:typ:max expressions. Optional. Default.

-u

Converts regular Verilog identifiers to uppercase. Allows case insensitivity for
module names. Optional.

-v <library_file>

Specifies the Verilog source library file to search for undefined modules.
Optional. After all explicit filenames on the vlog command line have been
processed, the compiler uses the -v option to find and compile any modules that
were referenced but not yet defined. See additional discussion in the examples.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim EE vlog 5.3 Compiler 1999.06 Jul 2 1999".

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the
logical library work. Optional; by default, the compiled design units are added to
the work library. The specified pathname overrides the pathname specified for
work in the project file.

-y <library_directory>
Specifies the Verilog source library directory to search for undefined modules.
Optional. After all explicit filenames on the vlog command line have been
processed, the compiler uses the -y option to find and compile any modules that
were referenced but not yet defined. You will need to specify a file suffix by using
-y in conjunction with the +libext+<suffix> option if your filenames differ from
your module names. See additional discussion in the examples.
CR-202 ModelSim Commands ModelSim EE/SE Command Reference

vlog
-93

Specifies that the VHDL interface to Verilog modules shall use VHDL 1076-93
extended identifiers to preserve case in Verilog identifiers that contain uppercase
letters.

<filename>

Specifies the name of the Verilog source code file to compile. One filename is
required. Multiple filenames can be entered separated by spaces.

Examples

vlog example.vlg

The example compiles the Verilog source code contained in the file example.vlg.

vlog -nodebug example.v

Hides the internal data of example.v. Models compiled with -nodebug cannot use any of
the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vlog -nodebug=ports level3.v levle2.v

vcom -nodebug top.v
The first line compiles and hides the internal data, plus the ports, of the lower-level design
units, level3.v and level2.v. The second line compiles the top-level unit, top.v, without
hiding the ports. It is important to compile the top level without =ports because top-level
ports must be visible for simulation.

vlog -nodebug=ports+pli level3.v level2.v

vlog -nodebug=pli top.v

The first command hides the internal data, and ports of the design units, level3.v and
level2.v. In addition it prevents the use of pli functions to interrogate the compiled modules
for information (either =ports+pli or =pli+ports works fine for this command). The second
line compiles the top-level unit without hiding the ports but restricts the use of pli functions
as well.

Note that the =pli switch may be used at any level of the design but =ports should
only be used on lower levels since you can’t simulate without visible top-level
ports.

See "Source code security and -nodebug" (E-443) for more details.
ModelSim EE/SE Command Reference ModelSim Commands CR-203

vlog
vlog top.v -v und1

After compiling top.v, vlog will scan the file und1 for modules or primitives referenced but
undefined in top.v. Only referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib
After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the library
image without using source code, allowing models delivered as compiled libraries without
source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains VHDL design units be sure to regenerate the library with
vdel (CR-175) using the -refresh option as well. See "Regenerating your design
libraries" (2-41) for more information.

vlog module1.v -u -O0 -incr

The -incr option determines whether or not the module source or compile options have
changed as module1 is parsed. If no change is found, the code generation phase is skipped.
Differences in compile options are determined by comparing the compiler options stored
in the _info file with the compiler options given. They must match exactly.
CR-204 ModelSim Commands ModelSim EE/SE Command Reference

vmake
vmake

The vmake utility allows you to use a UNIX or Windows MAKE program to
maintain libraries. The vmake utility is run on a compiled design library, and
outputs a makefile that can be used to reconstruct the library. The resulting
makefile can then be run with a version of MAKE (not supplied with ModelSim);
a MAKE program is included with Microsoft’s Visual C/C++, as well as many
other program development environments.

After running the vmake utility, MAKE will recompile only the design units (and
their dependencies) that have changed. Vmake only needs to be run once, then
you can simply run MAKE to rebuild your design. If you add new design units or
delete old ones, you should re-run vmake to generate a new makefile.

This command must be invoked from either the UNIX or the Windows/DOS
prompt.

Syntax

vmake

[-help] [<library_name>] [><makefile>]

Arguments

-help

Displays the command’s options and arguments. Optional.

<library_name>

Specifies the library name; if none is specified, then work is assumed. Optional.

><makefile>

Specifies the makefile name. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-205

vmake
Examples

To produce a makefile for the work library:

vmake >makefile

You can also run vmake on libraries other than work:

vmake mylib >mylib.mak

To rebuild mylib, specify its makefile when you run MAKE:

make -f mylib.mak
CR-206 ModelSim Commands ModelSim EE/SE Command Reference

vmap
vmap

The vmap command defines a mapping between a logical library name and a
directory by modifying the modelsim.ini file. With no arguments, reads the
appropriate modelsim.ini file(s) and prints the current VHDL logical library to
physical directory mappings. Returns nothing.

Syntax

vmap

[-help] [-c] [-del] [<logical_name>] [<path>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-c

Copies the default modelsim.ini file from the ModelSim installation directory to
the current directory. Optional.

-del

Deletes the mapping specified by <logical_name> from the current project file.
Optional.

<logical_name>

Specifies the logical name of the library to be mapped. Optional.

<path>

Specifies the pathname of the directory to which the library is to be mapped.
Optional. If omitted, the command displays the mapping of the specified logical
name.
ModelSim EE/SE Command Reference ModelSim Commands CR-207

vsim
vsim

The vsim command is used to invoke the VSIM simulator, or to view the results
of a previous simulation run (when invoked with the -view switch). You can
specify a configuration, an entity/architecture pair, or a module for simulation. If
a configuration is specified, it is invalid to specify an architecture. With no
options, vsim brings up the Load Design dialog box, allowing you to specify the
design and options; the Load Design dialog box will not be presented if you
specify any options. During elaboration vsim determines if the source has been
modified since the last compile.

To manually interrupt design elaboration use the Break key or <control-c>
(while the mouse cursor is located in the window that invoked vsim if you are
running UNIX).

The vsim command may also be invoked from the command line within
ModelSim with most of the options shown below (all except the vsim -c and -
restore options).

Syntax

vsim

[-c] [-coverage] [-do “<command_string>” | <macro_file_name>]
[-f <filename>] [-gui] [-help] [-i] [-installcolormap] [-
keepstdout]
[-l <filename>] [<license_option>]
[-multisource_delay min | max | latest]
[-nocompress] [+no_notifier] [+no_tchk_msg] [+notimingchecks]
[-quiet] [-restore <filename>]
[-sdfmin | -sdftyp | -sdfmax [<instance>=]<sdf_filename>]
[-sdfnoerror] [-sdfnowarn] [-t [<multiplier>]<time_unit>]
[-tag <string>] [-title <title>] [-trace_foreign <int>] [-version]
[-view <filename>] [-wav <filename>] [-wavslim <size>]
[-wavtlim <duration>]

[-foreign <attribute>] [-g<Name=Value> ...] [-G<Name=Value> ...]
[-nocollapse] [-noglitch] [+no_glitch_msg] [-std_input <filename>]
[-std_output <filename>] [-strictvital] [-vcdread <filename>]
[-vital2.2b]

[+alt_path_delays] [-hazards] [-L <library_name> ...]
[-Lf <library_name> ...] [+mindelays] [+maxdelays][+no_pulse_msg]
[+nosdfwarn] [+nosdferror] [+nowarn<CODE>] [-pli "<object list>"]
[+<plusarg>] [+pulse_e/<percent>] [+pulse_r/<percent>]
[+typdelays]

[<library_name>.<design_unit>]
CR-208 ModelSim Commands ModelSim EE/SE Command Reference

vsim
VSIM arguments are grouped alphabetically by language:

• Arguments, VHDL and Verilog (CR-209)

• Arguments, VHDL (CR-213)

• Arguments, Verilog (CR-216)

• Arguments, design-unit (CR-217)

Arguments, VHDL and Verilog

-c

Specifies that the simulator is to be run in command line mode. Optional. If used,
must be the first argument. Also see "Running command-line and batch-mode
simulations" (E-440) for more information.

-coverage

Allows line number execution statistics to be kept by the simulator. By default no
statistics are kept. This switch must be specified during command-line invocation
of the simulator in order to use the various coverage commands: coverage clear
(CR-59), coverage reload (CR-60), and coverage report (CR-61). Also see Chapter
8 - ModelSim SE Code Coverage for more information. Optional.

-do “<command_string>” | <macro_file_name>

Instructs VSIM to use the command(s) specified by <command_string> or the
macro file named by <macro_file_name> rather than the startup file specified in
the .ini file, if any. Optional.

-f <filename>

Specifies a file with more command line arguments. Allows complex arguments
to be reused without retyping. Optional.

-gui

Starts the ModelSim GUI without loading a design. Optional.

-help

Displays the command’s options and arguments. Optional.

-i

Specifies that the simulator is to be run in interactive mode. Optional. If used,
must be the first argument.

-installcolormap

For UNIX only. Causes vsim to use its own colormap so as not to hog all the
colors on the display. This is similar to the -install switch on Netscape. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-209

vsim
-keepstdout

For use with foreign programs. Instructs the simulator to not redirect the stdout
stream to the Main transcript window. Optional.

-l <filename>

Saves the contents of the "Main window" (10-158) to <filename>. Optional.
Default is transcript. Can also be specified using the .ini (see "Creating a
transcript file" (B-404)) file or the .tcl preference file.

<license_option>

Restricts the search of the license manager. Optional. Use one of the following
options.

The options may also be specified with the License (B-399) in the modelsim.ini file;
see the "[vsim] simulator control variables" (B-398)

-multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that
terminate at the same port. Optional. By default, the Module Input Port Delay
(MIPD) is set to the max value encountered in the SDF file. Alternatively, you
may choose the min or latest of the values.

-nocompress

Causes VSIM to create uncompressed checkpoint files. Optional. This option
must be used with the -restore option (below) to restore a simulation from an
uncompressed checkpoint file.

+no_notifier

Timing messages will be issued for timing constraint violations, but X
propagation will be prevented for these violations. Optional.

<license_option> Description

-lic_nomgc excludes any MGC licenses from the search

-lic_nomti excludes any MTI licenses from the search

-lic_vlog searches only for ModelSim EE/VLOG licenses

-lic_vhdl searches only for ModelSim EE/VHDL licenses

-lic_plus searches only for ModelSim EE/PLUS licenses

-lic_noqueue do not wait in queue when license is unavailable
CR-210 ModelSim Commands ModelSim EE/SE Command Reference

vsim
+no_tchk_msg

Disables timing constraint error messages. Optional.

+notimingchecks

Disables Verilog and VITAL timing checks for faster simulation. Optional. By
default, Verilog timing check system tasks ($setup, $hold,...) in specify blocks are
enabled. For VITAL, the timing check default is controlled by the ASIC or FPGA
vendor, but most default to enabled.

-quiet
Disable ’loading’ messages during batch-mode simulation. Optional.

-restore <filename>

Specifies that VSIM is to restore a simulation saved with the checkpoint
command (CR-53). Optional. Use the -nocompress switch (above) if compression
was turned off when the checkpoint command (CR-53) was used or if VSIM was
initially invoked with -nocompress. See additional discussion in "How to use
checkpoint/restore" (E-438); -nocompress is also an option of the restore
command (CR-134).

-sdfmin | -sdftyp | -sdfmax [<instance>=]<sdf_filename>

Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay
Format file) with minimum, typical, or maximum timing. Optional. The use of
[<instance>=] with <sdf_filename> is also optional.; this is used when the back
annotation it is not being done at the top level. See "Specifying SDF files for
simulation" (11-282).

-sdfnoerror

Errors issued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to
warnings so that the simulation can continue. Optional.

-sdfnowarn

Disables warnings from the SDF reader. Optional.

See Chapter 4 - VHDL Simulation for an additional discussion of SDF.

+sdf_verbose

Turns on the verbose mode during SDF annotation. The Main window transcript
provides detailed warnings and summaries of the current annotation. Optional.

-t [<multiplier>]<time_unit>

Specifies the simulation time resolution. Optional; if omitted, the value specified
by the Resolution (B-400) in the modelsim.ini file will be used. If Verilog
ModelSim EE/SE Command Reference ModelSim Commands CR-211

vsim
‘timescale directives are found, the minimum time precision will be used;
<time_unit> must be one of:

fs, ps, ns, us, ms, or sec, min, or hr

The default is 1ns; the optional <multiplier> may be 1, 10 or 100. Once you’ve
begun simulation, you can determine the current simulator resolution by invoking
the report command (CR-131) with the simulator state option.

-tag <string>

Specify a string tag to append to foreign trace filenames. Optional; used with the
-trace_foreign <int> option. Used when running multiple traces in the same
directory. See "Invoking a trace" (12-334).

-title <title>

Specifies the title to appear for the ModelSim Main window. Optional. If omitted
the current ModelSim version is the window title. Useful when running multiple
simultaneous simulations. Text strings with spaces must be in quotes, i.e., "my
title".

-trace_foreign <int>

Creates two kinds of foreign interface traces: a log of what functions were called,
with the value of the arguments, and the results returned; and a set of C-language
files to replay what the foreign interface side did.

The purpose of the logfile is to aid the debugging of your FLI and/or PLI code.
The primary purpose of the replay facility is to send the replay file to MTI support
for debugging co-simulation problems, or debugging problems for which it is
impractical to send the FLI/ PLI code. See "Invoking a trace" (12-334) for more
information.

-version

Returns the version of the simulator as used by the licensing tools, such as "Model
Technology ModelSim EE/Plus vsim 5.3 DEV Simulator 1999.06 Jul 2 1999".

-view <filename>

Specifies the event logfile for vsim to read. Allows you to use VSIM to view the
results from an earlier simulation. The Structure, Signals, Waveform, and List
windows can be opened to look at the results stored in the logfile (other ModelSim
windows will not open when you are viewing a logfile). See additional discussion
in "Examples" (CR-218).

-wav <filename>

Specifies the name of the simulator event logfile to create. The default is vsim.wlf.
Optional.
CR-212 ModelSim Commands ModelSim EE/SE Command Reference

vsim
-wavslim <size>

Specifies a size restriction in megabytes for the event portion of the WLF logfile.
Optional. The default is infinite size (0). The <size> must be an integer.

Note that a logfile contains an event, header, and symbol portion. The size
restriction is placed on the event portion only. When ModelSim exits, the entire
header and symbol portion of the WLF file is written. Consequently, the resulting
file will be larger than the size specified with -wavslim.

If used in conjunction with -wavtlim, the -wavslim or -wavtlim value that limits
the file the most will take effect.

-wavtlim <duration>

Specifies the duration of simulation time for WLF logfile recording. Optional. The
default is infinite time (0). The <duration> is an integer of simulation time at the
current resolution; you can optionally specify the resolution if you place curly
braces around the specification. For example,

{5000 ns}

sets the duration at nanoseconds regardless of the current simulator resolution.

The time range begins at current simulation time and moves back in simulation
time for the specified duration. For exmaple,

vsim -wavtlim 5000

writes at least the last 5000ns of the current simulation to the logfile (the current
simulation resolution in this case is ns).

If used in conjunction with -wavslim, the -wavslim or -wavtlim value that limits
the file the most will take effect.

Note: The -wavslim and -wavtlim switches were designed to help users limit simulation runs for very
large files. When small values are used for these switches, the values may be overridden by the internal
granularity limits of the WLF logfile format.

Arguments, VHDL

-foreign <attribute>

Specifies the foreign module to load. Optional. A particular C function from a
shared library may be specified with:

vsim -foreign <name of C function> <path to shared library>

Syntax for the attribute is further described in "Declaring the FOREIGN attribute"
(12-298).
ModelSim EE/SE Command Reference ModelSim Commands CR-213

vsim
-g<Name=Value> ...

Note there is no space between -g and <Name=Value>. Specifies a value for all
generics in the design with the given name that have not received explicit values
in generic maps (such as top-level generics and generics that would otherwise
receive their default value). Optional.

Name is the name of the generic parameter, exactly as it appears in the VHDL
source (case is ignored). Value is an appropriate value for the declared data type
of the generic parameter.

Make sure the Value you specify is appropriate for the declared data type. Type
mismatches will cause the specification to be ignored (including no error
messages).

No spaces are allowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -g options are allowed, one for each generic
parameter.

Name may be prefixed with a relative or absolute hierarchical path to select
generics in an instance-specific manner. For example,

Specifying -g/top/u1/tpd=20ns on the command line would only affect the
tpd generic on the /top/u1 instance, assigning it a value of 20ns.

Specifying -gu1/tpd=20ns affects the tpd generic on all instances named u1.

Specifying -gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification
takes precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other
tpd_hl generics on other instances will be set to 15ns.

Limitation: Composite typed generics (arrays and records) may not be set from the
command line. Generics of string type may be set, however. For example,

-gstrgen=’"This is a string"’

-G<Name=Value> ...

Note there is no space between -G and <Name=Value>. Same as -g except that it
will also override generics that received explicit values in generic maps. Optional.

Name is the name of the generic parameter, exactly as it appears in the VHDL
source (case is ignored). Value is an appropriate value for the declared data type
of the generic parameter.
CR-214 ModelSim Commands ModelSim EE/SE Command Reference

vsim
Note: Make sure the Value you specify is appropriate for the declared data type. Type mismatches will
cause the specification to be ignored (including no error messages).

No spaces are allowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -G options are allowed, one for each generic
parameter.

Name may be prefixed with a relative or absolute hierarchical path to select
generics in an instance-specific manner. For example,

Specifying -G/top/u1/tpd=20ns on the command line would only affect the
tpd generic on the /top/u1 instance, overriding it with a value of 20ns.

Specifying -Gu1/tpd=20ns affects the tpd generic on all instances named u1.

Specifying -Gtpd=20ns affects all generics named tpd.

If more than one -G option selects a given generic the most explicit specification
takes precedence. For example,

vsim -G/top/ram/u1/tpd_hl=10ns -Gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other
tpd_hl generics on other instances will be set to 15ns.

Limitation: Composite typed generics (arrays and records) may not be set from the
command line. Generics of string type may be set, however. For example,

-Gstrgen=’"This is a string"’

-nocollapse

Disables the optimization of internal port map connections. Optional.

-noglitch

Disables VITAL glitch generation. Optional.

See Chapter 4 - VHDL Simulation for additional discussion of VITAL.

+no_glitch_msg

Suppresses VITAL glitch messages. Optional.

-std_input <filename>

Specifies the file to use for the VHDL TextIO STD_INPUT file. Optional

-std_output <filename>

Specifies the file to use for the VHDL TextIO STD_OUTPUT file. Optional
ModelSim EE/SE Command Reference ModelSim Commands CR-215

vsim
-strictvital

Exactly match the VITAL package ordering for messages and delta cycles.
Optional. Useful for eliminating delta cycle differences caused by optimizations
not addressed in the VITAL LRM. Using this will reduce simulator performance.

-vcdread <filename>

Simulates theVHDL top-level design from the specified VCD file. Optional. The
VCD file must have been created in a previous simulation using the vcd file
command (CR-163) with the -nomap and -direction options.

-vital2.2b

Select SDF mapping for VITAL 2.2b (default is VITAL 95). Optional.

Arguments, Verilog

+alt_path_delays

Use the current output value instead of pending value when selecting inertial
specify path output delay. Optional.

-hazards

Enables hazard checking in Verilog modules. Optional.

-L <library_name> ...

Specifies the design library to search for the specified configuration, entity or
module. Optional, if omitted the work library is used. If multiple libraries are
specified, each must be preceded by the -L option.

-Lf <library_name> ...

Same as -L but libraries are searched before ‘uselib. Optional.

+mindelays

Selects minimum timing from Verilog min:typ:max expressions. Optional.

+maxdelays

Selects maximum timing from Verilog min:typ:max expressions. Optional.

+no_pulse_msg

Disables path pulse error warning messages. Optional.

+nosdfwarn

Disables warning from SDF annotator. Optional.

+nosdferror

Errors issued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to
warnings so that the simulation can continue. Optional.
CR-216 ModelSim Commands ModelSim EE/SE Command Reference

vsim
+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional.
Warnings that can be disabled include the <CODE> name in square brackets in
the warning message. For example the code for charge decay warnings is
DECAY, so use +nowarnDECAY to disable them.

-pli "<object list>"

Loads a space-separated list of PLI shared objects. Optional. The list must be
quoted if it contains more than one object. This is an alternative to specifying PLI
objects in the Veriuser entry in the modelsim.ini file, see "Preference variables
located in INI and MPF files" (B-394).

+<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs. Optional.

+pulse_e/<percent>

Sets module path pulse error limit as percentage of path delay. Optional.

+pulse_r/<percent>

Sets module path pulse rejection limit as percentage of path delay. Optional.

+typdelays

Selects typical timing from Verilog min:typ:max expressions. Optional. Default.

Arguments, design-unit

The following library/design-unit arguments may be used with vsim. If no design-
unit specification is made, VSIM will open the Load a Design dialog box.
Multiple design units may be specified for Verilog modules and mixed VHDL/
Verilog configurations.

<library_name>.<design_unit>

Specifies a library and associated design unit; multiple library/design unit
specifications can be made. Optional. If no library is specified, the work library
is used.

The <design_unit> may be one of the following:

<configuration>

Specifies the VHDL configuration to simulate.

<module> ...

Specifies the name of one or more top-level Verilog modules to be simulated.
Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-217

vsim
<entity> [(<architecture>)]

Specifies the name of the top-level entity to be simulated. Optional. The entity may
have an architecture optionally specified; if omitted the last architecture compiled for
the specified entity is simulated. An entity is not valid if a configuration is specified.

Note: Most UNIX shells require arguments containing () to be single-quoted to prevent special parsing by
the shell. See the examples below.

Examples

vsim -gedge=”low high” -gVCC=4.75 cpu

Invokes VSIM on the entity cpu and assigns values to the generic parameters edge and
VCC.

vsim -view my_design.i03

Instructs VSIM to view the results of a previous simulation run stored in the logfile,
my_design.i03. Use the -wav option to specify the name of the signal logfile to create if you
plan to create many files for later viewing. For example:

vsim -wav my_design.i01 my_asic structure
vsim -wav my_design.i02 my_asic structure
...

vsim -sdfmin /top/u1=sdf1

Annotates instance /top/u1 using the minimum timing from the SDF file sdf1.

Use multiple switches to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

vsim ’mylib.top(only)’ gatelib.cache_set

This example searches the libraries for mylib top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

Note: The single quotes surrounding the (); this prevents special parsing by the UNIX shell.
CR-218 ModelSim Commands ModelSim EE/SE Command Reference

vsim<info>
vsim<info>

The vsim<info> commands return information about the current VSIM
executable.

vsimDate

Returns the date the executable was built, such as "Apr 10 1997".

vsimId

Returns the identifying string, such as "ModelSim 5.1".

vsimVersion

Returns the version as used by the licensing tools, such as "1997.04".
ModelSim EE/SE Command Reference ModelSim Commands CR-219

vsource
vsource

The vsource command displays an HDL source file in the VSIM Source window.
This command is used in order to set a breakpoint in a file other than the one
currently displayed in the Source window (10-200).

Syntax

vsource

[<filename>]

Arguments

<filename>

Specifies a relative or full pathname. Optional. If filename is omitted the source
file for the current design context is displayed.

Examples

vsource design.vhd
vsource /old/design.vhd
CR-220 ModelSim Commands ModelSim EE/SE Command Reference

.wave.tree zoomfull
.wave.tree zoomfull

The .wave.tree zoomfull command redraws the display to show the entire
simulation from time 0 to the current simulation time. The behavior is the same as
Wave window (10-212) Zoom > Zoom Full menu selection.

Syntax

.wave.tree zoomfull

Arguments

None.
ModelSim EE/SE Command Reference ModelSim Commands CR-221

.wave.tree zoomrange
.wave.tree zoomrange

The .wave.tree zoomrange command allows you to enter the beginning and
ending times for a range of time units to be displayed. The behavior is the same as
Wave window (10-212) Zoom > Zoom Range menu selection.

Syntax

.wave.tree zoomrange

f1 f2

Arguments

f1 f2

Sets the waveform display to zoom from time f1 to f2, where f1 and f2 are floating
point numbers. Required.

Either range number may include an optional VHDL resolution time-unit. The
resolution and range number must be enclosed in either quotes or curly brackets,
see the example below. If not specified the resolution defaults to the
UserTimeUnit (B-401) set in the modelsim.ini file.

Examples

.wave.tree zoomrange .5 {1.750 ms}
CR-222 ModelSim Commands ModelSim EE/SE Command Reference

wlf2log
wlf2log

The wlf2log command translates a ModelSim logfile (vsim.wlf) to a QuickSim II
logfile. The command reads the vsim.wlf logfile generated by the add list, add
wave, or log commands in the simulator and converts it to the QuickSim II logfile
format.

You must exit ModelSim before running wlf2log because vsim.wlf (or other user-
specified wave files) are updated dynamically.

Syntax

wlf2log -inout

[-help] [-input] [-output] [-inout] [-internal]
[-l <instance_path>] [-4.1]
[-4.3] [-quiet] [-o <outfile>] <wavfile>

Arguments

-help

Displays a list of command options with a brief description for each. Optional.

-input

Lists only the input ports. Optional. This may be combined with the -output, -
inout, or -internal switches.

-output

Lists only the output ports. Optional. This may be combined with the -input, -
inout, or -internal switches.

-inout

Lists only the inout ports. Optional. This may be combined with the -input, -
output, or -internal switches.

-internal

Lists only the internal signals. Optional. This may be combined with the -input, -
output, or -inout switches.

-l <instance_path>

Lists the signals at or below the specified HDL instance path within the design
hierarchy. Optional.

-4.1

Reads older version (pre-4.2) .wav files. Optional.
ModelSim EE/SE Command Reference ModelSim Commands CR-223

wlf2log
-4.3

Reads intermediate version (4.2 and 4.3) .wav files. Optional.

-quiet

Disables error message reporting. Optional.

-o <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The
default destination for the logfile is standard out.

<wavfile>

Specifies the ModelSim logfile that you are converting. Required.

Additional information for QuickSim II users
In some cases your original QuickHDL/ModelSim simulation results (in your
vsim.wav file) may contain signal values that do not directly correspond to
qsim_12state values. The resulting QuickSim II logfile generated by wlf2log may
contain state values that are surrounded by single quotes, e.g. ’0’ and ’1’. To make
this logfile compatible with QuickSim models (that expect qsim_12state) you
need to use a QuickSim II function named $convert_wdb().

This function was created to convert logfiles resulting from VHDL simulation that
used std_logic and std_ulogic since these data types do not correlate to
QuickSim’s 12 simulation states. Other VHDL data types such as qsim_state or
bit (2 state) do not require conversion as they are directly compatible with
qsim_12state QuickSim II Waveform Databases (WDB).

The following procedure can be used to convert a wlf2log-generated logfile into
a compatible QuickSim WDB. The procedure below shows how to convert the
logfile while loaded into memory in QuickSim II.

1 Load the logfile (the output from wlf2log) into a WDB other than "forces". "Forces"
is the default WDB, so you need to choose a unique name for the WDB when loading
the logfile (for example, "fred").

2 Enter the following at the command prompt from within QuickSim:

 $convert_wdb("fred",0)

The first argument, which is "fred", is the name of the new WDB to be created.
The second argument, which is 0, specifies the type of conversion. At this time
only one type of conversion is supported. The value 0 specifies to convert
std_logic or std_ulogic into qsim_12state.
CR-224 ModelSim Commands ModelSim EE/SE Command Reference

wlf2log
3 Do a connect_wdb (either through the pulldown menus, the "Connect WDB" pallette
icon under "Stimulus", or a function invocation). You specify the name of the WDB
that you originally loaded logfile into (in this case, "fred").

At this point you can issue the "run" command and the stimulus in the converted
logfile will be applied. Before exiting the simulation you should save the new
WDB ("fred") as a WDB or logfile so that it can be loaded again in the future. The
new WDB or logfile will contain the correct qsim_12state values eliminating the
need to re-use convert_wdb().
ModelSim EE/SE Command Reference ModelSim Commands CR-225

when
when

The when command allows you to instruct VSIM to perform actions when the
specified conditions are met. For example, you can use the when command to
break on a signal value or at a specific simulator time (see "Time-based
breakpoints" (CR-229)) . Conditions can include the following HDL items: VHDL
signals, and Verilog nets and registers. Use the nowhen command (CR-105) to
deactivate when commands.

The when command uses a when_condition_expression to determine whether or
not to perform the action. The when_condition_expression uses a simple restricted
language (that is not related to Tcl), which permits only four operators and
operands that may be either HDL item names, signame’event, or constants. VSIM
evaluates the condition every time any item in the condition changes, hence the
restrictions.

With no arguments, when will list the currently active when statements and their
labels (explicit or implicit).

Syntax

when

[[-label <label>]
{<when_condition_expression>} {<command>}]

Arguments

-label <label>

Used to identify individual when commands. Optional.

{<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed.
Required. The condition is evaluated in the simulator kernal and can be an item
name, in which case the curly braces can be omitted. The command will be
executed when the item changes value. The condition can be an expression with
these operators:

 Name Operator

equals ==, =

not equal !=, /=

AND &&, AND
CR-226 ModelSim Commands ModelSim EE/SE Command Reference

when
The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ’ EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

Note: The "=" operator can occur only between a Name and a Literal. This means that you cannot compare
the value of two signals, i.e., Name = Name is not possible.

{<command>}

The command(s) for this argument are evaluated by the Tcl interpreter within the
ModelSim GUI. Any VSIM or Tcl command or series of commands are valid with
one exception, the run command (CR-139) may not be used with the when
command. Required. The command sequence usually contains the stop command
(CR-152) that sets a flag to break the simulation run after the command sequence
is completed. Multiple-line commands can be used.

Note: If you want to stop the simulation using a when command, you must use a stop command (CR-152)
within your when statement. DO NOT use an exit command (CR-84) or a quit command. The stop command
acts like a breakpoint at the time it is evaluated. See "Ending the simulation with the stop command" (CR-228)
for an example.

OR ||, OR

 Name Operator
ModelSim EE/SE Command Reference ModelSim Commands CR-227

when
Examples

The when command below instructs the simulator to display the value of item c
in binary format when there is a clock event, the clock is 1, and the value of b is
01100111, and then to stop.

when -label when1 {clk’event and clk=’1’ and b = “01100111”} {
echo “Signal c is [exa -bin c]"
stop}

The when command below is labeled “a” and will cause VSIM to echo the
message “b changed” whenever the value of the item b changes.

when -label a b {echo “b changed”}

The multi-line when command below does not use a label and has two conditions.
When the conditions are met, an echo (CR-75) and a stop (CR-152) command will
be executed.

when {b = 1
 and c /= 0 } {
 echo “b is 1 and c is not 0”
 stop

}

Batch mode simulations (see How to use checkpoint/restore (E-438)) are often
structured as "run until condition X is true," rather than "run for X time"
simulations. The multi-line when command below sets a done condition and
executes an echo (CR-75) and a stop (CR-152) command when the condition is
reached.

Ending the simulation with the stop command

The simulation will not stop (even if a quit -f command is used) unless a stop
command is executed. To exit the simulation and quit ModelSim, use an approach
like the following:

when {/done_condition == ’1’} {echo "End condition reached"
if [bathc_mode] {

 set DoneConditionReached 1
stop }

}
run 1000 us
if {$DoneConditionReached == 1} {

 quit -f
}

CR-228 ModelSim Commands ModelSim EE/SE Command Reference

when
Time-based breakpoints

You can build time-based breakpoints into a when statement with the following
syntax.

For absolute time (indicated by @) use:

when {$now = @1750ns} {stop}

You can also use:

when {errorFlag = ’1’ OR $now = 2ms} {stop}

This example adds 2ms to simulation time at which the when statement is first
evaluated, then stops.
ModelSim EE/SE Command Reference ModelSim Commands CR-229

where
where

The where command displays information about the system environment. This
command is useful for debugging problems where VSIM cannot find the required
libraries or support files.

Syntax

where

Arguments

None.

Description

The where command displays three important system settings:

current directory

This is the current directory that VSIM was invoked from, or was specified on the VSIM
command line. Once in VSIM the current directory cannot be changed.

current project file

This is the initialization file VSIM is using. All library mappings, are taken from here.
Window positions, and other parameters are taken from the modelsim.tcl file.

work library

This is the library that VSIM used to find the current design unit that is being simulated.
CR-230 ModelSim Commands ModelSim EE/SE Command Reference

write format
write format

The write format command records the names and display options of the HDL
items currently being displayed in the List or Wave window. The file created is
comprised of a file of add list (CR-22), add wave (CR-33), and configure (CR-54)
commands. This file may be invoked with the do command (CR-67) to recreate the
List or Wave window format on a subsequent simulation run.

Syntax

write format

list | wave <filename>

Arguments

list | wave

Specifies that the contents of either the List or the Wave window are to be
recorded. Required.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write format list alu_list.do

Saves the current data in the List window in a file named alu_list.do.

write format wave alu_wave.do

Saves the current data in the Wave window in a file named alu_wave.do.

See also

add list command (CR-22), and the add wave command (CR-33)
ModelSim EE/SE Command Reference ModelSim Commands CR-231

write list
write list

The write list command records the contents of the most recently opened, or
specified List window in a list output file. This file contains simulation data for all
HDL items displayed in the List window: VHDL signals - and Verilog nets and
registers.

Syntax

write list

[-events] [-window <wname>] <filename>

Arguments

-events

Specifies to write print-on-change format. Optional. Default is tabular format.

-window <wname>

Specifies a List window using the full Tk path. Optional. Default is to use the List
window set by the view command (CR-180).

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write list alu.lst

Saves the current data in the default List window in a file named alu.lst.

write list -win .list1 group1.list

Saves the current data in window ‘list1’ in a file named group1.list.

See also

write tssi command (CR-236)
CR-232 ModelSim Commands ModelSim EE/SE Command Reference

write preferences
write preferences

The write preferences command saves the current GUI preference settings to a
Tcl preference file. Settings saved include the current window location and size.

Syntax

write preferences

<preference file name>

Arguments

<preference file name>

Specify the name for the preference file. Optional. If the file is named
modelsim.tcl, ModelSim will read the file each time VSIM is invoked. To use a
preference file other than modelsim.tcl you must specify the alternative file name
with the MODELSIM_TCL (B-392) environment variable.

See also

You can modify variables by editing the preference file with the ModelSim
notepad (CR-104):

notepad <preference file name>
ModelSim EE/SE Command Reference ModelSim Commands CR-233

write report
write report

The write report command prints a summary of the design being simulated
including a list of all design units (VHDL configurations, entities, and packages
and Verilog modules) with the names of their source files.

Syntax

write report

[<filename>]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If
the <filename> is omitted, the report is written to the Transcript window.

Examples

write report alu.rep

Saves information about the current design in a file named alu.rep.
CR-234 ModelSim Commands ModelSim EE/SE Command Reference

write transcript
write transcript

The write transcript command writes the contents of the Main window transcript
to the specified file. The resulting file can be used to replay the transcribed
commands as a DO file (macro).

Syntax

write transcript

[<filename>]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If
the <filename> is omitted, the transcript is written to a file named transcript. The
size of this file can be controlled with the MTI_TF_LIMIT (B-391).

See also

do command (CR-67)
ModelSim EE/SE Command Reference ModelSim Commands CR-235

write tssi
write tssi

The write tssi command records the contents of the default or specified List
window in a “TSSI format” file. The file contains simulation data for all HDL
items displayed in the List window that can be converted to TSSI format (VHDL
signals and Verilog nets). A signal definition file is also generated.

The List window needs to be using symbolic radix in order for write tssi to
produce useful output.

Syntax

write tssi

[-window <wname>] <filename>

Arguments

-window <wname>

Specifies a List window using the full Tk path. Optional. Default is to use the List
window set by the view command (CR-180).

<filename>

Specifies the name of the output file where the data is to be written. Required.

Description

“TSSI format” is documented in the Summit Design document ASCII I/O
Interface, dated August 31, 1992. In that document, it is called Standard Events
Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is
given the same file name with the extension .def (e.g., listfile.def). The values in
the listfile are produced in the same order that they appear in the list window. The
directionality is determined from the port type if the item is a port, otherwise it is
assumed to be bidirectional (mode INOUT).

Items that can be converted to SEF are VHDL enumerations with 255 or fewer
elements and Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and -
(the enumeration values defined in the IEEE Standard 1164 std_ulogic
enumeration) are converted to SEF values according to the table below. Other
values are converted to a question mark (?) and cause an error message. Though
the WRITE TSSI command was developed for use with std_ulogic, any signal
which uses only the values defined for std_ulogic (including the VHDL standard
type bit) will be converted.
CR-236 ModelSim Commands ModelSim EE/SE Command Reference

write tssi
Bidirectional logic values are not converted because only the resolved value is
available. The TSSI ASCII In Converter and ASCII Out Converter can be used to
resolve the directionality of the signal and to determine the proper forcing or
expected value on the port. Lowercase values x, z, w, l and h are converted to the
same values as the corresponding capitalized values. Any other values will cause
an error message to be generated the first time an invalid value is detected on a
signal, and the value will be converted to a question mark (?).

Note: The TSSI ASCII In Converter and ASCII Out Converter are part of the TSSI software from Summit
Design. ModelSim outputs a vector file, and Summit’s tools determine whether the bidirectional signals are
driving or not.

See also

tssi2mti command (CR-159)

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0

1 U H 1

Z Z T F

W N X ?

L D L 0

H U H 1

- N X ?
ModelSim EE/SE Command Reference ModelSim Commands CR-237

write wave
write wave

The write wave command records the contents of the most currently opened, or
specified Wave window in PostScript format. The output file can then be printed
on a PostScript printer.

Syntax

write wave

[-window <wname>] [-width <real_num>] [-height <real_num>]
[-margin <real_num>] [-start <time>] [-end <time>] [-perpage
<time>]
[-pagecount <n>] [-landscape] [-portrait] <filename>

Arguments

-window <wname>

Specifies a Wave window using the full Tcl path. Optional. Default is to use the
Wave window set by the view command (CR-180).

-width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

-height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

-start <time>

Specifies the start time (on the waveform time scale) to be written. Optional.

-end <time>

Specifies the end time (on the waveform time scale) to be written. Optional.

-perpage <time>

Specifies the time width per page of output. Optional.

-pagecount <n>

Specifies the number of pages to use horizontally along the time axis. Optional.

-landscape

Use landscape (horizontal) orientation. Optional. This is the default orientation.

-portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).
CR-238 ModelSim Commands ModelSim EE/SE Command Reference

write wave
<filename>

Specifies the name of the PostScript output file. Required.

Examples

write wave alu.ps

Saves the current data in the Wave window in a file named alu.ps.

write wave -win .wave2 group2.ps

Saves the current data in window ‘wave2’ in a file named group2.ps.

write wave -start 600ns -end 800ns -perpage 100ns top.ps

Writes two separate pages to top.ps as indicated in the illustration (the actual PostScript
print out will show all items listed in the Wave window, not just the portion in view):

To make the job of creating a PostScript waveform output file easier, use the File
> Write Postscript menu selection in the Wave window. See "Printing and saving
waveforms" (10-238) for more information.

– page 1 starts at 600 ns
– page 2 ends at 800 ns

100 ns per page

start finish
ModelSim EE/SE Command Reference ModelSim Commands CR-239

CR-240 ModelSim Commands ModelSim EE/SE Command Reference

C R Command Syntax and Conventions

Chapter contents

Syntax conventions 242

Command return values 243

Command shortcuts 243

Command history shortcuts 243

Numbering conventions 244

HDL item pathnames 245

Wildcard characters 248

ModelSim variables 248

Simulation time units 249

GUI_expression_format 250

This chapter documents syntax for all ModelSim commands. Documentation for
Tcl commands, and FlexLM commands are available in these locations:

• Tcl man pages
available in HTML format - use this Main window menu selection:
Help > Tcl man pages

• FLEXlm commands
for tools available within ModelSim see "License administration tools" (D-434)
in the User’s Manual; the complete FLEXlm user’s manuals is available at:
http://www.globetrotter.com/manual.htm
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-241

http://www.globetrotter.com/manual.htm

Syntax conventions
Syntax conventions

These syntax elements are used within all ModelSim command documentation:

Comments in argument files loaded with -f <filename>

Argument files may be loaded with the -f <filename> argument of the vcom, vlog,
and vsim commands. The -f <filename> argument specifies a file that contains
more command line arguments. It allows complex arguments to be reused without
retyping.

Comments within the argument files follow these rules:

• All text in a line beginning with // to its end is treated as a comment.

• All text bracketed by /* ... */ is treated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with
the newline characters treated as space characters. There is no need to put '\' at the
end of each line.

Note: Neither the prompt at the beginning of a line nor the <Enter> or <Return> key that ends a line is
shown in the examples.

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a user-defined argument; do
not enter the brackets in commands

[] square brackets indicate an optional item; if the brackets surround several
words, all must be entered as a group; the brackets are not entered

... an ellipsis indicates items that may appear more than once; the ellipsis itself
does not appear in commands

| the vertical bar indicates a choice between items on either side of it; do not
include the bar in the command

monospaced type monospaced type is used in examples

comments included with commands are preceded by the number sign (#); useful
for adding comments to DO files (macros)
CR-242 Command Syntax and Conventions ModelSim EE/SE Command Reference

http://www.globetrotter.com/manual.htm

Command return values
Command return values

All simulator commands are invoked using Tcl. For most commands that write
information to the Main window, that information is also available as a Tcl result.
By using command substitution the results can be made available to another
command or assigned to a Tcl variable. For example:

set aluinputs [find -in alu/*]

sets variable "aluinputs" to the result of the find command (CR-85).

Command shortcuts

You may abbreviate command syntax, but there’s a catch. The minimum
characters required to execute a command are those that make it unique.
Remember, as we add new commands some of the old shortcuts may not work.
For this reason ModelSim does not allow command name abbreviations in macro
files. This minimizes your need to maintain macro files as new commands are
added.

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused,
with these shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt number, i.e., for this prompt:
VSIM 12>, n =12

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scroll through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the transcript to copy
the command typed at that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-243

Numbering conventions
Numbering conventions

Numbers in ModelSim /PLUS can be expressed in either VHDL or Verilog style.
Two styles can be used for VHDL numbers, one for Verilog.

VHDL numbering conventions

The first of two VHDL number styles is:

[-] [radix #] value [#]

Examples

16#FFca23#
2#11111110
-23749

The second VHDL number style is:

base "value"

Examples

B"11111110"
X"FFca23"

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is required if
a radix is used, the second is always optional

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digits in appropriate base with optional underscore separators;
default is decimal; required
CR-244 Command Syntax and Conventions ModelSim EE/SE Command Reference

HDL item pathnames
Verilog numbering conventions

Verilog numbers are expressed in the style:

[-] [size] [base] value

Examples

‘b11111110
8‘b11111110
‘Hffca23
21‘H1fca23
-23749

HDL item pathnames

VHDL and Verilog items are organized hierarchically. Each of the following HDL
items creates a new level in the hierarchy:

• VHDL
component instantiation statement, block statement, and package

• Verilog
module instantiation, named fork, named begin, task and function

Multiple levels in a pathname

Multiple levels in a pathname are separated by the character specified in the
PathSeparator variable. The default is "/", but it can be set to any single character,
such as "." for Verilog naming conventions, or ":" for VHDL IEEE 1076-1993
naming conventions. See the PathSeparator (B-400) for more information.

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D, hex:
‘h or ‘H; optional

value specifies digits in appropriate base with optional underscore separators;
default is decimal, required
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-245

HDL item pathnames
Absolute path names

Absolute path names begin with the path separator character. The first name in the
path should be the name of a top-level entity or module, but if you leave it off then
the first top-level entity or module will be assumed. VHDL designs only have one
top-level, so it doesn’t matter if it is included in the pathname. For example, if you
are referring to the signal CLK in the top-level entity named top, then both of the
following pathnames are correct:

/top/clk
/clk

Note: Since Verilog designs may contain multiple top-level modules, a path name may be ambiguous if
you leave off the top-level module name.

Relative pathnames

Relative pathnames do not start with the path separator, and are relative to the
current environment. The current environment defaults to the first top-level entity
or module and may be changed by the environment command or by clicking on
hierarchy levels in the structure window. Each new level in the pathname is first
searched downwards relative to the current environment, but if not found is then
searched for upwards (same search rules used in Verilog hierarchical names).

Indexing signals, memories and nets

VHDL array signals, and Verilog memories and vector nets can be sliced or
indexed. Indexes must be numeric, since the simulator does not know the actual
index types. Slice ranges may be represented in either VHDL or partial Verilog
syntax, irrespective of the setting of the PathSeparator (B-400). The syntax is
partial Verilog because the range must be contained within parentheses and not in
Verilog square brackets. For example,

mysignal(31:0)

specifies a slice of an array item in partial Verilog syntax.

Name case sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not
case sensitive except for extended identifiers in VHDL 1076-1993. In contrast, all
Verilog names are case sensitive.
CR-246 Command Syntax and Conventions ModelSim EE/SE Command Reference

HDL item pathnames
Names in VSIM commands are case sensitive when matched against case
sensitive identifiers, otherwise they are not case sensitive.

Extended identifiers

The following are supported formats for extended identifiers for any command
that takes an identifier.

{\ext ident!\ } # Note trailing space. Compatible with 5.2

\\ext\ ident\!\\ # All non-alpha characters escaped

Naming fields in VHDL signals

Fields in VHDL record signals can be specified using the form:

signal_name.field_name

Examples:

Syntax Description

clk specifies the item clk in the current environment

/top/clk specifies the item clk in the top-level design unit.

/top/block1/u2/clk specifies the item clk, two levels down from the top-level design unit

block1/u2/clk specifies the item clk, two levels down from the current environment

array_sig(4) specifies an index of an array item

array_sig(1 to 10) specifies a slice of an array item in VHDL syntax

mysignal(31:0) specifies a slice of an array item in partial Verilog syntax

record_sig.field specifies a field of a record
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-247

Wildcard characters
Wildcard characters

Wildcard characters can be used in HDL item names in some simulator
commands. Conventions for wildcards are as follows:

You can use square brackets [] in wildcard specifications if you place the entire
name in curly braces { }:

Examples
*

Matches all items.

{*[0-9]}

Matches all items ending in a digit.

{?in*[0-9]}

Matches such item names as pin1, fin9, and binary2.

ModelSim variables

Several variables are available to control simulation, provide simulator state
feedback, or modify the appearance of the ModelSim GUI. To take effect, some
variables, such as environment variables, must be set prior to simulation.

ModelSim variables can be referenced in simulator commands by preceding the
name of the variable with the dollar sign ($) character. The ModelSim uses global
Tcl variables for simulator state variables, simulator control variables, simulator

Syntax Description

* matches any sequence of characters

? matches any single character

Syntax Description

{[abcd]} matches any character in the specified set

{[a-d]} matches any character in the specified range

{[^a-d]} matches any character not in the set
CR-248 Command Syntax and Conventions ModelSim EE/SE Command Reference

Simulation time units
preference variables and user-defined variables. Note that case is significant in
variable names.

See Chapter B - ModelSim Variables for a complete listing of ModelSim
variables.

Variable settings report

The report command (CR-131) returns a list of current settings for either the
simulator state, or simulator control variables.

Simulation time units

You can specify the time unit for delays in all simulator commands that have time
arguments:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a VSIM command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always
expressed using the resolution units that are specified by the UserTimeUnit
variable. See the UserTimeUnit (B-401).

By default, the specified time units are assumed to be relative to the current time
unless the value is preceded by the character @, which signifies an absolute time
specification.
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-249

GUI_expression_format

The GUI_expression_format is an option of several simulator commands that
operate within ModelSim’s GUI environment. The expressions allow the use of
criteria to locate and examine HDL items within the List and Wave windows. The
commands that use the expression format are:

• down | up (CR-70)
search for the expression in the List window

• examine (CR-81)

examine the value and compute mathematical functions of items in the List
window

• right | left (CR-136)
search for the expression in the Wave window

• virtual signal (CR-193))
define a virtual signal (a combination of real signals defined by the expression)

• virtual function (CR-184))
to define a virtual function (displays as a new signal defined by the expression)

• searchLog (CR-144)

search the current log files (WLF files) for the defined expression

Expressions may be typed directly on the VSIM command line, or you can use the
"The GUI Expression Builder" (10-272).

Expression typing

GUI expressions are typed. The supported types consist of six scalar types and two
array types.

Scalar types

The scalar types are as follows: boolean, integer, real, time (64-bit integer),
enumeration and signal state. Signal states are represented by the nine VHDL
std_logic states: ’U’ ’X’ ’0’ ’1’ ’Z’ ’H’ ’L’ ’W’ and ’-’. Verilog states 0 1 x and z
are mapped into these states and the verilog strengths are ignored. Conversion is
done automatically when referencing Verilog nets or registers.

Array types

The array types supported are signed and unsigned arrays of signal states. This
would correspond to the VHDL std_logic_array type. Verilog registers are
automatically converted to these array types. The array type can be treated as
CR-250 Command Syntax and Conventions ModelSim EE/SE Command Reference

GUI_expression_format
either UNSIGNED or SIGNED, as in the IEEE std_logic_arith package.
Normally, referencing a signal array causes it to be treated as UNSIGNED by the
expression evaluator; to cause it to be treated as SIGNED, use casting as described
below. Numeric operations supported on arrays are performed by the expression
evaluator via ModelSim’s built-in numeric_standard (and similar) package
routines. The expression evaluator selects the appropriate numeric routine based
on SIGNED or UNSIGNED properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration
literals may be used in the expression as long as some variable of that enumeration
type is referenced in the expression. This is useful for subexpressions of the form:

(/memory/state == reading)

Signal and sub-element naming conventions

ModelSim supports naming conventions for VHDL and Verilog signal pathnames,
VHDL array indexing, Verilog bit selection, VHDL subrange specification, and
Verilog part selection.

Concatenation of signals and/or sub-elements

Elements in the concatenation that are arrays are expanded so that each element in
the array becomes a top-level element of the concatenation. But for elements in
the concatenation that are records, the entire record becomes one top-level
element in the result. To specify that the records be broken down so that their
subelements become top-level elements in the concatenation, use the "flatten"
directive. Currently we do not support leaving full arrays as elements in the result.
(Please let us know if you need that option.)

If the elements being concatenated are of incompatible base type, a VHDL-style
record will be created. The record object can be expanded in the signals and wave
window just like an array of compatible type elements.

Concatenation syntax for VHDL

<signalOrSliceName1> & <signalOrSliceName2> & ...

Note that the concatenation syntax (below) begins with "&{" rather than just "{".
Repetition multipliers are supported, as illustrated in the second line. The third
line shows that the repetition element itself may be an arbitrary concatenation
subexpression.

Concatenation syntax for Verilog
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-251

GUI_expression_format
&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ...}, ... }

The concatenation directive (as illustrated below) can be used to constrain the
resulting array range of a concatenation or influence how compound objects are
treated. By default, the concatenation will be created with descending index range
from (n-1) to 0, where n is the number of elements in the array. The "range"
directive completely specifies the index range. The "ascending" directive
specifies that the index start at zero and increment upwards, and the "descending"
directive specifies (n-1) downto 0.

Concatenation directives

(range [31:0])<concatenationExpr> # Verilog syntax
(range (31 downto 0))<concatenationExpr> # VHDL syntax
(ascending) <concatenationExpr>
(descending)<concatenationExpr>
(flatten)<concatenationExpr> # no hierarchy

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

VHDL record field support

Arbitrarily-nested arrays and records are supported, but operators will only
operate on one field at a time. That is, the expression {a == b} where a and b are
records with multiple fields, is not supported. This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2)...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Grouping and precedence

Operator precedence generally follows that of the C language, but we recommend
liberal use of parentheses.
CR-252 Command Syntax and Conventions ModelSim EE/SE Command Reference

GUI_expression_format
Saving expressions

Expressions created in the expression builder dialog box can be saved for future
use by pressing the SAVE button. You will be prompted for the name of a global-
level Tcl variable, to be assigned the expression string. After entering the variable
name, the expression will be saved. Regardless of whether you enter a Tcl variable
name or not, the expression will also be saved in the entry box drop-down cache.
A previous entry in the cache can be selected by simply clicking with the mouse.

Expression syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific
and Verilog-specific conventions supported. These expressions are not parsed by
the Tcl parser, and so do not support general Tcl; parentheses should be used
rather than curly braces. Procedure calls are not supported.

A GUI expression can include the following elements:

Tcl macros

Macros are useful for pre-defined constants or for entire expressions that have
been previously saved. The substitution is done only once, when the expression is
first parsed. Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

Constants

Type Values

boolean value 0 1 true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp] where the optional [exp] is: (e|E)[+|-][0-9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’H’ ’L’ ’W’ ’-’ 1’b0 1’b1
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-253

GUI_expression_format
Array constants, expressed in any of the following formats

Variables

Array variables

Signal attributes

<name>’event
<name>’rising
<name>’falling

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

VHDL bitstring "(U|X|0|1|Z|L|H|W|-)*"
Example: "11010X11"

VLOG notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes the
ambiguity about the number of bits.)

Variable Type

Name of a signal The name may be a simple name, a VHDL or VLOG style extended identifier, or
a VHDL or VLOG style path. The signal must be one of the following types:
-- VHDL signal of type INTEGER, REAL or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- VLOG net -- VLOG register -- VLOG integer -- VLOG real.

NOW Returns the value of time at the current location in the logfile as the logfile is
being scanned (not the most recent simulation time).

Variable Type

Name of a signal -- VHDL signals of type bit or std_logic_vector
-- VLOG register
-- VLOG net array
A subrange or index may be specified in either VHDL or VLOG syntax.
Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4), mysignal [4]
CR-254 Command Syntax and Conventions ModelSim EE/SE Command Reference

GUI_expression_format
Operators

Note: Arithmetic operators use the std_logic_arith package.

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

|| boolean or sla/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sra/SRA shift right arithmetic

!= not equal ror/ROR rotate right

=== exact equal rol/ROL rotate left

!== exact not equal + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT or ~ unary bitwise inversion rem/REM arithmetic remainder

and/AND bitwise and |<vector_expr> OR reduction

nand/NAND bitwise nand ^<vector_expr> XOR reduction

or/OR bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor
ModelSim EE/SE Command Reference Command Syntax and Conventions CR-255

GUI_expression_format
Casting

Examples
/top/bus and $bit_mask

This expression takes the bitwise and function of signal /top/bus and the array constant
contained in the global Tcl variable bit-mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean 1 when signal clk changes and signal /top/u3/addr
is equal to hex ffae; otherwise is 0.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean 1 when signal clk just changed from low to high and signal mystate
is the enumeration reading and signal /top/u3/addr is equal to the specified 32-bit hex
constant; otherwise is 0.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean 1 when the upper 8 bits of the 32-bit signal /top/u3/adder equals hex
ac.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean 1 when logfile time is between 23 and 54 microseconds, and clock
just changed from low to high and signal mode is enumeration writing.

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) 64 bit integer

(std_logic) convert to a-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector
CR-256 Command Syntax and Conventions ModelSim EE/SE Command Reference

Index
A
abort simulator command CR-19
Absolute time, see time
add button simulator command CR-20
add list simulator command CR-22
add wave simulator command
add_menu simulator command CR-26
add_menucb simulator command CR-28
add_menuitem simulator command CR-30
add_separator simulator command CR-31
add_submenu simulator command CR-32
alias simulator command CR-37
Arrays

indexes CR-246
slices CR-246

B
batch_mode simulator command CR-38
bd simulator command CR-39
bp simulator command CR-40
Break

on signal value
see VSIM commands, when

Breakpoints
continuing simulation after CR-139
deleting CR-39
setting CR-40, CR-220
Time-based breakpoints in when statements CR-229
viewing CR-40

Bus contention checking
configuring CR-46
disabling CR-47
enabling CR-45

Bus float checking
configuring CR-49
disabling CR-50
enabling CR-48

Buttons
adding to the Main window button bar CR-20

C
cd simulator command CR-42
change simulator command CR-43
change_menu_cmd simulator command CR-44
check contention add simulator command CR-45
check contention config simulator command CR-46
check contention off simulator command CR-47
check float add simulator command CR-48
check float config simulator command CR-49
check float off simulator command CR-50
check stable off simulator command CR-52
check stable on simulator command CR-51
checkpoint simulator command
Commands
Comment characters in VSIM commands CR-242
Compiling

Verilog designs CR-199
VHDL designs CR-169

at a specified line number (-line) CR-170
selected design units (-just eapbc) CR-170
standard package (-s) CR-172

Configurations
simulating CR-208

configure simulator command CR-54
Constants

displaying values of CR-63, CR-81
coverage clear simulator command CR-59
coverage reload simulator command CR-60
coverage report simulator command CR-61

D
Declarations

hiding implicit with explicit declarations CR-174
delete simulator command CR-62
ModelSim EE/SE Command Reference Index - 257

describe simulator command CR-63
Design units

adding Verilog units to a library CR-199
report of units simulated CR-234

Directories
mapping libraries CR-207

disable_menu simulator command CR-65
disable_menuitem simulator command CR-66
disablebp simulator command CR-64
Do files, see macros CR-67
do simulator command CR-67
down | up simulator command CR-70
drivers simulator command CR-73
dumplog64 ModelSim command CR-74

E
echo simulator command CR-75
edit simulator command CR-76
enable_menu simulator command CR-78
enable_menuitem simulator command CR-79
enablebp simulator command CR-77
Entities

selecting for simulation CR-218
Environment

displaying or changing pathname CR-80
environment simulator command CR-80
Environment variables

specifying UNIX editor CR-76
viewing current names and values with printenv

CR-114
examine simulator command CR-81
exit simulator command CR-84
Expression_format, see GU_expression_format

F
find simulator command CR-85
force simulator command CR-87

G
Generics

assigning or overriding values with -g and -G CR-
214

examining generic values CR-81
getactivecursortime simulator command CR-90
getactivemarkertime simulator command CR-91
GUI_expression_format CR-250

syntax CR-253

H
history shortcuts CR-243

I
Implicit operator, hiding with vcom -explicit CR-174
Indexing signals, memories and nets CR-246

L
lecho simulator command CR-92
Libraries

creating design libraries CR-198
listing contents CR-177
lock file, unlocking CR-171, CR-201
refreshing library images CR-172, CR-202

Log file
of binary signal values CR-93

log simulator command CR-93
lshift simulator command CR-95
lsublist simulator command CR-96

M
macro_option simulator command CR-97
Macros (do files)

See also ModelSim commands, do command
executing CR-67
executing at breakpoints CR-40
258 - Index ModelSim EE/SE Command Reference

forcing signals or nets CR-87
passing parameters to CR-67
relative directories CR-67
shifting parameter values CR-147
using VSIM commands with macros CR-68

main clear simulator command CR-99
Messages

echoing CR-75
ModelSim commands ??–CR-224

comments in commands CR-242
dumplog64 CR-74
modelsim CR-98
vcom CR-169
vdel CR-175
vdir CR-177
vgencomp CR-178
vlib CR-198
vlog CR-199
vmake CR-205
vsim CR-208
wlf2log CR-223

modelsim ModelSim command CR-98

N
Name case sensitivity for VHDL and Verilog CR-246
Names

alternative signal names in the List window (-label)
CR-24

alternative signal names in the Wave window (-la-
bel) CR-35

Nets
applying stimulus to CR-87
displaying drivers of CR-73
examining values CR-81

Next and previous edges, searching for CR-138, CR-250
next simulator command CR-141
noforce simulator command CR-101
nolog simulator command CR-102
notepad simulator command CR-104
nowhen simulator command CR-105

O
onbreak simulator command CR-106
onElabError simulator command CR-107
onerror simulator command CR-108

P
pause simulator command CR-109
play simulator command CR-110
power add simulator command CR-111
power report simulator command CR-112
power reset simulator command CR-113
printenv simulator command CR-114
profile clear simulator command CR-115
profile interval simulator command CR-116
profile off simulator command CR-117
profile on simulator command CR-118
profile option simultor command CR-119
profile report simulator command CR-120
Project files

modelsim.ini
override mapping for work directory with vcom

CR-173
override mapping for work directory with vlog

CR-202
property list simulator command CR-123
property wave simulator command CR-124
’protect compiler directive CR-171, CR-201
pwd simulator command CR-126

Q
quietly simulator command CR-127
quit simulator command CR-128

R
Radix

changing in Signals, Variables, Dataflow, List, and
Wave windows CR-129
ModelSim EE/SE Command Reference Index - 259

of signals in Wave window CR-34
to examine CR-82

radix simulator command CR-129
record simulator command CR-130
Refreshing library images CR-172, CR-202
report simulator command CR-131
resolution, simulator time CR-211
restart simulator command CR-133
restore simulator command CR-134
resume simulator command CR-135
right | left simulator command CR-136
run simulator command CR-139

S
search simulator command CR-141
Searching

List window
signal values, transitions, and names CR-70,

CR-250
next and previous edge in Wave window CR-136,

CR-250
waveform

signal values, edges and names CR-136, CR-
250

searchLog simulator command CR-144
seetime simulator command CR-146
shift simulator command CR-147
Shortcuts

command history CR-243
command line caveat CR-243

show simulator command CR-148
Signals

alternative names in the List window (-label) CR-24
alternative names in the Wave window (-label) CR-

35
applying stimulus to CR-87
creating a signal log file CR-93
displaying drivers of CR-73
displaying environment of CR-80
examining values CR-81

finding CR-85
indexing arrays CR-246
pathnames in VSIM commands CR-245
specifying force time CR-88
specifying radix of in List window CR-23
specifying radix of in Wave window CR-34
specifying radix of signal to examine CR-82

Simulating
specifying design unit CR-208
specifying the time unit for delays CR-249
stepping through a simulation CR-151

Simulation
stopping simulation in batch mode CR-228

simulator time resolution (vsim -t) CR-211
splitio simulator command CR-149
Stability checking

disabling CR-52
enabling CR-51

Startup
alternate to startup.do (vsim -do) CR-209

status simulator command CR-150
step simulator command CR-151
stop simulator command CR-152

T
tb simulator command CR-153
Tcl

history shortcuts CR-243
Time

simulation time units CR-249
toggle add simulator command CR-154
toggle report simulator command CR-156
toggle reset simulator command CR-155
Toggle statistics

enabling CR-154
reporting CR-156
resetting CR-155

transcribe simulator command CR-157
transcript simulator command CR-158
TSSI
260 - Index ModelSim EE/SE Command Reference

see write tssi command CR-236

V
Values

describe HDL items CR-63
examine HDL item values CR-81

Variable settings report CR-249
Variables, HDL

changing value of on command line CR-43
describing CR-63
examining values CR-81

Variables, Tcl CR-248
vcd add simulator command CR-160
vcd checkpoint simulator command CR-161
vcd comment simulator command CR-162
vcd file simulator command CR-163
VCD files

adding items to the file CR-160
dumping variable values CR-161
flushing the buffer contents CR-165
inserting comments CR-162
specifying maximum file size CR-166
specifying the file name CR-163
state mapping CR-163
turn off VCD dumping CR-167
turn on VCD dumping CR-168

vcd flush simulator command CR-165
vcd limit simulator command CR-166
vcd off simulator command CR-167
vcd on simulator command CR-168
vcom ModelSim command CR-169
vdel ModelSim command CR-175
vdir ModelSim command CR-177
Verilog

capturing port driver data with -dumpports CR-164
vgencomp ModelSim command CR-178
VHDL

field naming syntax CR-247
view simulator command CR-180
virtual count simulator commands CR-192

virtual define simulator commands CR-182
virtual delete simulator command CR-182
virtual describe simulator commands CR-182
virtual expand simulator commands CR-183
virtual function simulator command CR-184
virtual hide simulator command CR-188
virtual log simulator command CR-189
virtual nohide simulator commands CR-188
virtual nolog simultor commands CR-189
virtual region simulator command CR-190
virtual save simulator command CR-191
virtual show simulator command CR-192
virtual signal simulator command CR-193
virtual type command CR-196
vlib ModelSim command CR-198
vlog ModelSim command CR-199
vmake ModelSim command CR-205
vmap simulator command CR-207
VSIM build date and version CR-219
VSIM commands

notation conventions CR-242
variables referenced in CR-248
abort CR-19
add button CR-20
add list CR-22
add wave CR-33
add_menu CR-26
add_menucb CR-28
add_menuitem CR-30
add_separator CR-31
add_submenu CR-32
alias CR-37
batch_mode CR-38
bd (breakpoint delete) CR-39
bp (breakpoint) CR-40
cd CR-42
change CR-43
change_menu_cmd CR-44
check contention add CR-45
check contention config CR-46
check contention off CR-47
check float add CR-48
ModelSim EE/SE Command Reference Index - 261

check float config CR-49
check float off CR-50
check stable off CR-52
check stable on CR-51
checkpoint

see also checkpoint/restore
configure CR-54
coverage clear CR-59
coverage reload CR-60
coverage report CR-61
delete CR-62
describe CR-63
disable_menu CR-65
disable_menuitem CR-66
disablebp CR-64
do CR-67
down | up CR-70
drivers CR-73
echo CR-75
edit CR-76
enable_menu CR-78
enable_menuitem CR-79
enablebp CR-77
environment CR-80
examine CR-81
exit CR-84
find CR-85
force CR-87
format list, see write format
format wave, see write format
getactivecursortime CR-90
getactivemarkertime CR-91
lecho CR-92
list, see add list
log CR-93
lshift CR-95
lsublist CR-96
macro_option CR-97
main clear CR-99
next CR-141
noforce CR-101
nolist, see delete list

nolog CR-102
notepad CR-104
nowave, see delete wave
nowhen CR-105
onbreak CR-106
onElabError CR-107
onerror CR-108
pause CR-109
play CR-110
power add CR-111
power report CR-112
power reset CR-113
printenv CR-114
profile clear CR-115
profile interval CR-116
profile off CR-117
profile on CR-118
profile option CR-119
profile report CR-120
property list CR-123
property wave CR-124
pwd CR-126
quietly CR-127
quit CR-128
radix CR-129
record CR-130
report CR-131
restart CR-133
restore CR-134

see also checkpoint/restore
resume CR-135
right | left CR-136
run CR-139
search CR-141
searchLog CR-144
seetime CR-146
shift CR-147
show CR-148
splitio CR-149
status CR-150
step CR-151
stop CR-152
262 - Index ModelSim EE/SE Command Reference

tb (traceback) CR-153
toggle add CR-154
toggle report CR-156
toggle reset CR-155
transcribe CR-157
transcript CR-158
vcd add CR-160
vcd checkpoint CR-161
vcd comment CR-162
vcd file CR-163
vcd flush CR-165
vcd limit CR-166
vcd off CR-167
vcd on CR-168
view CR-180
virtual count CR-192
virtual define CR-182
virtual delete CR-182
virtual describe CR-182
virtual expand CR-183
virtual function CR-184
virtual hide CR-188
virtual log CR-189
virtual nohide CR-188
virtual nolog CR-189
virtual region CR-190
virtual save CR-191
virtual show CR-192
virtual signal CR-193
vmap CR-207
vsimDate CR-219
vsimId CR-219
vsimVersion CR-219
vsource CR-220
wave, see add wave
wave.tree zoomfull CR-221
wave.tree zoomrange CR-222
when CR-226
where CR-230
write format CR-231
write list CR-232
write preferences CR-233

write report CR-234
write transcript CR-235
write tssi CR-236
write wave CR-238

vsim ModelSim command CR-208
vsource simulator command CR-220

W
Wave log file (WLF) CR-212
wave.tree.zoomfull simulator command CR-221
wave.tree.zoomrange simulator command CR-222
when simulator command CR-226
where simulator command CR-230
Wildcard characters

for pattern matching in simulator commands CR-
248

Windows
opening from command line CR-180
List window

output file CR-232
saving the format of CR-231

Main window
adding user-defined buttons CR-20

wlf2log ModelSim command CR-223
write format simulator command
write list simulator command CR-232
write preferences simulator command CR-233
write report simulator command CR-234
write transcript simulator command CR-235
write tssi simulator command CR-236
write wave simulator command CR-238
ModelSim EE/SE Command Reference Index - 263

Thank you for purchasing ModelSim!

A M E N T O R G R A P H I C S C O M P A N Y

Model Technology

www.model.com

	Command Reference
	Software License Agreement
	Model Technology Software License
	Important Notice
	Limited Warranty

	Table of Contents
	ModelSim Commands
	Command reference table
	abort
	add button
	add list
	add_menu
	add_menucb
	add_menuitem
	add_separator
	add_submenu
	add wave
	alias
	batch_mode
	bd
	bp
	cd
	change
	change_menu_cmd
	check contention add
	check contention config
	check contention off
	check float add
	check float config
	check float off
	check stable on
	check stable off
	checkpoint
	configure
	coverage clear
	coverage reload
	coverage report
	delete
	describe
	disablebp
	disable_menu
	disable_menuitem
	do
	down | up
	drivers
	dumplog64
	echo
	edit
	enablebp
	enable_menu
	enable_menuitem
	environment
	examine
	exit
	find
	force
	getactivecursortime
	getactivemarkertime
	lecho
	log
	lshift
	lsublist
	macro_option
	modelsim
	.main clear
	next
	noforce
	nolog
	notepad
	nowhen
	onbreak
	onElabError
	onerror
	pause
	play
	power add
	power report
	power reset
	printenv
	profile clear
	profile interval
	profile off
	profile on
	profile option
	profile report
	project
	property list
	property wave
	pwd
	quietly
	quit
	radix
	record
	report
	restart
	restore
	resume
	right | left
	run
	search and next
	searchLog
	seetime
	shift
	show
	splitio
	status
	step
	stop
	tb
	toggle add
	toggle reset
	toggle report
	transcribe
	transcript
	tssi2mti
	vcd add
	vcd checkpoint
	vcd comment
	vcd file
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcom
	vdel
	vdir
	vgencomp
	view
	virtual delete|describe|define
	virtual expand
	virtual function
	Commands fully compatible with virtual functions
	Commands not currently compatible with virtual functions

	virtual hide|nohide
	virtual log|nolog
	virtual region
	virtual save
	virtual show|count
	virtual signal
	Commands fully compatible with virtual signals
	Commands compatible with virtual signals using [virtual expand <signal>]
	Commands not currently compatible with virtual signals

	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsource
	.wave.tree zoomfull
	.wave.tree zoomrange
	wlf2log
	when
	where
	write format
	write list
	write preferences
	write report
	write transcript
	write tssi
	write wave

	Command Syntax and Conventions
	Syntax conventions
	Comments in argument files loaded with -f <filename>
	Command return values
	Command shortcuts
	Command history shortcuts

	Numbering conventions
	VHDL numbering conventions
	Verilog numbering conventions

	HDL item pathnames
	Multiple levels in a pathname
	Absolute path names
	Relative pathnames
	Indexing signals, memories and nets
	Name case sensitivity
	Extended identifiers
	Naming fields in VHDL signals

	Wildcard characters
	ModelSim variables
	Variable settings report

	Simulation time units
	GUI_expression_format
	Expression typing
	Signal and sub-element naming conventions
	Concatenation of signals and/or sub-elements
	VHDL record field support
	Grouping and precedence
	Saving expressions
	Expression syntax

	Index
	EE DOC INDEX

