

THE ImpEE
PROJECT

IMPROVING
ENGINEERING
EDUCATION

Water

The
Cambridge-MIT
Institute

UNIVERSITY OF
CAMBRIDGE

The Blue Planet?

Total volume of water
on Earth (100%) =
1,386,000,000 km³

Total freshwater (2.5%)
= 35,029,000 km³

Available freshwater =
200,000 km³

Hydrological Cycle

Residence time in the atmosphere is approximately 1 week

Transpiration
takes a few hours

Residence time of
lakes approximately
10 years

60% of molecules falling as rain
are re-evaporated in 1-2 days

Available -
47,000 km³/yr (8%)

Residence time of groundwater
may be thousands of years

Atmospheric water
0.035% of the Earth's fresh water

119,000
km³/yr
(20%)

458,000
km³/yr
(80%)

505,000
km³/yr
(88%)

Residence time of oceans
approximately 100 years

Water Supply

The role of engineers

“The engineers that help realise these water supply opportunities will be this century’s most valued peace keepers”

Andrew Mylius

Water Scarcity

Water debt

- If the amount of ground water withdrawn exceeds natural inflow, there is a water debt
- In such cases, water should be considered as a non-renewable resource that is being mined.

Water debt

Desalination

- Seawater contains about 3.5% salt
- One cubic meter of sea water contains around 40kg of salt
- To produce 'freshwater' the salt content must be reduced to less than 0.05%

Desalination

Sea water pumped
through at a pressure
of approximately
7,000 bar

1.8 units
of seawater

Membrane filter

1 unit
freshwater

0.8 units
wastewater

Increasing Global Use

Global Freshwater Use

Data from 1992

Water Use

Agriculture

Manufacturing

State of Rivers

State of UK Rivers

UK domestic water use

Potable quality water required only for those applications **indicated** – approximately one third of total domestic use

Energy costs of stricter water treatment legislation

- Water Industry and Global Water
- The Paradox of treating all water to a fully potable standard

Flooding

Recent Developments

Expansion onto flood plain

Key buildings such as hospitals at risk of flooding

Early Settlements

Built on high ground above rivers

Key buildings such as churches protected from flooding

Population growth and increasing urbanisation, coupled with paving over of more land leads to less surface water infiltration, higher peak flow after storms and increased frequency and severity of flood events

Dublin Principles

Principle No. 1: Fresh water is a finite and vulnerable resource, essential to sustain life, development and the environment.

Principle No. 2: Water development and management should be based on a participatory approach, involving users, planners and policy-makers at all levels.

Principle No. 3: Women play a central part in the provision, management and safeguarding of water.

Principle No. 4: Water has an economic value in all its competing uses and should be recognised as an economic good.

Hydropolitics

Control of Water Resources: Water supplies or access to water at the root of tensions

Military Tool: Water resources, or water systems themselves, used by a nation or state as a weapon during military action

Political Tool: Water resources, or water systems themselves, used by a nation, state or non-state actors for a political goal

Terrorism: Water resources, or water systems, as targets or tools of violence or coercion by non-state actor

Military Target: Water resource systems as targets of military actions by nations or states

Development Disputes: Water resources or systems as source of contention in the context of social and economic development

© University of Cambridge, 2006

This material was produced as a part of the ImpEE Project at the University of Cambridge. It may be reproduced, modified and used freely for educational purposes.

UNIVERSITY OF
CAMBRIDGE

The
Cambridge-MIT
Institute

ImpEE is based at the Department of Engineering at the University of Cambridge and is funded by the CMI Institute.