Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers
M. Piquemal-Banci, R. Galceran, S. Caneva, M.-B. Martin, R. S. Weatherup, P. R. Kidambi, K. Bouzehouane, S. Xavier, A. Anane, F. Petroff, A. Fert, J. Robertson, S. Hofmann, B. Dlubak, and P. Seneor

View online: http://dx.doi.org/10.1063/1.4943516
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/10?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Large-scale fabrication of BN tunnel barriers for graphene spintronics

Magnetic anisotropy in the boron nitride monolayer doped by 3d transitional metal substitutes at boron-site

Electron tunneling through atomically flat and ultrathin hexagonal boron nitride

Surface flattening processes of metal layer and their effect on transport properties of magnetic tunnel junctions with Al–N barrier
J. Appl. Phys. 97, 10C920 (2005); 10.1063/1.1854452

Determination of the thickness of Al 2 O 3 barriers in magnetic tunnel junctions
Appl. Phys. Lett. 81, 751 (2002); 10.1063/1.1496131
Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

M. Piquemal-Banci,1 R. Galceran,1 S. Caneva,2 M.-B. Martin,2 R. S. Weatherup,2 P. R. Kidambi,2 K. Bouzehouane,1 S. Xavier,3 A. Anane,1 F. Petroff,1 A. Fert,1 J. Robertson,2 S. Hofmann,2 B. Dlubak,1 and P. Seneor1

1Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767, France
2Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom
3Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767, France

(Received 5 November 2015; accepted 25 February 2016; published online 8 March 2016)

We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer. © 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4943516]

Spintronics has been at the heart of the data storage revolution with the proliferation of data centers and the advent of big data. A key element of this revolution is the magnetic tunnel junction (MTJ).1–3 While intense research has been carried out on MTJs, the most commonly used tunnel barrier materials remain MgO or Al2O3. The issue with these metal oxides is that, when thinned down, they may present non-uniform thicknesses, pinholes, and defects which influence the performance of the devices. Hence, they are difficult to control at the monolayer scale while 2D materials, natural monolayers, are now available through the large scale chemical vapor deposition (CVD) growth. One can now think of atomically thin MTJs tunnel barriers based on heterojunctions of 2D materials. Additionally, epitaxial monolayers are grown on various ferromagnets (FMs).4–7 Even greater tailoring potential could be achieved after the growth through ferromagnet intercalation,8,9 which would allow fine tuning of the 2D material/ferromagnet coupling (e.g., resistance-area product, spin polarization, and anisotropy). In this direction, low resistance area products, strong exchange couplings across the interface, and high magnetoresistance ratios were predicted.10,11 The development of 2D materials for MTJs thus appears promising with potential now emerging such as passivation against ferromagnet oxidation and spin filtering.6 Among the 2D materials, hexagonal boron nitride (h-BN), an insulating isomorph of graphene, has already been proposed as an embedding layer for lateral graphene devices12–14 and as a barrier in van der Waals heterostructures,15 thanks to its atomically thin and chemically inert nature. Moreover, experimentally, h-BN has already showed tunneling behavior in vertical devices.16–18 Hence, as supported by theoretical predictions,10,11,19 h-BN appears as a very promising tunnel barrier candidate for MTJs. Its characterization in functional MTJs now appears all the more crucial as h-BN is progressively introduced in lateral spintronic devices to enhance the transport properties. Experimentally, a previous study20 reported results on the fabrication of MTJs based on transferred h-BN obtained by CVD. However, the measured tunnel magnetoresistance (TMR) effect of 0.3%–0.5%, which corresponds to a tunnel spin polarization P of only 0.05%–0.25% for FM/h-BN interfaces (estimation based on the Jullière’s formula21), was far from expectations.10,11,19 In this case, the efficiency of the MTJs may have been impacted by the quality of the interfaces at play.

In this letter, we report on Co/h-BN/Fe MTJ, where the large area monolayer h-BN tunnel barrier is grown directly by CVD on Fe. We show that the atomically thin directly grown CVD h-BN exhibits tunneling of the spin polarized electrons with a TMR of 6% and spin polarization P of 17%, two orders of magnitude larger than previously reported for complete MTJs incorporating the h-BN tunnel barriers. First, we perform the characterization of the tunnel properties of h-BN on Fe via Conductive Tip Atomic Force Microscopy (CT-AFM) measurements (Figure 1). Then, we focus on the integration of h-BN into complete magnetic tunnel junctions and their characterization (Figures 2 and 3).

The characterization of the tunnel properties of the h-BN layer is shown in Figure 1. Given that monolayer h-BN is a recently discovered material, very few experimental studies have been carried out to evaluate the monolayer h-BN tunnel barrier properties.16–18 In our study, the samples consist of Fe (1 μm thick, 99.99% purity) prepared by sputtering on an oxidized Si wafer (SiO2 (300 nm)/Si). The growth of h-BN on Fe is carried out by low pressure chemical vapor deposition with an undiluted borazine precursor, as previously reported.7 Briefly, pieces of 7 × 7 mm2 are diced and placed in a custom-built, cold-wall reactor (Aixtron Black Magic 3, base pressure 1 × 10−6 mbar). The samples are first annealed in 3.6 mbar of H2. At ∼940°C, the H2 is removed and borazine, (HBNH)3, is dosed into the chamber via a leak valve until a pressure of 6 × 10−3 mbar is reached. The samples are exposed to borazine for 5 min. After growth,
the borazine is removed, and the heater is switched off. The samples are cooled in vacuum. The characterization of the h-BN layers by the CT-AFM measurements consists of applying a voltage between the substrate and the surface of the sample and measuring the resulting current at the surface. The CT-AFM is thus particularly suited for the characterization of tunnel barriers (thin oxide layers, self-assembled monolayers (SAMs), etc.). Here, we measure the tunnel resistance of our samples as a function of the number of h-BN layers. The bias voltage used is 1.5 V. The measurements are made with a highly doped polycrystalline diamond coated tip of 2 N/m at a rate of 0.5 Hz over large scanning areas (tens of microns).

The CT-AFM measurements allow us to extract information about the tunnel behavior of the h-BN and its homogeneity. Figure 1(a) shows a resistance mapping image of an annealed Fe surface before h-BN CVD growth which we use as a baseline. We note that the sample was annealed at the same temperature as that required for the h-BN growth. Figure 1(b) illustrates the resistance mapping image of the Fe surface after CVD growth, thus with monolayer coverage and Figure 1(c) with an additional layer of h-BN, transferred in the same way as reported previously.26 Hence, we have been able to obtain average values of the resistance of the annealed Fe surface before the CVD growth of h-BN, after the growth of h-BN (monolayer) and after the transfer of an additional layer of h-BN (bilayer). The contact resistance values measured between the conductive tip and the surface are approximately $7 \times 10^5 \, \Omega$ for annealed Fe, $10^7 \, \Omega$ for Fe/h-BN monolayer, and $10^9 \, \Omega$ for Fe/h-BN bilayer. The evolution of the resistance normalized against the bare resistance of Fe surface as a function of the number of h-BN layers on Fe is shown in Figure 1(d) and reveals an increase of approximately $10^{1.6} \, \Omega$/layer of h-BN. The resistance increases exponentially as a function of the number of h-BN layers and falls within the range of the previous values obtained of similar experiments.16–18 A value of the h-BN barrier height of $\phi = 0.85 \, eV$ is estimated from $\exp(-\sqrt{\phi d}) = 10^{-1.6}$ and $d = 0.4 \, nm$ for the h-BN barrier thickness measured by AFM.7 The resistance CT-AFM mapping and the normalized resistance trend obtained confirm the homogeneous tunnel properties of our direct CVD h-BN layer over large areas. It also demonstrates the ability to control the tunnel barrier resistance with the number of layers, thanks to its intrinsic two-dimensional nature.

In Figure 2, we illustrate the device structure and present the transport characterization of the magnetic tunnel junctions using h-BN, directly grown by CVD, as a tunnel barrier and Fe and Co as ferromagnetic electrodes. In order to define the microjunctions (Figure 2(a)), we spincoat UVIII photore sist on the Fe/h-BN and subsequently pattern small openings of $30 \times 30 \, \mu m^2$ in the resist. Then, we deposit the Co (15 nm) ferromagnetic top electrode by evaporation on the whole sample and cap it with Au (80 nm). Finally, droplets of epoxy are deposited on the junctions to protect the Fe/h-BN/Co/Au structure and to act as a mask during a final ion beam etching step. I(V) and dI/dV(V) spectroscopy characterization of the junction and magnetic transport measurements have been carried out with an AC-DC lock-in based measurement setup in a cryogenic measurement system at 1.4 K. The non-linear I(V) and parabolic dI/dV(V) point to typical tunneling behavior (Figure 2(b)), validating our approach to integrate hBN directly by CVD in the MTJ device. No fine structure is seen in the parallel and antiparallel I(V) curves similarly to the case of amorphous Al_2O_3.

In Figure 3, we show the results of the magnetotransport measurements done with a 20 mV bias voltage at 1.4 K by switching the magnetization of the ferromagnetic electrodes. A TMR of $\sim 6\%$ is obtained (Figure 3(a)). The TMR value has been calculated by using the relation $TMR = \frac{R_{AP}-R_P}{R_P}$, where R_{AP} and R_P are the tunnel resistances measured in the antiparallel and parallel magnetization configurations of the ferromagnetic electrodes (based on the Jullière model21,27). Additionally, we observe a decrease in the TMR with increasing voltage (Figure 3(b)), which is a typical behavior of
MTJs. With the measured value of TMR, we estimate the mean spin polarization \(P \) at the interfaces by using the relation \(TMR = \frac{2P_1}{3P_1 + 1} \), which gives a \(P \) value of \(\sim 17\% \). While pioneering work by Dankert et al. reported values of 0.05\%-0.25\% for the spin polarization in FM/h-BN/FM junctions, our results are two orders of magnitude higher, highlighting the potential of h-BN as a tunnel barrier for spintronics. This vast improvement is certainly due to the direct CVD growth of the h-BN monolayer on the ferromagnetic metal, here Fe.

In conclusion, our results demonstrate the integration by direct CVD growth of atomically thin, homogeneous, and insulating h-BN tunnel barriers in magnetic tunnel junctions. The exponential dependence of the resistance as a function of the underlying ferromagnets (Fe, Ni, Co, …) is apparent in the h-BN layer and that the direct CVD growth of atomically thin, homogeneous, and insulating h-BN tunnel barriers in magnetic tunnel junctions. This vast improvement is certainly due to the CVD growth of atomically thin, homogeneous, and insulating h-BN tunnel barriers in magnetic tunnel junctions.

S.C. acknowledges funding from EPSRC (Doctoral Training Award). R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge and a Marie Sklodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union’s Horizon 2020 research and innovation program. P.R.K. acknowledges a Lindemann Trust Fellowship. S.H. acknowledges funding from ERC grant InsituNANO (No. 279342) and EPSRC grant GRAPHTED (EP/K016656/1). P.S. acknowledges the Institut Universitaire de France for a junior fellowship. This research was partially supported by the EU FP7 Work Program under Grant GRAFOL (No. 285275) and Graphene Flagship (No. 604391), and by the Marie-Curie-ITN 607904-SPINOGRAPH.