Publications

in international high impact journals


Interface dynamics and crystal phase switching in GaAs nanowires
Jacobsson D., Panciera F., Tersoff J., Reuter M. C., Lehmann S., Hofmann S., Dick K. A., Ross F. M.,
Nature 531, 317 (2016)

Synthesis of nanostructures in nanowires using sequential catalyst reactions
Panciera F., Chou Y.-C., Reuter M. C., Zakharov D., Stach E. A., Hofmann S., Ross F. M.,
Nature Materials 14, 820 (2015)

Revealing Lithium–silicide Phase Transformations in Nano-structured Silicon-based Lithium Ion Batteries via in situ NMR Spectroscopy
Ogata K., Salager E., Kerr C. J., Fraser A. E., Ducati C., Morris A.J., Hofmann S., Grey C. P.
Nature Comm. 5, 3217 (2014)

Observing Graphene Grow: Catalyst−Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper
Piran R. Kidambi, Bernhard C. Bayer, Raoul Blume, Zhu-Jun Wang, Carsten Baehtz, Robert S. Weatherup, Marc-Georg Willinger, Robert Schloegl, and Stephan Hofmann
Nano Lett 13, 4769 (2013)

Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources
Robert S. Weatherup, Carsten Baehtz, Bruno Dlubak, Bernhard C. Bayer, Piran R. Kidambi, Raoul Blume, Robert Schloegl, and Stephan Hofmann
Nano Lett 13, 4624 (2013)

In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth
Robert S. Weatherup, Bernhard C. Bayer, Raoul Blume, Caterina Ducati, Carsten Baehtz, Robert Schlogl, and Stephan Hofmann
Nano Lett. 11, 4154 (2011)

Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth
Stephan Hofmann, Renu Sharma, Christoph T. Wirth, Felipe Cervantes-Sodi, Caterina Ducati, Takeshi Kasama, Rafal E. Dunin-Borkowski, Jeff Drucker, Peter Bennett & John Robertson
Nature Materials 7, 372 - 375 (2008)

In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation
Stephan Hofmann, Renu Sharma, Caterina Ducati, Gaohui Du, Cecilia Mattevi, Cinzia Cepek, Mirco Cantoro, Simone Pisana, Atlus Parvez, Felipe Cervantes-Sodi, Andrea C. Ferrari, Rafal Dunin-Borkowski, Silvano Lizzit, Luca Petaccia, Andrea Goldoni, and John Robertson
Nano Lett., 2007, 7 (3), pp 602–608


all 2017 2016 2015 2014 2013 2012 2011 2010 2009 Pre 2009


175

Graphene Liquid-Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells using Electron Microscopy,

Dahmke I. N., Verch A., Hermannsdoerfer J., Peckys D. B., Weatherup R. S.,Hofmann S., De Jonge N.,

ACS Nano, asap. (2017)..

041

Structure and growth mechanism of ZnSe nanowires.

J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, a. Franciosi and C.B. Carter

J. Appl. Phys. 104, 064302 (2008).

040

Controlling the catalyst during carbon nanotube growth.

J. Robertson, S. Hofmann, M. Cantoro, A. Parvez, C. Ducati, G. Zhong, R. Sharma and C. Mattevi

J. Nanosci. Nanotech. 8, 6105 (2008).

039

In-situ X-ray Photoelectron Spectroscopy Study of Catalyst- Support Interactions and Growth of Carbon Nanotube Forests.

C. Mattevi, C.T. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schlögl and J. Robertson

J. Phys. Chem. C 112, 12207 (2008).

038

Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.

S. Hofmann, R. Sharma, C.T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R.E. Dunin-Borkowski, J. Drucker, P. Bennett and J. Robertson

Nature Mat. 7, 372 (2008).

037

Design of gas diffusion electrodes using nanocarbon.

M. Soehn, M. Lebert, C.T. Wirth, S. Hofmann and N. Nicoloso

J. Power Sources 176, 494 (2008).

036

Surface properties of vertically aligned carbon nanotube arrays.

C.T. Wirth, S. Hofmann and J. Robertson

Diam. Rel. Mat. 17, 1518 (2008).

035

Enhanced subthreshold slopes in large diameter single wall carbon nanotube field effect transistors.

S. Pisana, C. Zhang, C. Ducati, S. Hofmann and J. Robertson

IEEE Trans. Nanotech. 7, 458 (2008).

034

Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition.

C. Zhang, S. Pisana, C.T. Wirth, A. Parvez, C. Ducati, S. Hofmann and J. Robertson

Diam. Rel. Mat. 17, 1447 (2008).

033

Surface-bound chemical vapour deposition of carbon nanotubes: In situ study of catalyst activation.

C. Mattevi, S. Hofmann, M. Cantoro, A.C. Ferrari, J. Robertson, C. Castellarin-Cudia, S. Dolafi, A. Goldoni and C. Cepek

Physica E 40, 2238 (2008).

032

Flying and Crawling Modes during Surface-Bound Single Wall Carbon Nanotube Growth.

S. Pisana, A. Jungen, C. Zhang, A.M. Blackburn, R. Sharma, F. Cervantes-Sodi, C. Stampfer, C. Ducati, A.C. Ferrari, C. Hierold, J. Robertson and S. Hofmann

J. Phys. Chem. C 111, 17249 (2007).

031

Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y.Q. Fu, A.J. Flewitt, W.I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann and A.C. Ferrari

J. Appl. Phys. 102, 034302 (2007).

030

In-situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation.

S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A.C. Ferrari, R.E. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni and J. Robertson

Nano Lett. 7, 602 (2007).

029

Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining.

A. Jungen, S. Hofmann, J.C. Meyer, C. Stampfer, S. Roth, J. Robertson and C. Hierold

J. Micromech. Microeng. 17, 603 (2007).

028

Scalable silicon nanowire photodetectors.

P. Servati, A. Colli, S. Hofmann, Y.Q. Fu, P. Beecher, Z.A.K. Durrani, A.C. Ferrari, A.J. Flewitt, J. Robertson and W.I. Milne

Physica E 38, 64 (2007).

027

The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth.

S. Pisana, M. Cantoro, A. Parvez, S. Hofmann, A.C. Ferrari and J. Robertson

Physica E 37, 1 (2007).

026

Catalytic and seeded shape-selective synthesis of II–VI semiconductor nanowires.

A. Fasoli, A. Colli, S. Kudera, L. Manna, S. Hofmann, C. Ducati, J. Robertson and A.C. Ferrari

Physica E 37, 138 (2007).

025

Shape-selective synthesis of II–VI semiconductor nanowires.

A. Fasoli, A. Colli, S. Hofmann, C. Ducati, J. Robertson and A.C. Ferrari

Phys. Stat. Sol. B 243, 3301 (2006).

024

Synthesis and optical properties of silicon nanowires grown by different methods.

A. Colli, S. Hofmann, a. Fasoli, A.C. Ferrari, C. Ducati, R.E. Dunin-Borkowski and J. Robertson

Appl. Phys. A 85, 247 (2006).

023

Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures.

M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A.C. Ferrari, A.M. Blackburn, K.-Y. Wang and J. Robertson

Nano Lett. 6, 1107 (2006).

022

Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapour-transport.

A. Colli, a. Fasoli, S. Hofmann, C. Ducati, J. Robertson and A.C. Ferrari

Nanotechnology 17, 1046 (2006).

021

Selective growth of vertically aligned carbon nanofibres in sub-micron patterns and Raman mapping of produced arrays.

V.B. Golovko, M. Cantoro, S. Hofmann, B. Kleinsorge, J. Geng, D.A. Jefferson, A.C. Ferrari, J. Robertson and B.F.G. Johnson

Diam. Rel. Mat. 15, 1023 (2006).

020

Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films.

M. Cantoro, S. Hofmann, S. Pisana, C. Ducati, A. Parvez, A.C. Ferrari and J. Robertson

Diam. Rel. Mat. 15, 1029 (2006).

019

Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes.

S. Hofmann, M. Cantoro, M. Kaempgen, D.-J. Kang, V.B. Golovko, H.W. Li, Z. Yang, J. Geng, W.T.S. Huck, B.F.G. Johnson, S. Roth and J. Robertson

Appl. Phys. A 81, 1559 (2005).

018

Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes.

V.B. Golovko, H.W. Li, B. Kleinsorge, S. Hofmann, J. Geng, M. Cantoro, Z. Yang, D.A. Jefferson, B.F.G. Johnson, W.T.S. Huck and J. Robertson

Nanotechnology 16, 1636 (2005).

017

Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth.

S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson and C. Ducati

J. Appl. Phys. 98, 034308 (2005).

016

Low temperature synthesis of carbon nanofibres on carbon fibre matrices.

B.O. Boskovic, V.B. Golovko, M. Cantoro, B. Kleinsorge, A.T.H. Chuang, C. Ducati, S. Hofmann, J. Robertson and B.F.G. Johnson

Carbon 43, 2643 (2005).

015

Surface Diffusion: The Low Activation Energy Path for Nanotube Growth.

S. Hofmann, G. Csányi, A.C. Ferrari, M. Payne and J. Robertson

Phys. Rev. Lett. 95, 036101 (2005).

014

Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy.

A. Colli, S. Hofmann, A.C. Ferrari, F. Martelli, S. Rubini, C. Ducati, a. Franciosi and J. Robertson

Nanotechnology 16, S139 (2005).

013

Wet catalyst assisted growth of carbon nanofibers on complex three-dimensional substrates.

M. Cantoro, V.B. Golovko, S. Hofmann, D.R. Williams, C. Ducati, J. Geng, B.O. Boskovic, B. Kleinsorge, D.A. Jefferson, A.C. Ferrari, B.F.G. Johnson and J. Robertson

Diam. Rel. Mat. 14, 733 (2005).

012

Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy.

A. Colli, S. Hofmann, A.C. Ferrari, C. Ducati, F. Martelli, S. Rubini, S. Cabrini, a. Franciosi and J. Robertson

Appl. Phys. Lett. 86, 153103 (2005).

011

Nickel formate route to the growth of carbon nanotubes.

J. Geng, H. Li, V.B. Golovko, D.S. Shephard, D.A. Jefferson, B.F.G. Johnson, S. Hofmann, B. Kleinsorge, J. Robertson and C. Ducati

J. Phys. Chem. B 108, 18446(2004).

010

Growth of aligned carbon nanofibres over large areas using colloidal catalysts at low temperatures.

B. Kleinsorge, V.B. Golovko, S. Hofmann, J. Geng, D.A. Jefferson, J. Robertson and B.F.G. Johnson

Chem. Comm. 12, 1416 (2004).

009

Self-assembly of novel nanowires by thermolysis of fullerene and transition metal thin films.

S. Hofmann, J. Robertson, C. Ducati and R.E. Dunin-Borkowski

Nanotechnology 15, 601 (2004).

008

Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes.

S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari and J. Robertson

Diam. Rel. Mat. 13, 1171 (2004).

007

Controlled low-temperature growth of carbon nanofibres by plasma deposition.

S. Hofmann, B. Kleinsorge, C. Ducati and J. Robertson

New J. Phys.5, 153 (2003).

006

Raman Spectrum of silicon nanowires.

S. Piscanec, A.C. Ferrari, M. Cantoro, S. Hofmann, J.A. Zapien, Y. Lifshitz, S.T. Lee and J. Robertson

Mat. Sci. Eng. C 23, 931(2003).

005

Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates.

S. Hofmann, C. Ducati, B. Kleinsorge and J. Robertson

Appl. Phys. Lett. 83, 4661 (2003).

004

Raman spectroscopy of silicon nanowires.

S. Piscanec, M. Cantoro, A.C. Ferrari, J.A. Zapien, Y. Lifshitz, S. Lee, S. Hofmann and J. Robertson

Phys. Rev. B 68, 241312(2003).

003

Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition.

S. Hofmann, C. Ducati, R.J. Neill, S. Piscanec, A.C. Ferrari, J. Geng, R.E. Dunin-Borkowski and J. Robertson

J. Appl. Phys. 94, 6005 (2003).

002

Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition.

S. Hofmann, C. Ducati, B. Kleinsorge and J. Robertson

Appl. Phys. Lett. 83, 135 (2003).

001

Low-Temperature Self-Assembly of Novel Encapsulated Compound Nanowires.

S. Hofmann, C. Ducati and J. Robertson

Adv. Mat., 14, 1821 (2002).

Notice to the web visitors: Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the publisher and the web site owner.