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Predicting Failure in Glass—A General Crack Growth Model

M. Overend1; G. A. R. Parke2; and D. Buhagiar3

Abstract: The successful design of glass as a structural element depends mainly on the ability to predict failure with accuracy and ease.
Over the last 30 years various failure prediction models have been put forward for determining the load bearing capacity of glass, some
of which have been adopted in national codes of practice. The differences between these models translate into a wide range of glass
strength and glass thickness values in glass design. This paper compares the mathematical formulations of a number of existing failure
prediction models, and the differences between these models are identified and discussed. From these comparisons a general crack growth
model �GCGM� based on established statistical failure theory with linear elastic fracture mechanics is proposed. The performance of the
existing models and the proposed GCGM is compared by physical and numerical investigations. The proposed model is shown to provide
a basis for an accurate and automated method for determining the tensile strength of glass subjected to static loads and valid for any
geometry and support condition.
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Introduction

Glass structures have evolved from traditional curtain wall glaz-
ing, in which the glass is supported along two or four edges by a
metal framework, to the current point-supported structural glass
assemblies, where the glass plates are connected to each other and
to a supporting structure by discrete clamped or bolted fixings
usually located toward the corners of the glass panels. Point-
supported glass facades are often top hung, i.e., the upper plate of
glass carries the self-weight of the plate below; therefore the glass
plates in top-hung structural glass facades are subjected to a com-
bination of lateral wind loads and in-plane load. Furthermore,
various glass elements are increasingly being used as load bearing
elements in locations other than the façade, e.g., glass beams or
fins, glass stairs, glass floors, glass balustrades, etc.

The lack of an accurate and user-friendly methodology for
determining the strength of glass, particularly one that caters to
the wide range of possible loading and support conditions, in-
duces engineers to adopt large safety factors and expensive pro-
totype testing. In addition, there is a lack of published research
and test data on the performance of the more recent forms of
structural glass assemblies.

Despite these shortcomings, a number of failure prediction

models have been proposed over the last 30 years. These models
were originally developed for laterally loaded rectangular glass
plates; however they provide a valuable source of information on
the factors that affect glass strength and the mechanics of glass
failure. These failure models include the pioneering work of
Brown �Brown 1974� and the seminal work of Beason and
Morgan �Beason 1980; Beason and Morgan 1984� that form the
basis of the United States and Canadian codes of practice �ASTM
1997; CAB/CGSB 1989�. Two of the more recent models are: the
model proposed by Sedlacek et al. �1995� that forms the basis of
the European code of practice �CEN 1997�; and the crack growth
model put forward by Fischer-Crippps and Collins �1995�. The
common approach of all these models is that maximum stress
oriented theories are unable to portray the strength of glass accu-
rately and that an accurate determination of the strength of glass
should be achieved by relating the probability of failure to the
factors affecting Griffith flaw characteristics. This is widely
accepted as the most accurate approach by the glass design com-
munity, however the complexity of these models makes them un-
attractive for manual computation.

This paper summarizes the basic mechanics of glass failure
with respect to the various factors that affect glass strength and
discusses how the above-mentioned failure models allow for
these factors. A general failure prediction model based on estab-
lished statistical failure theory and linear elastic fracture mechan-
ics is also put forward in this paper. The proposed model, referred
to as the general crack growth model �GCGM�, extends the
Fischer-Cripps and Collins �1995� model to account for variations
in the maximum and minimum principle stresses on the surface of
the glass and covers the use of heat strengthened and fully
tempered glass. An automated approach is subsequently used to
compare the predictions obtained from the existing and proposed
failure models. Thee predictions are verified by experimental in-
vestigations carried out by both the writers and by independent
experimental investigations �Abiassi 1981; Dalgliesh and Taylor
1990; Norville et al. 1991�.
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The Strength of Glass

The random molecular structure of glass lacks crystallinity or
long-range order and has no slip planes or dislocations to allow
yield before fracture; consequently, glass exhibits brittle fracture
at a theoretical value between 15,000 and 21,000 MPa �Holloway
1973; Creyke et al. 1982�. On freshly drawn glass fibers, tensile
stresses of up to 5,000 MPa have been measured and, even when
incorporated into a resin to form glass reinforced plastic, the glass
fibers have a usable stress of 1,200 MPa �Sedlacek et al. 1995,
Button and Pye 1993�. However, the characteristic strength of
architectural glass proposed by the draft European Standard is
45 MPa �CEN 1997� and weathered window glass was reported
to fail at stress levels of around 25 MPa �Button and Pye 1993�.
Furthermore, the Institution of Structural Engineers �2000� pro-
posed a value of 8 MPa for the design strength of annealed glass
subjected to long-term stresses.

Mechanics of Glass Failure

These large variations between the theoretical and practical
strength of glass were explained by A. A. Griffith in 1920 �Griffth
1920�. Griffith argued that fracture did not start from a pristine
surface, but from preexisting flaws �Griffith flaws� on that sur-
face. Basing his work on the research carried out by Inglis �1913�
on elliptical cavities in plates, Griffith went on to describe crack
growth as a reversible thermodynamic process.

Irwin �Lawn 1993� extended the original Griffith energy bal-
ance concept to provide a means of characterizing a material in
terms of its brittleness or fracture toughness. A convenient mate-
rial property defined by Irwin is the stress intensity factor, K,
which represents the elastic stress intensity near the crack tip and
depends on the applied loading and the specimen geometry. The
stress intensity factor for mode 1 loading is K1, where mode 1
corresponds to normal separation of the crack walls under the
action of tensile stresses and is given by

KI = �Y��c�1/2 �1�

where the shape correction factor, Y, accounts for different ratios
of crack length to specimen width, and the proximity of the crack
to the specimen boundaries. A value of 0.713 has been proposed
for half-penny cracks in a semi-infinite glass specimen shown in
Fig. 1 �Fischer-Cripps and Collins 1995; Lawn 1993�. Irwin also
described the resistance to fracture by means of the plane strain
fracture toughness, KIC, which is the critical value of the stress
intensity factor in Eq. �1�, i.e., when KI=KIC instantaneous frac-

ture occurs. A typical value for KIC for soda lime glass is
0.78 MPa1/2 �Atkins and Mai 1988�.

These fundamentals of fracture mechanics show that the ten-
sile strength of glass is governed by the nature of the surface
flaws and provide an explanation for the large scatter of results
obtained when seemingly identical glass specimens are tested to
failure. The presence of flaws on the glass surface also accounts
for the fact that glass failure can usually be traced back to a single
point of origin, known as the critical flaw, that rarely coincides
with the point of maximum stress. This inherent variability asso-
ciated with the surface flaw characteristics implies that the
strength must be treated statistically and that maximum stress-
oriented theory is unable to portray the tensile strength of glass
accurately.

The most common way of reducing the deleterious effect of
the flaws is by tempering the glass. In this process the glass is
heated and then rapidly quenched, thus introducing a parabolic
stress gradient within the thickness of the glass whereby the out-
side surface is stressed in compression �Fig. 2�. Any externally
applied force must overcome the surface precompression before
any surface tensile stress can be set up. Tempered glass with a
surface precompression of 120 N/mm2 is commercially available,
however the presence of other surfaces such as at plate edges,
corners, and holes may distort the parabolic stress distribution and
consequently reduce the surface precompression at these locations
�Laufs and Sedlacek 1999�.

Flaw Statistics

The two-parameter Weibull distribution is reported to provide the
best statistical representation of the strength of glass specimens
�Weibull 1951; Behr et al. 1991�. This distribution adopts two
interdependent parameters m and k in order to predict the prob-
ability of failure Pf of a specimen given by Eq. �2�

Pf = 1 − exp�− kA�s
m� �2�

The surface strength parameters m and k can only be determined
by experiment and form the basis of the existing failure models
discussed in the ensuing section. From the various numerical and
physical tests carried out �Beason 1980; Beason and Morgan
1984; Sedlacek et al. 1995; Dalgliesh and Taylor 1990; Norvelle
et al. 1991, and Charles 1958�, it may be concluded that the
long-term strength of glass depends on the following parameters:
1. Duration of application of load.
2. Surface area of glass exposed to the tensile stress.
3. Orientations of the surface flaws with respect to the principle

stresses on the surface of the glass.

Fig. 1. Half penny crack �adapted from Lawn 1993�

Fig. 2. Parabolic stress distribution resulting from tempering process
�adapted from Laufs and Sedlacek 1999�
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4. Environmental conditions, especially humidity.
5. Magnitude and distribution of the net surface tensile stresses.

Existing Failure Models

The increasing use of glass as a load-bearing material has led to
the development of a number of failure prediction models. The
aim of these failure models is to arrive at a value of allowable
load or stress for an acceptable probability of failure in terms of
the environmental and geometrical parameters. The earliest such
failure model, the load duration theory, was proposed by Brown
in 1974 �Brown 1974�. Beason �1980� and Beason and Morgan
�1984� developed the glass failure prediction model, which con-
stitutes the backbone of the United States �ASTM 1997� and
Canadian �CAN/CGSB 1989� standards, and is based on the
semiempirical thermodynamic formulations of Charles �1958�.
Recently an alternative treatment of the failure of brittle solids,
derived from elastic fracture mechanics and subcritical crack
growth, has emerged in the form of the crack growth models of
Sedlacek et al. �1995� and Fischer-Cripps and Collins �1995�.
More recently, Porter and Houlsby �2001� have proposed an al-
ternative design method with underlying fracture mechanics for-
mulations similar to those adopted by Fischer-Cripps and Collins.
These failure prediction models constitute a valuable source of
information for the structural design of glass. However, these
models have never been compared and therefore it seems oppor-
tune to do so.

The main discrepancies between the existing failure models
arise from the adoption of dissimilar surface strength parameters
m and k and from the different representations of the load
duration, surface area, and flaw orientation effects on the tensile
strength of glass. These aspects are discussed in detail in the
following sequel.

The surface strength parameters shown in Table 1 and the
probability distribution functions �PDFs� plotted in Fig. 3 reveal
that there is good agreement between the functions adopted by
Brown �1974�, Fischer-Cripps and Collins �1995�, ASTM �1997�,
and CAN/CGSB �1989�. The Sedlacek et al. �1995� PDF, which
forms the basis of the draft European Standard �CEN 1997�,
shows reasonable agreement with the Brown �1974�, Fisher-
Cripps & Collins �1995�, ASTM �1997�, and CAN/CGSB �1989�
functions at low probabilities of failure. There is however a large
disparity between the Sedlacek et al. �1995� model and the others
at higher probabilities of failure. This is due to a high surface

strength parameter �m=25� adopted by this model indicating an
uncharacteristically low variability in glass strength. It is impor-
tant to note that the Beason and Morgan �1984� PDF was derived
from testing weathered glass and consequently provides the low-
est strength values. The ASTM E-1300-97 �ASTM 1997� and
CAN/CGSB 12.20-M89 �CAN/CSB 1989� functions were also
formulated for weathered glass, however they provide a more
optimistic strength prediction than Beason and Morgan �1984�.

These differences in surface strength parameters result in con-
siderable differences in the strength values of glass in practical
applications. An example of this is shown in Table 2 in which the
failure stresses have been derived for a 1 m2 plate of annealed
glass with a uniformly applied surface tensile stress and a 60 s
load duration.

The existing models also account for degradation of the tensile
strength of glass with increasing load duration. This phenomenon,
termed stress corrosion �or static fatigue�, is caused by the sub-
critical crack growth on the glass surface at stress levels below
instantaneous failure stress. Under constant load and constant
relative humidity, the 60 s equivalent stress may be expressed by

�e = �s� tf

60
�1/n

�3�

where �s is derived from Eq. �2� and n=stress corrosion constant,
the magnitude of which is dependent on environmental condi-
tions, especially humidity.

The stress corrosion effects adopted by the various models, for
a typical 1 m2 uniformly stressed plate and a probability of failure

Table 1. Surface Strength Parameters

Failure model

Surface strength parameters

m k

Brown �1974�;
Fischer-Cripps and Collins �1995�
As-received glass

7.3 5.1�10−57 m−2 Pa−7.3

Beason �1980�
Weathered glass

6 7.19�10−45 m−2 Pa−6

Beason and Morgan �1984�
As-received glass

9 1.32�10−69 m−2 Pa−9

ASTM �1997�;
CAN-CGSB �1989�
Weathered glass

7 2.86�10−53 m−2 Pa−7

Sedlacek et al. �1995�;
CEN/TC129/WG8 �CEN 1997�
As-received glass

25 2.35�10−188 m−2 Pa−25

Fig. 3. PDF at low probabilities of failure �dotted lines represent
weathered glass�

Table 2. Comparison of 1960s Equivalent Stresses

Failure model

1960s Equivalent
failure stress

�MPa�

Pf =1/125 Pf =1/1,000

Brown �1974� 15.50 11.85

Beason �1980� 10.19 7.20

Beason and Morgan �1984� 26.24 20.89

ASTM �1997�;
CAN-CGSB �1989�

16.11 11.96

Sedlacek et al. �1995�,
CEN/TC129/WG8 �CEN 1997�

14.39 13.38

Fischer-Cripps and Collins �1995� 17.25 13.41
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of 1/1,000, are shown in Fig. 4. The asymptotical ends to the
Fisher-Cripps and Collins and the Sedlacek et al. load duration
curves represent the static fatigue limits beyond which subcritical
crack growth will not occur. The static fatigue limit shown on the
Sedlacek et al. �1995� curve is that adopted by the draft European
Standard �CEN 1997�.

From Fig. 4, it is evident that the Beason and Morgan �1984�
model provides the most optimistic prediction of glass strength.
This is a direct result of the surface strength parameters adopted,
as discussed in the previous section. However, the models repre-
sented by the continuous functions are in close agreement in
terms of the relative strength of glass between long-term and
short-term loads. For example, the tensile strength of glass sub-
jected to a constant load for a 1-month duration ranges between
0.49 and 0.53 of the 60 s strength depending on the failure model
adopted.

The CAN/CGSB �1989� step function provides a good lower-
bound approximation to the Brown �1974� curve. The Fisher-
Cripps and Collins �1995� and Sedlacek et al. �1995� load
duration curves are in very close agreement. However there are
two anomalies in the draft European Standard �CEN 1997�. The
first is that the step function set out by this standard straddles the
Sedlacek et al. curve and therefore does not appear to provide a
safe representation of the stress corrosion characteristics proposed
by Sedlacek et al. �1995�. Second, the static fatigue ratio of 27%
adopted by the European standard is outside the 32–38% range of
static fatigue limits reported elsewhere �Wan et al. 1961; Shand
1965; Wiederhorn and Bolz 1970; Wiederhorn 1977; Michalske
1983�. In this latter case the European standard seems to overes-
timate the deleterious effects of stress corrosion.

The existing failure models also account for the reduction in
the tensile strength of glass with increasing surface area. The
relationships between the strength and the stressed surface are
shown in Fig. 5. The relative strength on the ordinate Y axis
represents the ratio of the tensile strength for a given surface area
to the tensile strength of a 1 m2 glass plate and equates to
�Ao /A�1/m.

Fig. 5 reveals that there is good agreement between the
Fischer-Cripps and Collins �1995� curve, which is identical to
Brown’s relationship, and the ASTM �1997� and CAN/CGSB
�1989� curves. There is less agreement between the above-
mentioned curves and the relationship proposed by Beason and
Morgan �1984�, but the differences are within ±3% for a surface
area between 0.5 and 4 m2. The Sedlacek et al. �1995� strength
versus area relationship implies that the surface area has a less
pronounced effect on the strength of glass than that proposed by

the other failure models. This discrepancy is mainly attributed to
the relatively high surface strength parameter �m=25� adopted by
the European standard.

Surprisingly, the crack growth models proposed by Fischer-
Cripps and Collins �1995� and Sedlacek et al. �1995� fail to con-
sider the effect of the orientation of the surface flaws and the
magnitude of principle stresses on the tensile strength of glass.
This is clearly a shortcoming, particularly because the propensity
of a flaw to initiate failure �and hence the tensile strength� is a
function of the orientation of the flaw with respect to the major
and minor principal stresses �max and �min. �Fig. 6�.

The variations of normal stresses with flaw orientations are
included in the glass failure prediction model proposed by Beason
�1980� which was subsequently extended by Beason and Morgan
�1984�. This was achieved by introducing a biaxial stress modifi-
cation factor based on Weibull’s formulation �Weibull 1951� such
that Eq. �2� may be rewritten as

Pf = 1 − exp�kA�cb�s�m� �4�

where

Fig. 4. Stress corrosion curves for annealed glass Fig. 5. Relative strength of annealed glass with variations in surface
area �dotted lines represent weathered glass�

Fig. 6. Flaw orientation
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cb = � 2

�
�

0

�

�cos2 � + n sin2 ��md�	1/m

�5�

Formulation of General Crack Growth Model

From the comparisons carried out in the previous sections it is
evident that the crack growth models are the closest representa-
tion of the failure mechanism at microscopic level, and are there-
fore, best suited to determine the probability of failure of glass.
However, these models do not take into account all five factors
listed in the previous section that are known to affect glass
strength. Notably, the crack growth models proposed by Sedlacek
et al. �1995� and Fischer-Cripps & Collins �1995� do not consider
the effects of surface flaw orientation on the tensile strength of
glass. From these two existing failure models the Fischer-Cripps
and Collins model is preferred by the writers as it adopts a veri-
fied stress corrosion limit and surface strength parameters that are
within the range of values reported elsewhere �Table 1�.

Tensile Strength of Glass

Since tempered glass is used in the majority of structural glass
applications it is therefore essential to account for the surface
precompression in the proposed model. In tempered glass, the
stress corrosion phenomenon only occurs after the applied tensile
surface stress exceeds the residual precompression �r. Eq. �1�
may therefore be used to characterize the instantaneous failure �s

of glass with a modification, �r, to take into account the surface
precompression induced by the tempering process as given by
Eq. �6�.

�s = �KIC/Y��c�1/2� + �r �6�

It is important to note that the thermally induced surface precom-
pression is distorted close to free edges and holes in the glass
�Laufs and Sedlacek 1999�. Therefore the magnitude of �r de-
pends on the location under consideration.

If the applied tensile stress exceeds the thermally induced sur-
face precompression �r at a specific location, the net tensile stress
may either cause a critical flaw to fail instantaneously or it may
cause a flaw to grow subcritically, under sustained load, until it
reaches a length that will cause failure of the glass. Since the
static and pseudostatic load durations encountered in practice nor-
mally include medium and long-term loads ranging from a few
minutes to the full service life, it is necessary to transform the
instantaneous annealed glass failure strength, �s, to an equivalent
�same probability� failure strength, � f, by taking into account the
stress corrosion characteristics of glass. The � f /�p relationship,
termed the stress corrosion modification factor kmod, is equivalent
to the ratio of stress concentration factors KIC /KI defined by
Fischer-Cripps and Collins �1995�, such that

KI =
KIC�s

� f
�7�

The time required for a flaw to grow subcritically from its initial
unstressed size to a final critical size that will cause failure was
also derived by Fischer-Cripps and Collins �1995� and is given by

tf =
2KI

2−n

D�n − 2��s
2Y2�

�8�

by substituting Eq. �4� into Eq. �5� gives

kmod =
� f

�s
= � tfD�n − 2�KIC

n−2�s
2Y2�

2
	1/�n−2�

� 0.346 �9�

where KIC=critical stress intensity factor with a value of 0.78
�106 m1/2 Pa �Atkins and Mai 1988�, Y =shape correction factor
with a value of 0.713 for half-penny cracks �Atkins and Mai
1988�, n=static fatigue constant taken as 16, and �s

=instantaneous stress applied for a time tf. However, the stress
corrosion modification factor, kmod, is limited by a stress �or crack
length� below which subcritical crack growth will not occur. This
is represented by the 0.346 limit in Eq. �9�.

The surface tensile strength � f may therefore be obtained from
Eq. �10� as suggested in the Draft European Standard �CEN
1997�:

� f = kmod�s + �r/�v �10�

where kmod=stress corrosion modification factor obtained from
Eq. �9�, �s=instantaneous failure stress for annealed glass ob-
tained from Eq. �2� for a required probability of failure Pf, �r

=surface precompression due to the tempering process provided
by the manufacturer, and �v=safety factor depending on the sur-
face precompression, the magnitude of which depends on the
level of quality assurance. The draft European Standard �CEN
1997� uses the material safety factor, �v, to account for both the
level of quality assurance and the reduced magnitude of precom-
pression close to the edges of the glass. The values of �v sug-
gested by the draft European Standard range between 1.5 and 2.4.

The combined influence of load duration and stressed area on
the strength of glass may be expressed by means of a failure
envelope for a given probability of failure �Fig. 7�. The surface
plotted in Fig. 7 represents the failure stresses for a range of load
durations tf and surface areas A, and a probability of failure Pf of
1/1,000. A glass specimen with a known surface area and load
duration may be represented by a point in Pf /A / tf space. A point
above the surface indicates that the probability of failure is
greater than 1/1,000 and a point on or below the surface indicates
that the glass specimen in question has a probability of failure that
is equal to or less than 1/1,000, respectively. Interestingly, the
plan view of this failure surface shown in Fig. 8 is very conve-
nient for obtaining graphically the kmod�s term used in Eq. �5�.

Fig. 7. Failure envelope for annealed glass
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Applied Stress

The risk of failure experienced by a glass plate is related to the
magnitude of the applied stresses which act normal to the longi-
tudinal axis of the surface flaws as shown in Fig. 6. This is also
known as mode I loading. The term �� in Eqs. �2� and �9� are
both derived from experiments where the stress is applied perpen-
dicular to a crack �Wan et al. 1961; Shand 1965; Wiederhorn and
Bolz 1970; Wiederhorn 1977; Michalske 1983�. Although it is
unlikely that the precise orientation of surface flaws on glass
plates will ever be known, it is nevertheless possible to incorpo-
rate the variation of normal stress with flaw orientation as
suggested by Beason and Morgan �1984� based on the formula-
tions of Weibull �1951� as shown in Eqs. �4� and �5�.

If the critical flaw is oriented at � from the plane of the maxi-
mum principal stress �max and assuming that mode I loading is
the only contributor to crack propagation, the stress applied per-
pendicular to a flaw shown in Fig. 6 may be rewritten as

�a = cb�max �11�

where cb=biaxial stress correction factor ranging from 0.77, for
�min/�max=1.0, to unity, for �min/�max=−1.0 �Beason and
Morgan 1984�.

This relationship between the normal principle stresses and the
probability of failure for a 1 m2 glass plate is plotted in Fig. 9.

The summation of all the stresses present on the glass surface
may be conservatively taken as the maximum applied stress �a

over the whole plate surface. This is usually overly conservative
and a more accurate approach is to summate the contributions of
various stressed areas on the surface of the glass to the probability
of failure. This approach may be derived from the original formu-
lations of Beason and Morgan �1984� and the elaborations in the
draft European Standard �CEN 1997�, Overend et al. �1999�, and
Overend �2002� such that

�p = � 1

A
�

area

�cb�max�m dA	1/m

�12�

where �p=equivalent uniform stress and represents a weighted
average of the surface tensile stress distribution on the glass plate.
This equation is very convenient because it transforms the actual

and complex stress distribution on the glass surface to a single
equivalent stress.

Structural Adequacy and Design

The effective uniformly applied stress �p derived from Eq. �12�
may be finally compared to the failure strength � f from Eq. �10�
to ensure that

� f � �p �13�

The accuracy of this method clearly depends on the ability to
execute Eq. �12� i.e., to subdivide the glass surface into areas of
equal stress, and to subsequently summate the contribution of
these areas. This procedure makes the proposed design method
unattractive for manual computation. A computer algorithm was
therefore developed to determine the equivalent uniform stress �p

automatically.
The algorithm is written in Visual Basic computer language

and makes use of the results obtained from LUSAS, a commer-
cially available finite-element �FE� analysis software �FEA 1999�.
Input to the algorithm consists of the coordinates of the surfaces
to be analyzed and the magnitude of the surface precompression
due to the tempering process. The algorithm may be used with a
number of commonly used elements ranging from three-noded
triangular elements to 20-noded brick elements and conveniently
calculates the surface areas, dA, and averaged principal tensile
stress, �max, for each element of the FE model. All the elements
subjected to a compressive stress are eliminated from this sum-
mation. The algorithm uses this data to automatically compute the
equivalent uniform stress, �p, for the whole surface from Eq. �11�.
The algorithm also creates a spreadsheet containing a listing of
these calculations and a summary of the results for the entire
surface.

Verification of Failure Models

Experimental investigations were undertaken to verify the accu-
racy of the proposed failure model and to compare it to the failure
predictions obtained from existing failure models. The experi-
mental investigations consisted of undertaking a series of:
1. Ring-on-ring �co-axial ring� tests.
2. Laterally loaded, simply supported plate tests.
These two setups were selected as they provide diverse stress
distributions ranging from relatively concentrated stresses in the

Fig. 8. Plan view of failure envelope

Fig. 9. Variations in probability of failure with nonuniform biaxial
stresses
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ring-on-ring tests, to the shallow-gradient stresses that are typical
of simply supported plates subjected to uniform lateral loading.

Ring-on-Ring Investigations

A series of ring-on-ring tests were carried out by the writers on
as-received glass specimens measuring 300�300�6 mm thick.
The tests were performed by placing the glass plate on a circular
steel reaction ring and applying on its opposite surface a load
transmitted through a steel loading ring, until failure occurs �Fig.
10�. The purpose of this test is to achieve a uniform tensile stress
field that is independent of edge effects.

In all 49 ring-on-ring tests were successfully performed. These
were composed of 30 annealed glass specimens and 19 tempered
glass specimens to BS 6206 class A �BSI 1981� and tested by
means of a 51-mm-diameter steel loading ring and one of three
different steel reaction rings with 65, 127, and 200 mm diameters
�Fig. 10�.

Geometrically nonlinear finite-element analysis of the ring-on-
ring specimens was undertaken to provide an accurate represen-
tation of the surface stresses for the expected large deflections.
The maximum surface stresses and maximum deflections ob-
tained from the finite-element analyses were within ±3% of those
obtained from the experimental investigation. Furthermore, the
FE analysis confirmed that the stress concentrations beneath the
loading ring were within ±2% of the stress at midspan. Surface
stresses obtained from the finite-element analysis were trans-
formed to an equivalent uniform failure stress and an associated
probability of failure by the afore-mentioned computer algorithm.
Furthermore, since most failures occurred within the loading ring
area, a biaxial stress correction factor cb=1 was used in Eq. �12�.

The probability distribution functions obtained from the pro-
posed GCGM and computer algorithm shows good agreement
with the annealed and tempered glass ring-on-ring test data at
mean and low probabilities of failure �±4% for both Pf =0.5 and
Pf =0.1�. However, the predictions for high probabilities of failure
are less accurate particularly for the tempered glass where the
variation at Pf =0.9 is greater than 12%. �Fig. 11�. The increasing
inaccuracy with increasing probability of failure for both an-
nealed and tempered glass specimens cannot be fully explained,
however the more pronounced variability witnessed in the

strength of the tempered glass specimens may be attributed to the
additional variations caused by the tempering process.

Laterally Loaded Plate Investigations

Two sets of published annealed glass failure data �Beason 1980;
Dalgliesh and Taylor 1990� and one set of published failure data
for tempered glass �Norville et al. 1991� were used to compare
the performance of the existing and the proposed failure models
and to further test the validity of the proposed GCGM together
with the computer algorithm.

Convergence testing of the FE model ensured that the pre-
dicted stresses and deflections were within ±1% of those reported
from the experimental investigations.

The computer algorithm was used to summate the major prin-
cipal surface stresses obtained from each load increment of the
FE analysis. The surface precompression �r was set to zero for
the annealed glass specimens and to 69 N/mm2 for the tempered
glass specimens. This value corresponds to the surface stress mea-
surements carried out by Norville et al. �1991� and agrees with
the minimum required value specified in ASTM E-1300 �ASTM
1997�. The resulting equivalent uniform stress, �p, obtained from
the algorithm, was used to determine the probability of failure Pf

at every load increment by using Eq. �2�.
The relationships between the uniformly distributed, 60 s

equivalent load P60 and the probability of failure Pf were plotted
in Figs. 12 and 13. Fig. 12 shows the probability of failure versus

Fig. 10. Ring-on-ring test setup

Fig. 11. Test results and failure models for ring-on-ring tempered
glass �dotted lines represent weathered glass�

Fig. 12. Test results and GCGM predictions for annealed glass
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the 60 s failure load of the published test results �Beason 1980;
Dalgliesh and Taylor 1990� and the corresponding GCGM predic-
tions for uniformly loaded, simply supported rectangular annealed
glass. Fig. 13 shows the probability of failure versus the 60 s
failure load of the published test results �Norville et al.1991� and
the corresponding GCGM predictions for uniformly loaded, sim-
ply supported rectangular tempered glass.

The predicted relationship between the 60 s equivalent loads,
P60, and the probability of failure Pf �Fig. 13� are in good agree-
ment with the annealed and tempered glass test results. Table 3
provides a quantitative comparison of the proposed GCGM at the
low probabilities of failure generally used in glass design prac-
tice. This table also indicates how the GCGM compares with
other failure prediction models at low probabilities of failure. All
probabilities of failure in this table have been computed by using
the respective surface strength parameters m and k from Table 2.

From Table 3 it is evident that all failure prediction models
provide a more accurate, albeit sometimes unsafe, representation
of glass strength when compared to the results obtained from the
simpler maximum stress approach. The GCGM appears to predict
the probability of failure more closely than the other models for
both the Dagliesh and Taylor annealed glass �Dagliesh and Taylor
1990� and the Norville et al. tempered glass �Norville et al. 1991�.
The ASTM E-1300 model provides the best predictions of Beason
annealed glass tests �Beason 1980�. However, it is important to
note that the ASTM E-1300 was partially derived from the
Beason �1980� tests. The draft European Standard �CEN 1997�,
derived from the Sedlacek et al. �1995� model, adopts an unchar-
acteristically high surface strength parameter, m, and a low pa-
rameter k. This in effect restricts its use to very low probabilities
of failure ��8/1,000� as observed in the preceding sections of
this paper. This may partly explain the poor predictions at rela-
tively high probabilities of failure shown in Table 3.

Conclusions

A number of existing glass failure models that are used in glass
design are reviewed, and the discrepancies between these models,
particularly the interpretation of load duration, surface area, and
stress distribution, have been identified. Substantial differences
have been noted in the magnitude of surface strength parameters
and in the effects of the relative magnitude of major and minor
principal stress acting on the surface of the glass. These variations

are shown to translate into considerable differences in the prob-
abilities of failure obtained from the respective models.

A GCGM is proposed by extending the formulations of
Fischer-Cripps and Collins �1995�. The GCGM combines statis-
tical theory with linear elastic fracture mechanics and allows the
surface tensile strength of both annealed and tempered glass to be
determined graphically. Furthermore, since the proposed and ex-
isting failure models are unattractive for manual computation, a
computer algorithm is also put forward. This algorithm calculates
the equivalent uniform stress automatically from the results of the
finite-element analysis performed on the glass element. The pre-
dictions obtained by applying the proposed GCGM are in good
agreement with the strength values obtained from ring-on-ring
experimental investigations carried out by the writers and experi-
mental investigations on laterally loaded rectangular glass plates
carried out by other researchers. Furthermore the use of the com-
puter algorithm resulted in a substantial reduction in computation
time.

Further validation of the proposed GCGM and design method-
ology is required before it can be used by the general engineering
community. This includes fundamental research on the nature of
flaws in glass and the mechanics of glass failure that will serve to
verify the constants such as the stress intensity factor and the

Fig. 13. Test results and GCGM predictions for tempered glass

Table 3. Comparison of Reported Test Results and Predicted Probability of Failure

Source

Arbitrary
load
�kN�

Probability of failure

Reported

Predicted
from proposed

GCGMa

Predicted
from ASTM &
CAN/CGSBb

Predicted
from
CENc

Predicted
using maximum

stress

Annealed glass
Beason �1980�

1.125 0.018 0.010 0.015 0.00026 0.087

Annealed glass
Dalgliesh and Taylor �1990�

2.600 0.026 0.025 0.039 0.001 0.094

Tempered glass
Norville et al. �1991�

31.500 0.039 0.031 0.001 0.053 1.000

aProbability of failure calculated using FE analysis and the computer algorithm with Fischer-Cripps and Collins �1995� surface strength parameters from
Table 2.
bProbability of failure calculated using FE analysis and computer algorithm with the ASTM �1997� and CAN/CGSB �1989� surface strength parameters
shown in Table 2.
cProbability of failure calculated using FE analysis and computer algorithm with the CEN �1997� surface strength parameters shown in Table 2.
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stress corrosion limit in glass; a full reliability analysis of the test
data used to calibrate the United States and European standards in
order to verify the surface strength parameters, and the extension
of the GCGM to buckling instability and impact loads.

Current and planned research at the University of Nottingham
in collaboration with other research institution in the United
Kingdom and in Europe includes the application of the GCGM to
plates in compression and to built-up glass elements; the testing
of a series of 40-year old weathered glass specimens; the use of
the GCGM to optimize bolted and adhesive connections in glass;
and investigations on the postbreakage performance of safety
glass. The results from these research projects will seek to verify
the proposed GCGM design methodology to a wider range of
structural glass elements.

Notation

The following symbols are used in this paper:
A 	 surface area;

Ao 	 datum surface area �=1 m2�;
c 	 flaw length;

cb 	 biaxial stress correction factor;
D 	 material fracture constant;
h 	 plate thickness;

KI 	 stress intensity factor for mode I loading;
KIC 	 critical stress intensity factor for mode I

loading �plane strain fracture toughness�;
k 	 surface strength parameter;

kmod 	 stress corrosion ratio;
m 	 surface strength parameter, Fourier series

numerical factor;
n 	 static fatigue constant;

Pf 	 probability of failure;
P60 	 60 second equivalent failure load;

tf 	 load duration;
Y 	 shape factor;

�
 	 material safety factor for tempered glass;
� 	 general applied stress;

�a 	 stress applied perpendicular to crack;
�e 	 60 s equivalent failure stress;
� f 	 surface tensile strength of glass;

�max 	 major principal stress;
�min 	 minor principal stress;

�p 	 equivalent uniform stress;
�r 	 surface precompression due to tempering

process; and
�s 	 instantaneous failure stress.
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