On the Performance of Base-Isolated Buildings: A Generic Model

A dissertation submitted to the University of Cambridge
for the degree of Doctor of Philosophy

by

James Peter Talbot
Peterhouse

November 2001
To Mum, Dad

& Kathy
Just as in this age of mechanisation we welcome the advent of any mechanical process which makes a demand on craftsmanship and manual skill, so some of us at any rate may feel grateful that, in problems relating to vibrations, nature has provided us with a range of mysteries which for their elucidation require the exercise of a certain amount of mathematical dexterity. In many directions of engineering practice, that vague commodity known as common sense will carry one a long way, but no ordinary mortal is endowed with an inborn instinct for vibrations; mechanical vibrations in general are too rapid for the utilization of our sense of sight, and common sense applied to these phenomena is too common to be other than a source of danger.

Professor C E Inglis, OBE, MA, LLD, FRS

James Forrest Lecture, 1944
PREFACE

The work described in this dissertation was carried out at Cambridge University Engineering Department between November 1998 and October 2001. The project was suggested by Dr Hugh Hunt, who also acted as my research supervisor. I have been very fortunate in having such an enthusiastic and knowledgeable supervisor and I would like to thank him for all his help. I would also like to thank Professor David Newland, who acted as my supervisor for part of my final year and has maintained a keen interest in my work.

I am very grateful to Professor Jim Woodhouse, without whose initial encouragement I would not have returned to the Department, and to Professor Robin Langley for some helpful teatime discussions.

For help in producing my experimental apparatus, I would like to thank Mr David Miller and the staff of the Mechanics Laboratory. Thanks are also due to Dr Caroline Millar, formerly of GEC Marconi Ltd, for supplying complimentary samples of the piezoelectric materials.

This research has been funded by the Engineering and Physical Sciences Research Council, to whom I am very much indebted. I must also thank the Worshipful Company of Scientific Instrument Makers, for their award of a Scientific Instrument Makers’ Scholarship, and the James Clayton fund of the Institution of Mechanical Engineers.

Finally, I would like to thank Peterhouse, for providing such a pleasant, supportive and rewarding environment in which to be a student.

I declare that, except for commonly understood and accepted ideas, or where specific reference has been made to the work of others, this dissertation is the result of my own work and includes nothing that is the outcome of collaborative work. This dissertation is approximately 56,400 words in length and contains 98 figures.

James Talbot
Cambridge, November 2001
SUMMARY

Ground-borne vibration has existed ever since the development of urban road and rail networks. Vibration generated by the moving traffic propagates through the ground and into buildings, resulting in unacceptable levels of internal noise and vibration. A common solution to this increasingly significant problem is the base-isolation of buildings by incorporating vibration isolation bearings between the buildings and their foundations. This technique has been employed for over forty years but the exact performance of base isolation remains uncertain.

This dissertation is concerned with the development of a generic computational model; generic in that it accounts for the essential dynamic behaviour of a typical base-isolated building in order to make predictions of isolation performance. The model is a linear one, formulated in the frequency domain, and consists of a two-dimensional portal-frame model of a building coupled to a three-dimensional boundary-element model of a piled-foundation. Both components of the model achieve computational efficiency by assuming they are infinitely long and using periodic structure theory.

The development of the model is described systematically, from the modelling of a building and its isolation bearings to that of its foundation. The majority of the work is concerned with the piled-foundation model, which is comprehensive in that it accounts for the vertical, horizontal and rotational motion of the pile heads due to both direct pile-head loading and interaction through wave propagation in the surrounding soil. It is shown that this level of detail is important in the prediction of base isolation efficiency.

A key question facing designers is not only how but on what basis base isolation should be assessed, since fundamental problems exist with the existing measures of isolation performance. Power flow analysis is explored and the concept of power flow insertion gain, based on the total mean vibrational power flow entering a building, is introduced as a useful measure of isolation performance. This is shown to offer clear benefits by providing a single measure of performance that is suitable for design purposes.

Finally, the development of a prototype force-sensitive vibration isolation bearing is described as a contribution to verifying base-isolation theory with experiments.
CONTENTS

Preface ... iv
Summary ... v
Contents ... vi

1. INTRODUCTION ... 1
 1.1 Motivation for the Research .. 2
 1.2 Objectives of the Research .. 3
 1.3 Outline of the Dissertation .. 4

2. LITERATURE REVIEW ... 6
 2.1 The Problem of Ground-Borne Vibration ... 6
 2.1.1 Sources of Ground-Borne Vibration ... 7
 2.1.2 The Response of Buildings to Ground-Borne Vibration 10
 2.1.3 Human Response to Vibration and Re-Radiated Noise in Buildings...... 12
 2.2 Methods of Reducing Ground-Borne Vibration .. 16
 2.2.1 Measures Taken at the Source ... 16
 2.2.2 Modification of the Transmission Path .. 18
 2.2.3 Measures Taken at the Building ... 19
 2.3 The Design of Base-Isolation Systems for Buildings .. 20
 2.3.1 The Decision to Base-Isolate and its Implications 20
 2.3.2 Generic Design Principles ... 22
 2.3.3 Rubber Bearings for Base Isolation ... 24
 2.3.4 Steel Springs for Base Isolation ... 26
 2.4 Current Measures of Isolation Performance ... 28
 2.4.1 Green-Field Site Predictions .. 28
 2.4.2 Predictions Given a Particular Source .. 28
 2.4.3 Insertion Performance ... 29
 2.4.4 Power Flow ... 30
2.5 Experimental Investigations into Base-Isolated Buildings ... 30
2.6 Modelling Base-Isolated Buildings .. 33
 2.6.1 Empirical Models .. 33
 2.6.2 Theoretical Models ... 34
2.7 Modelling the Ground and Foundations ... 38
 2.7.1 Wave Propagation ... 38
 2.7.2 Foundations ... 40
2.8 Conclusions ... 43

3. AN INITIAL MODEL OF A BASE-ISOLATED BUILDING ... 44
 3.1 Modelling the Building .. 44
 3.1.1 The Dynamic Stiffness Method .. 45
 3.1.2 Modelling the Isolation Bearings ... 50
 3.2 Modelling the Ground and Foundation .. 53
 3.2.1 Damping in Soils .. 54
 3.2.2 Soil-Structure Interaction ... 54
 3.2.3 Modelling the Foundation .. 64
 3.3 An Initial Model ... 65
 3.3.1 Overview of the Model ... 65
 3.3.2 Predictions of Insertion Gain ... 70
 3.3.3 Power Flow Insertion Gain .. 74
 3.3.4 Power Flow Analysis .. 78
 3.3.5 Limitations of the Initial Model .. 82
 3.4 Conclusions ... 83

4. DEVELOPMENT OF A PILED-FOUNDATION MODEL .. 85
 4.1 Modelling a Single Pile .. 86
 4.1.1 Pile-Soil Interaction: Modelling the Interface ... 87
 4.1.2 The Soil Model .. 101
 4.1.3 The Pile Model .. 103
6.5.2 Choice of Piezoelectric Material ... 183
6.5.3 Removal of Aluminium Plates ... 184
6.5.4 Structural Integrity ... 184
6.5.5 Long-Term Developments .. 184

7. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 185
7.1 Conclusions ... 185
7.2 Recommendations for Further Work .. 187

REFERENCES .. 189

A. THE SINGLE-DEGREE-OF-FREEDOM MODEL .. 196

B. THE BOUNDARY-ELEMENT METHOD ... 199
 B1 Introduction .. 199
 B2 Numerical Formulation ... 200
 B2.1 The Reciprocal Theorem .. 200
 B2.2 A Note on Green’s Functions .. 202
 B2.3 The Boundary Integral Equation ... 203
 B2.4 Numerical Solution ... 203
 B2.5 A Note on Plane and Anti-Plane Problems .. 209
 B2.6 A Note on Fictitious Natural Frequencies ... 209
 B3 Example Problems .. 210
 B3.1 Longitudinal Vibration of an Elastic Bar ... 210
 B3.2 Wave Propagation from a Cylindrical Cavity 213

C. THE DYNAMIC-STIFFNESS METHOD APPLIED TO PORTAL FRAMES 216

D. A TWO-DEGREE-OF-FREEDOM BUILDING MODEL 220

E. INSERTION PERFORMANCE OF A SINGLE-INPUT SINGLE-OUTPUT SYSTEM .. 222
 E1 Insertion Gain ... 222
E2 Power Flow Insertion Gain..224
E3 Conclusion...226

F. ANTI-PLANE MOTION OF A RIGID CAVITY IN AN INFINITE SOLID............................227

G. TRANSFORMATION MATRICES FOR COUPLING THE PILE AND SOIL.............229

H. A SOLUTION FOR THE STATIC PILE-HEAD COMPLIANCE OF A SINGLE
FLOATING PILE..231