

Liquid crystal laser arrays

P.J.W. Hands, S.M. Morris, T.D. Wilkinson, H.J. Coles

Centre of Molecular Materials for Photonics and Electronics (CMMPE) Department of Engineering, University of Cambridge

Concept of LC laser arrays

- Reduces optical reorientation & other effects caused by high pump intensity.
- Increases maximum throughput. High power organic lasers possible.
- 1. Pump beam incident upon lens array 2. Focussed pump incident upon LC cell

3. Output laser array

- Replace single focussing lens with lenslet array.
- Distribute pump beam across LC cell (better use of cell area).
- Multiple (recombinable) monomode LC laser sources.

5. Recombined laser spectrum

Polychromatic (gradient pitch) LC laser arrays

- Synthesise two LC/dye/chiral dopant mixtures, designed to lase at different wavelengths (ie: different chiral pitch).
- Fill cell with two mixtures from opposite sides, generating chiral pitch gradient across cell.
- Pump the gradient cell with a single (higher frequency) beam, illuminated by lenslet array.

Lenslet array

Gradient pitch chiral nematic liquid crystal cell

• Simultaneous multiwavelength laser emission across array. • Recombinable into

single white light

P.J.W. Hands, S.M. Morris, H.J. Coles, T.D. Wilkinson, Optics Letters, 33 (5), pp.515-517, (2008). **Further reading:** S.M. Morris, P.J.W. Hands, H.J. Coles, T.D. Wilkinson, Applied Physics Letters, (in preparation), (2008).

www-g.eng.cam.ac.uk/cosmos

