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delen ervan te kopiëren voor eigen gebruik. Elk ander gebruik valt onder de strikte beperkingen
van het auteursrecht; in het bijzonder wordt er gewezen op de verplichting de bron uitdrukkelijk
te vermelden bij het aanhalen van resultaten uit deze eindverhandeling.

Leuven, april 2003.



Voorwoord

Dit eindwerk besluit voor mij de studie voor burgerlijk bouwkundig ingenieur aan de Katholieke
Universiteit Leuven. In de ingenieursjaren boeiden de vakken van de afdeling bouwmechanica mij
het meest en een keuze voor een eindwerk aan deze afdeling lag dan ook voor de hand. De afdeling
bouwmechanica werkt reeds lange tijd samen met de Ecole Centrale in Parijs voor de studie van
grond-structuur-interactie problemen. Binnen het kader van het Europese onderzoeksproject
CONVURT bestond de mogelijkheid om gedurende een vijftal maanden mee te werken aan dit
project aan de Ecole Centrale. Van deze mogelijkheid heb ik heel graag gebruik gemaakt en in
de periode van september 2002 tot februari 2003 studeerde ik aan de Ecole Centrale in Parijs. In
de onderzoeksgroep van Dr. Didier Clouteau werkte ik mee aan gevarieerde thema’s binnen het
onderzoek naar trillingen in gebouwen voortgebracht door metroverkeer. Ik kreeg er ook de kans
een aantal vakken te volgen uit de specialisatie-opleiding ’Dynamique des structures et systèmes
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variété de sujets de recherche qu’il m’a offerts dans le cadre du projet. Je remercie Nader, Gérald,
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Ook de Fondation Biermans-Lapôtre zou ik graag bedanken voor de schitterende woonaccomo-
datie in Parijs. De mensen die met mij op de vierde verdieping woonden, zou ik graag bedanken
voor de gezellige uurtjes ’s avonds.

Er zijn ook veel mensen die zeer belangrijk zijn, en dit zeker niet alleen tijdens dit eindwerk. Mijn
ouders en broers zou ik daarom graag bedanken voor hun steun en interesse op alle momenten. En
ook mijn vrienden wil ik bedanken voor deze vijf toffe jaren zowel in Leuven, als tot ver erbuiten.

Maarten Arnst
Leuven, april 2003.

ii



Contents

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

2 Periodic soil-structure interaction 3

2.1 The general soil-structure interaction problem . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Notations and general equations . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Domain decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 The boundary element method . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 The soil impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.6 The forces induced by the incident field . . . . . . . . . . . . . . . . . . . 10

2.2 The periodic soil-structure interaction problem . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Floquet Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Soil-structure interaction in the frequency-wavenumber domain . . . . . . 12

2.2.3 Domain decomposition in the frequency-wavenumber domain . . . . . . . 13

2.2.4 Variational formulation in the frequency-wavenumber domain . . . . . . . 13

2.2.5 The periodic boundary element method . . . . . . . . . . . . . . . . . . . 15

2.2.6 The kinematic basis for the structure . . . . . . . . . . . . . . . . . . . . . 17

2.2.7 The computation for the negative wavenumbers . . . . . . . . . . . . . . . 18

2.2.8 The symmetry of the kinematical basis. . . . . . . . . . . . . . . . . . . . 19

3 Optimisation of the periodic BEM implementation 22

3.1 A description of the old implementation . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Profiling of the old implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii



CONTENTS iv

3.3 Optimisation in two stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Optimisation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Numerical model of the Cité Universitaire site in Paris 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 The applied forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 The visualization model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 The convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 The reduced modal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 The periodic boundary element method . . . . . . . . . . . . . . . . . . . 32

4.4.3 The sampling in the wavenumber-frequency domain . . . . . . . . . . . . 32

4.5 The generalized impedance of the tunnel and of the soil . . . . . . . . . . . . . . 33

5 Impulse loads on a tunnel invert: response in the free field 35

5.1 The transfer functions in the spatial-frequency domain . . . . . . . . . . . . . . . 35

5.2 The response on harmonic loads on the tunnel invert . . . . . . . . . . . . . . . . 36

5.3 The transfer functions in the slowness-frequency domain . . . . . . . . . . . . . . 39

5.3.1 A first simplified model: an infinite plate . . . . . . . . . . . . . . . . . . . 39

5.3.2 The influence of the plate curvature . . . . . . . . . . . . . . . . . . . . . 41

5.3.3 A second simplified model: an infinite soil layer on an infinite plate . . . . 41

5.3.4 A third simplified model: an infinite plate on an elastic half space . . . . . 45

5.4 The response on transient loads on the tunnel invert . . . . . . . . . . . . . . . . 46

5.4.1 The transient tunnel excitation . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2 The transient tunnel response . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Conclusion and further development . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Impulse loads on a tunnel invert: response in a nearby building 54

6.1 The characteristics of the building . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 The location of the ”Maison du Mexique” with respect to the tunnel . . . 54

6.1.2 Material properties and geometrical characteristics of the building frame . 56

6.1.3 The constraint equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.4 The foundation of the building . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The dynamic soil-structure interaction analysis . . . . . . . . . . . . . . . . . . . 58

6.2.1 The kinematic basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS v

6.2.2 The variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.3 The numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 The building response on harmonic loads on the tunnel invert . . . . . . . . . . . 64

6.4 The transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Conclusion and further development . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Matlab and MISS input files: the harmonic response of the tunnel-soil-system 72

A.1 The problem characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 The Matlab pre-processing results files . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3 The MISS processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3.2 The MISS input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3.3 The MISS program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3.4 The MISS output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4 The Matlab-SDT post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.4.2 The MISS-Matlab coupling routines . . . . . . . . . . . . . . . . . . . . . 74

A.4.3 The post processing routines . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5 The Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Matlab and MISS input files: the transient response of the tunnel-soil-system 76

B.1 The problem characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.2 The pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.3 The processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.3.2 The processing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.4 The animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C Matlab and MISS input files: the harmonic response of the tunnel-soil-building
system 78

C.1 The problem characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.2 The Matlab and MISS pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.2.2 The construction of the building model . . . . . . . . . . . . . . . . . . . 79

C.3 The MISS processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS vi

C.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3.2 The MISS input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3.3 The MISS program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3.4 The MISS output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.4 The Matlab postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Figures

1 The model layout and notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The radiated field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The locally diffracted field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 The normal vectors nint and next. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 A very long periodic structure and the restriction to a single generic cell, intro-
ducing new interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 The plan of the test site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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Chapter 1

Introduction

Vibrations induced by underground railway traffic are a major environmental concern in urban
areas. Those vibrations, propagating from a tunnel to nearby buildings, are a possible cause of
structural damage, but reradiated noise is the major source of complaints.

In order to reduce the disturbance, many solutions have been proposed in the past, both on
the source and on the receiver side, based on empirical design laws and on highly simplified
deterministic modelling. Many of these solutions, however, did not lead to satisfactory results.

As far as deterministic modelling is concerned, two-dimensional approaches have been consid-
ered, assuming a translation invariant tunnel cross section. Analytical solutions have been used,
modelling the soil as a homogeneous full space. Methods based on a finite element model for
the tunnel section have also been proposed, coupled either to a finite element model either to
a boundary element model for the infinite soil domain. The FEM-FEM option, meshing only a
finite part of the soil domain, introduces absorbing boundaries to avoid that waves, propagating
away from the tunnel, reflect on the boundary of the mesh. The FEM-BEM option has the
advantage that the radiation conditions are automatically taken into account.

The waves propagating away from the tunnel introduce damping in the tunnel-soil-system. Two-
dimensional models have the disadvantage that they underestimate this radiation damping.
Furthermore, the wave propagation in the direction of the tunnel axis is not taken into account
in these models.

In a European context, the Convurt project, “The CONtrol of Vibrations from Underground
Railway Traffic”, with among its partners universities, metro operators and engineering compa-
nies proposes a validated three-dimensional, numerical prediction model.

The key component of the model is a three dimensional tunnel-soil interaction model. The case
of an infinite, periodic tunnel in a horizontally layered soil medium is considered. A Floquet
transform is used to reduce the problem to a single generic cell. A FEM-BEM coupling is elabo-
rated to describe the dynamical behaviour of this single generic cell, fully taking the dynamical
tunnel-soil interaction into account.

Ballast, sleepers and tracks can easily be included in the model. Supposing weakly coupled mod-
els, the model can be extended with an excitation model describing the vehicle-track interaction,
with a three-dimensional soil-building interaction model, and, finally, with a model describing
the reradiated noise.

1
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To validate the numerical prediction model, measurements have been performed at the Cité
Universitaire site in Paris. Accelerations have been measured in a tunnel (the RATP RER B
line), in the free field (the Cité Universitaire site), and in a nearby building (the “Maison du
Mexique”, a student dormitory). The vibrations induced by hammer impact on the track, as
well as induced by test trains and service trains have been recorded. Similar measurements will
be performed at a site in London, in Regent’s park, for the Bakerloo and Jubilee lines of London
Underground.

Within the frame of the Convurt project, the thesis work can be summarized as follows:

- First, the existing implementation of the periodic boundary element method has to be
optimised. A restructuring of the central routine should lead to a far more efficient pro-
gram, offering moderate computation times even on workstations, no longer limiting the
computation to a supercomputer.

- Secondly, an extension of the existing FEM and BEM parts of the Cité Universitaire
model with a post-processing module is proposed, leading to an animation of the free field
vibration induced by hammer impact on the tunnel invert. A study of the wave propagation
both in the direction of the tunnel and in the direction of the tunnel axis becomes possible.

- Finally, a three-dimensional soil-building interaction model has to be constructed from
the existing FEM model of the “maison du Mexique.” Afterwards, the model should be
coupled to the tunnel-soil interaction model, and a post-processing module should again
be written to compute a full animation of the vibration at the Cité Universitaire site due
to hammer impact. A study of the wave propagation becomes again possible.

The first chapter introduces the theoretical background of the thesis. After a brief introduction
of the general soil structure interaction problem, the chapter concentrates on the periodic case.
A new way to compute the kinematical basis for the tunnel generic cell is presented, as well as
an extensive study on symmetry properties.

Chapter 3 reports on the optimisation work. The restructuring of the central routine is explained
and the optimisation is evaluated.

Chapter 4 presents the Cité Universitaire site and its numerical model. It briefly reports on the
convergence analysis.

Chapter 5 computes and animates the response to point forces on the tunnel invert. First, the
harmonic response is considered and the results are studied using simplified models to explain
an identified low frequency resonance, as well as the wave propagation in the direction of the
tunnel at high frequencies. Finally, the response on a transient, point force is computed. The
wave propagation perpendicular to the tunnel is investigated and is shown to be strongly affected
by the presence of the free surface and by the soil layering.

Chapter 6 introduces the “Maison du Mexique” in the model and proposes a method to compute
the transmission of the vibrations from the tunnel to the building. The harmonic response of
the building is computed due to a point force on the tunnel invert and a first analysis of the
results is presented.

Chapters 5 and 6 both conclude summing up the major contributions of this work and discussing
future developments and refinements.



Chapter 2

Periodic soil-structure interaction

This chapter presents the numerical modelling of a soil-structure interaction problem, periodic
in one direction. The periodic case presented is a particular case of the more general approach of
a soil-structure interaction problem, based on the coupling of a boundary element formulation
for the soil medium, with a finite element formulation for the structure, as presented already in
[8, 7, 12, 17, 20, 10].

The chapter first presents the general approach of a soil-structure interaction problem. A sec-
ond section then concentrates on the particular periodic case. Finally, a method to compute a
kinematical basis for the structure in a periodic case is proposed.

The numerical model is implemented in the MISS program for the BEM part [9], and in the
Matlab Toolbox SDT for the FEM part [4].

2.1 The general soil-structure interaction problem

2.1.1 Notations and general equations

Figure 1: The model layout and notations.

3



The general soil-structure interaction problem 4

The physical domain is decomposed into two subdomains: the soil denoted by Ωs and the struc-
ture denoted by Ωb as shown in figure 1. The interface between these domains is denoted by
Σbs. The other boundaries are denoted by Γsa, Γba and Γbσ, respectively. On Γsa and Γba, free
boundary conditions are assumed. On the boundary Γbσ, a surface force f b is applied. The
displacement fields of the soil and the structure are denoted by us and ub, respectively.

The displacement fields on Ωs and Ωb due to static loads are supposed to be known. us and ub

are assumed to be the dynamic perturbations of these fields due to dynamic loadings.

These dynamic perturbations are assumed to be small enough to allow a linear approximation of
the constitutive and equilibrium equations in the vicinity of the static state. Thus, the dynamic
perturbations of the stress tensors denoted by σs and σb can be expressed as linear functions of
the dynamic fluctuation of the stress tensors denoted by εs and εb using Hooke’s law:

σij(u) = λ(divu)δij + 2µεij(u) (2.1)

εij(u) =
1

2
(∂iuj + ∂jui) (2.2)

with δij the Kronecker symbol (δii = 1 and δij = 0 with i 6= j). λ and µ are the Lamé parameters
with a small imaginary part to model hysteretic damping. The traction vectors applying on an
interface with an outward normal vector n are denoted by ts(us) and tb(ub):

t(u) = σ(u)n (2.3)

The displacement field us(x, t) of the soil is decomposed in the incident field ui(x, t) and in the
field ud(x, t) diffracted by the structure.

us(x, t) = ui(x, t) + ud(x, t) (2.4)

The incident field is an elastodynamic field defined on Ωs ∪Ωb∗. Ωb∗ denotes the excavated part
of the soil or the interior domain. Ωs indicates the soil with excavation or the exterior domain.
The diffracted field is defined on Ωs.

It is assumed that the fields ud(x, t) and ub(x, t) satisfy the following causality conditions:

ud(x, t) = 0 ∀t < 0 and ∀xεΩs (2.5)

ub(x, t) = 0 ∀t < 0 and ∀xεΩb (2.6)

The time variable t is transformed to the frequency ω by means of a Fourier transformation.
The following convention is used:

f̂(x, ω) =

∫ ∞

−∞

f(x, t) exp(iωt)dt (2.7)

f(x, t) =
1

2π

∫ ∞

−∞

f̂(x, ω) exp(−iωt)dω (2.8)

where i =
√
−1 is the imaginary unit.
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The complete system of Navier equations and boundary conditions in the frequency domain can
be written as:

The incident field

divσ(ui) = −ω2ρui in Ωs ∪ Ωb∗ (2.9)

ts(ui) = 0 on Γsa ∪ Γb∗ (2.10)

The diffracted field

divσ(ud) = −ω2ρud in Ωs (2.11)

ts(ud) = 0 on Γsa (2.12)

The building

divσ(ub) = −ω2ρub in Ωb (2.13)

tb(ub) = 0 on Γba (2.14)

tb(ub) = f b on Γbσ (2.15)

Continuity and equilibrium

ud + ui = ub on Σbs (2.16)

ts(ud + ui) + tb(ub) = 0 on Σbs (2.17)

together with radiation conditions for the diffracted field in the soil.

2.1.2 Domain decomposition

The displacements on the interface Σbs are decomposed on a basis of modes Ψm(x). In order
to verify the continuity equation, these fields are imposed as boundary conditions on both the
subdomains Ωb and Ωs.

First, the trace on Σbs of the displacement fields ub(x, ω) and us(x, ω) is written as a linear
combination of new displacement fields Ψm(x).

ub(x, ω)
∣

∣

∣

Σbs

= us(x, ω)
∣

∣

∣

Σbs

=
∑

m

cm(ω)Ψm(x) (2.18)

The displacement fields ub(x, ω) and ud(x, ω) can then be expanded as:

ud(x, ω) =
∑

m

cm(ω)ud(Ψm)(x, ω) + ud0(x, ω) in Ωs (2.19)

where ud(Ψm)(x)
∣

∣

∣

Σbs

= Ψm(x); ui(x, ω) + ud0(x, ω)
∣

∣

∣

Σbs

= 0

ub(x, ω) =
∑

m

cm(ω)ub(Ψm)(x) +
∑

i

ci(ω)Φi(x) in Ωb (2.20)

where ub(Ψm)(x)
∣

∣

∣

Σbs

= Ψm(x);Φi(x)
∣

∣

∣

Σbs

= 0
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Figure 2: The radiated field. Figure 3: The locally diffracted field.

Figures 2 and 3 show the interpretation of the different fields. The fields ud(Ψm)(x, ω) are
the fields radiated in the soil when displacements Ψm(x) are imposed on the interface Σbs.
Their sum is called the radiated field. The sum of the locally diffracted field ud0(x, ω) and the
incident field ui(x, ω) vanishes on the soil-structure interfacs Σbs. The sum of the radiated field
∑

m cm(ω)ud(Ψm)(x, ω) and the locally diffracted field ud0(x, ω) is called the diffracted field
ud(x, ω) . The appropriate radiation conditions have to be imposed on the different fields.

ub(Ψm)(x) are the displacement fields in the structure when the displacements Ψm(x) are
imposed on the interface. Φi(x) are admissible displacement fields of the structure on a fixed
interface.

2.1.3 Variational formulation

The equations (2.13)-(2.17) are written in a weak form using a variational formulation. First,
the equilibrium equation of the structure (2.13), verified by a solution ub, is multiplied with a
virtual field vb and integrated over the domain Ωb:

∫

Ωb

divσ(ub) · vbdΩ = −ω2

∫

Ωb

ρub · vbdΩ (2.21)

Gauss’ theorem is applied and yields:

∫

Ωb

σ(ub) : ε(vb)dΩ − ω2

∫

Ωb

ρub · vbdΩ =

∫

∂Ωb

tb(ub) · vbdS (2.22)

The fields ub and vb both must satisfy the appropriate Dirichlet boundary conditions and the in-
tegrals in equation (2.22) must be bounded. The domain decomposition proposed in the previous
paragraph is introduced in this equation, expanded with a bounded error on a finite basis:

ub '
M
∑

m

cmub(Ψm) +

I
∑

i

ciΦi = ub(Ψ)cM + ΦcI in Ωb (2.23)

us '
M
∑

m

cmud(Ψm) + ud0 + ui in Ωs (2.24)
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The right integral of equation (2.22) is elaborated as follows:
∫

∂Ω
tb(ub) · vbdS =

∫

Σbs

tb(ub) · vbdS +

∫

Γbσ

tb(ub) · vbdS

= −
∫

Σbs

ts(us) · vbdS +

∫

Γbσ

f b · vbdS (equilibrium (2.17))

= −
∫

Σbs

ts(ui + ud0 +
M
∑

m

cmud(Ψm)) · vbdS +

∫

Γbσ

f b · vbdS

= −
∫

Σbs

ts(ui + ud0) · vbdS −
M
∑

m

cm(

∫

Σbs

ts(ud(Ψm)) · vbdS) +

∫

Γbσ

f b · vbdS

(2.25)

A standard Galerkin procedure then yields the system of equations describing the soil-structure
interaction in the frequency domain,

[

Ks(ω) − ω2M b + Kb

]

[

cM (ω)
cI(ω)

]

=

[

F s1(ω)
F s2(ω)

]

+

[

F b1(ω)
F b2(ω)

]

(2.26)

with:

Kb =

[

ub(Ψ)ᵀKFEM
b ub(Ψ) ub(Ψ)ᵀKFEM

b Φ

ΦᵀKFEM
b ub(Ψ) ΦᵀKFEM

b Φ

]

(2.27)

M b =

[

ub(Ψ)ᵀMFEM
b ub(Ψ) ub(Ψ)ᵀMFEM

b Φ

ΦᵀMFEM
b ub(Ψ) ΦᵀMFEM

b Φ

]

(2.28)

[

F s1(ω)
F s2(ω)

]

=

[

−
∫

Σbs
ub(Ψ)ᵀts(ui + ud0)(ω)dS

−
∫

Σbs
Φᵀts(ui + ud0)(ω)dS

]

=

[−
∫

Σbs
ud(Ψ)ᵀts(ui + ud0)(ω)dS

0

]

(2.29)

Ks(ω) =

[

∫

Σbs
ub(Ψ)ᵀts(ud(Ψ))(ω)dS 0

∫

Σbs
Φᵀts(ud(Ψ))(ω)dS 0

]

=

[
∫

Σbs
ud(Ψ)ᵀts(ud(Ψ))(ω)dS 0

0 0

]

(2.30)

[

F b1(ω)
F b2(ω)

]

=

[

∫

Γbσ
ub(Ψ)ᵀf b(ω)dS

∫

Γbσ
Φᵀf b(ω)dS

]

(2.31)

Kb and M b are the stiffness and the mass matrix of the structure, respectively. They are
computed using finite elements. F s1(ω) is the force induced by the incident field on the structure.
F b1(ω) and F b2(ω) are the equivalent forces applied on the structure due to exterior forces f b.

Hysteretic damping is introduced in the system (2.26),

[

Ks(ω) + Zb(ω)
]

[

cM (ω)
cI(ω)

]

=

[

F s1(ω)
0

]

+

[

F b1(ω)
F b2(ω)

]

(2.32)

with Zb(ω) the generalized impedance matrix of the structure:

Zb(ω) = (1 − 2iβ)Kb − ω2M b (2.33)
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2.1.4 The boundary element method

A direct boundary element method is used to approximate the factors ts(ud(Ψ))(ω) and ts(ui +
ud0)(ω) in the expressions for Ks(ω) and F s1(ω) respectively. The method uses direct boundary
integral equations and is based on the reciprocity theorem.

Theorem 1 (Reciprocity Theorem) Let Ω be a bounded or unbounded region; Γ a bounded
boundary; u and v elastodynamic displacement fields satisfying the radiation conditions for an
unbounded domain Ω. Then:

∫

Γ
{tn(u) · v − tn(v) · u}dS = 0

The displacement field v is chosen to be the Green’s function uG(x,y, ek;ω), corresponding to
the displacement at point x generated by a unit point force ek at point y. The representation
theorem then takes the following form:

Theorem 2 (Representation Theorem) Let Ω be a bounded or unbounded region; Γ a bounded
and regular boundary; u an elastodynamic displacement field satisfying the radiation conditions
for an unbounded domain Ω. Then,

∫

Γ
tn(u)(x, ω) · uG(x, ξ, ek;ω)dS −

∮

Γ
tn(uG(x, ξ, ek;ω)) · u(x, ω)dS = κ(ξ)u(ξ;ω) · ek (2.34)

with:

κ(ξ) = 1 with ξ ∈ Ω\Γ

κ(ξ) =
1

2
with ξ ∈ Γ

κ(ξ) = 0 with ξ /∈ Ω

The bounded boundary Γ is approximated by Ne boundary elements. The fields u(x, ω) and
tn(u)(x, ω) are discretized, approximating them with a constant value over each element of the
mesh,

u(x, ω) =

Ne
∑

E=1

3
∑

i=1

uEi(ω)wEi(x) (2.35)

tn(u(x, ω)) =

Ne
∑

E=1

3
∑

i=1

tEi(ω)wEi(x) (2.36)

with wEi(x) defined by

wEi(x) = 0 for x /∈ E

wEi(x) = ei for x ∈ E
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The discretisation is introduced in equation (2.34) and, when ξ is chosen on the boundary Γ:

Ne
∑

E=1

3
∑

i=1

{

tEi(ω)

∫

E

wEi(x) · uG(x, ξ,a; ω)dS − uEi(ω)

∮

E

tn(E)(u
G(x, ξ, ek; ω)) · wEi(x)dS

}

=
1

2

Ne
∑

E=1

3
∑

i=1

uEi(ω)wEi(ξ) · ek

(2.37)

A collocation method is applied writing the equation for the point ξ subsequently in each centre
of gravity of the boundary elements, leading to the following system for the 3 × Ne traction
vector t(ω),

[U g(ω)]t(ω) = [T g(ω)]u(ω) (2.38)

with:

t(ω) = (t11(ω), t12(ω), ..., tEi(ω), ..., tNe3(ω))ᵀ (2.39)

[U g(ω)]EiFk =

∫

E

ei · uG(xE , ξF , ek;ω)dS(xE) (2.40)

[T g(ω)]EiFk =

∮

E

ei · tn(E)(u
G(xE , ξF , ek;ω))dS(xE) +

1

2
δEF δik (2.41)

(2.42)

with δij the Kronecker symbol: (δii = 1 and δij = 0 with i 6= j).

Since the Green’s function is singular in the point where the force is applied, attention has to
be paid to the numerical approximation of the terms of auto-influence or the diagonal terms
of [U g(ω)] and [T g(ω)]. Only the Cauchy principle value of the diagonal elements of [T g(ω)]
exists. It is difficult to approximate these terms using a classical numerical integration scheme.
A regularization method is therefore used [8].

The first advantage of using the boundary element method is that only the bounded boundary
Γ has to be meshed. Only a small number of degrees of freedom is obtained, compared to a finite
element method that meshes (a part of) the soil domain. The second advantage is that the whole
soil domain Ωs is taken into account. The method accounts for the radiation conditions when Ωs

is unbounded. The most important difficulty is the computation of the Green’s functions. In this
work, the Green’s functions of a horizontally layered half space are used. The second difficulty is
that the matrices (2.40) and (2.41) are fully populated, complex and non-symmetric, compared
to a finite element method that results in banded, symmetrical matrices.

2.1.5 The soil impedance

To compute Ks(ω), integrals of the following form must be evaluated:

[Ks(ω)]mn =

∫

Σbs

ud(Ψm)ᵀ(x, ω)ts(ud(Ψn))(x, ω)dS (2.43)

The trace of the displacements ud(Ψm)(x, ω) on the interface Σbs is the displacement field
Ψm(x). The stresses ts(ud(Ψn))(x, ω) are computed using a direct boundary element method,
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Figure 4: The normal vectors nint and next.

based on equation (2.34). The bounded boundary Γ of the soil domain Ωs consists of the soil-
structure interface Σbs, the free soil surface Γsa and the boundary Γ∞ for an unbounded domain.
The contribution of the boundary Γ∞ disappears when the radiation conditions are satisfied. The
contribution of the boundary Γsa disappears too when the stresses tn(uG(x, ξ, ek;ω)) verify the
free surface boundary condition on this boundary. The boundary Γ thus can be restricted to only
the interface Σbs. Discretising equation 2.34 using boundary elements allows the computation
of ts(ud(Ψn))(x, ω) in the centres of gravity of the boundary elements. The elements of Ks(ω)
then are computed using a trapezoidal integration scheme.

2.1.6 The forces induced by the incident field

To compute F s1(ω), integrals of the following form must be evaluated:

[F s1(ω)]m = −
∫

Σbs

ud(Ψm)ᵀ(x, ω)ts(ui + ud0)(x, ω)dS (2.44)

The trace of the displacements ud(Ψm)(x, ω) on the interface Σbs is again the displacement field
Ψm(x). The stresses ts(ui + ud0)(x, ω) are computed using a direct boundary element method
formulated for the total field (ui + ud0)(x, ω).

First, the dynamic representation theorem is written for the locally diffracted field on the exterior
soil domain. The boundary of the exterior soil domain Γ1 consists of the soil-structure interface
Σbs, the free soil surface Γsa and of Γ∞ for unbounded domains.
∫

Γ1

tnext(ud0)(x) · uG(x, ξ, ek)dS −
∮

Γ1

tnext(uG(x, ξ, ek)) · ud0(x)dS =
1

2
ud0(ξ) · ek (2.45)

The contribution of the boundary Γ∞ disappears when the radiation conditions are satisfied.
The contribution of the boundary Γsa disappears too when the stresses tnext(ud0)(x) and
tnext(uG(x, ξ, ek)) verify the free surface boundary condition on this boundary.

Then, the dynamic representation theorem is written for the incident field on the interior domain.
The boundary of the interior soil domain Γ2 consists of the soil-structure interface Σbs and of
the free soil surface of the excavated part of the soil Γ∗

b .
∫

Γ2

tnint(ui)(x) · uG(x, ξ, ek)dS −
∮

Γ2

tnint(uG(x, ξ, ek)) · ui(x)dS =
1

2
ui(ξ) · ek (2.46)

The contribution of the boundary Γ∗
b disappears when the stresses tnint(ui)(x) and tnint(uG(x, ξ, ek))

verify the free surface boundary conditions on this boundary.
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The boundaries Γ1 and Γ2 thus can be restricted to only the soil-structure interface Σbs.

The difference between the two equations leads to:

∫

Σbs

(tnext(ud0)(x) − tnint(ui)(x)) · uG(x, ξ, ek)dS

−
∮

Σbs

[tnext(uG(x, ξ, ek)) · ud0(x) − tnint(uG(x, ξ, ek)) · ui(x)]dS

=
1

2
(ud0(ξ) − ui(ξ)) · ek

(2.47)

The normals nint and next are oppositely pointed:

∫

Σbs

tnext(ud0(x) + ui(x)) · uG(x, ξ, ek)dS −
∮

Σbs

tnext(uG(x, ξ, ek)) · (ud0(x) + ui(x))dS

=
1

2
((ud0(ξ) − ui(ξ)) · ek

(2.48)

Given,

ut(x) = ud0(x) + ui(x) (2.49)

ud0(x) − ui(x) = ut(x) − ui(x) − ui(x) = ut(x) − 2ui(x) (2.50)

then:
∫

Σbs

tnext(ut(x)) · uG(x, ξ, ek)dS −
∮

Σbs

tnext(uG(x, ξ, ek)) · ut(x)dS

=
1

2
((ut(ξ) − 2ui(ξ)) · ek

(2.51)

Since ut(x) = ud0(x) + ui(x) = 0 on Σbs:

∫

Σbs

tnext(ut(x)) · uG(x, ξ, ek)dS = −ui(ξ) · ek (2.52)

Discretising the above equation by means of boundary elements allows the computation of
tnext(ut(x)) in the centres of gravity of the boundary elements for an incident field known
in these centres of gravity. The elements of F s1(ω) then are computed using a trapezoidal
integration scheme.

2.2 The periodic soil-structure interaction problem

2.2.1 The Floquet Transformation

The physical model is assumed to be periodic in one direction e2, with a periodicity length L.
Following [10, 12, 17], a Floquet transformation is used to restrict the model to a single bounded
generic cell. The spatial coordinate along the periodic direction is transformed to the domain of
the wavenumber κ.
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Definition (The Floquet Transformation) Let f(x) be a function defined on a periodic domain
Ω with values in C, L being the geometrical period in the direction e2. Let Ω̃ be the generic cell.

Ω̃ = {x ∈ Ω|−L
2

≤ x · e2 ≤ L

2
} (2.53)

The Floquet transform f̃(x̃, κ) of the function f(x) is complex valued and is a function of the
spatial coordinate on the generic cell x̃ and of the wavenumber κ.

Ω̃×]
−π
L
,
π

L
[→ C : f̃(x̃, κ) =

+∞
∑

n=−∞

f(x̃ + nLe2)e
inκL (2.54)

The Floquet inverse transform is defined as:

f(x) =
L

2π

∫ π
L

−π
L

f̃(x̃, κ)e−inκLdκ with x = x̃ + nLe2 (2.55)

The transformed function f̃(x̃, κ) is periodic of the second kind.

Definition (Periodicity of the second kind) A complex valued function f̃ defined on a periodic
domain Ω is periodic of the second kind with a period L in the direction e2 and wavenumber κ
if for all x ∈ Ω:

f̃(x̃+ Le2, κ) = e−iκLf̃(x, κ) (2.56)

Proof

f̃(x̃ + Le2, κ) =? e−iκLf̃(x̃, κ)

⇔ L

2π

∫ π
L

−π
L

f̃(x̃ + Le2, κ)e
−inκLdκ =? L

2π

∫ π
L

−π
L

e−iκLf̃(x̃, κ)e−inκLdκ

⇔ f(x̃ + Le2 + nLe2) =! f(x̃ + (n+ 1)Le2)

2.2.2 Soil-structure interaction in the frequency-wavenumber domain

The Floquet transformation is used to restrict the soil-structure interaction problem to a single
generic cell Ω̃. The domains Ωb and Ωs are restricted to the domains Ω̃b and Ω̃s, respectively;
the boundaries Γsa, Γba, Γbσ and the interface Σbs being restricted to Γ̃sa, Γ̃ba, Γ̃bσ and the
interface Σ̃bs. The spatial coordinate along the periodic direction of the structure is transformed
to the wavenumber κ. All displacement fields u(x, ω) and all traction fields t(x, ω) defined on
the periodic domain Ω are transformed to ũ(x̃, κ, ω) and t̃(x̃, κ, ω) defined on the generic cell Ω̃.

The operator in the spatial-frequency domain is the total system of governing equations and
boundary conditions. This operator is periodic of the first kind.

Definition (Periodic operator of the first kind) The operator A with domain D(A) is periodic
of the first kind with periodicity length L in direction e2 if:

∀u ∈ D(A), ∀x ∈ R : A(x + Le2)u = A(x)u

The periodicity of the first kind of A allows a computation in the wavenumber - frequency
domain on a single generic cell, with a restriction of the operator domain to fields periodic of
the second kind. Afterwards, the Floquet inverse transformation is used to obtain the fields in
the spatial-frequency domain [17].
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2.2.3 Domain decomposition in the frequency-wavenumber domain

A similar decomposition as in section 2.1 is used.

The displacements on the interface Σ̃bs are decomposed on a basis of modes Ψ̃m(x̃, κ). These
fields are now complex valued, functions of the wavenumber κ and have to be chosen periodic
of the second kind.

ũb(x̃, κ, ω)
∣

∣

∣

Σ̃bs

= ũs(x̃, κ, ω)
∣

∣

∣

Σ̃bs

=
∑

m

cm(κ, ω)Ψ̃m(x̃, κ) (2.57)

The displacement fields ũb(x̃, κ, ω) and ũd(x̃, κ, ω) can be expanded as:

ũd(x̃, κ, ω) =
∑

m

cm(κ, ω)ũd(Ψ̃m)(x̃, κ, ω) + ũd0(x̃, κ, ω) in Ω̃s (2.58)

where ũd(Ψ̃m)(x̃, κ)
∣

∣

∣

Σ̃bs

= Ψ̃m(x̃, κ); ũi(x̃, κ, ω) + ũd0(x̃, κ, ω)
∣

∣

∣

Σ̃bs

= 0

ũb(x̃, κ, ω) =
∑

m

cm(κ, ω)ũb(Ψ̃m)(x̃, κ) +
∑

i

ci(κ, ω)Φ̃i(x̃, κ) in Ω̃b (2.59)

where ũb(Ψ̃m)(x̃, κ)
∣

∣

∣

Σ̃bs

= Ψ̃m(x̃, κ); Φ̃i(x̃, κ)
∣

∣

∣

Σ̃bs

= 0

2.2.4 Variational formulation in the frequency-wavenumber domain

Figure 5: A very long periodic structure and the restriction to a single generic cell, introducing
new interfaces.

The equilibrium of the structure is again expressed in a variational form. First, the equilibrium
equation of the structure, transformed to the wavenumber domain and verified by a solution
ũb(κ), is multiplied with a virtual field ṽb(κ) and integrated over the domain Ω̃b.

∫

Ω̃b

divσ̃(ũb(κ, ω)) · ṽb(κ)dΩ = −ω2

∫

Ω̃b

ρũb(κ, ω) · ṽb(κ)dΩ (2.60)

Gauss’ theorem is applied and yields:
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∫

Ω̃b

σ̃(ũb)(κ, ω) : ε̃(ṽb(κ))dΩ − ω2

∫

Ω̃b

ρũb(κ, ω) · ṽb(κ)dΩ =

∫

∂Ω̃b

t̃b(ũb)(κ, ω) · ṽb(κ)dS (2.61)

The boundary ∂Ω̃b of the domain Ω̃b now consists of Γ̃ba∪ Γ̃bσ∪Σ̃bs∪Σbp1∪Σbp2. The presence of
new periodic boundaries Σbp1 and Σbp2 is explained in figure 5. For an embedded structure, this
figure illustrates the presence of new boundaries Σbp1, Σbp2, Σsp1 and Σsp2 due to the restriction
of the infinite periodic domain to a single generic cell.

Because of the choice of the complex conjugate in equation (2.60), the integrals over these two
periodic boundaries annihilate each other.

Indeed, due to the periodicity properties of the field ũb, the stress tensor σ̃(ũb) is periodic of
the second kind too:

σ̃(ũb)(x̃2, κ, ω) = e−iκLσ̃(ũb)(x̃1, κ, ω) with x̃1 ∈ Σbp1 and x̃2 ∈ Σbp2. (2.62)

Cauchy’s principle then yields:

t̃n1(ũb)(x̃1, κ, ω) = σ̃(ũb)(x̃1, κ, ω)n1 (2.63)

t̃n2(ũb)(x̃2, κ, ω) = σ̃(ũb)(x̃2, κ, ω)n2 (2.64)

The normal vectors n1 and n2, as defined in figure 5, are oppositely pointed:

t̃n2(ũb)(x̃2, κ, ω) = σ̃(ũb)(x̃2, κ, ω)n2 (2.65)

= e−iκLσ̃(ũb)(x̃1, κ, ω)n2 (2.66)

= −e−iκLσ̃(ũb)(x̃1, κ, ω)n1 (2.67)

= −e−iκLt̃n1(ũb)(x̃1, κ, ω) (2.68)

The periodic interfaces Σbp1 and Σbp2 thus disappear from the equations:

∫

Σbp1∪Σbp2

t̃b(ũb) · ṽbdS =

∫

Σbp1

[t̃b(ũb) · ṽb + (−e−iκL)t̃b(ũb) · eiκLṽb]dS = 0

A standard Galerkin procedure then yields the system of equations describing the soil-structure
interaction in the wavenumber-frequency domain,

[

Ks(κ, ω) − ω2M b(κ) + Kb(κ)
]

[

cM (κ, ω)
cI(κ, ω)

]

=

[

F s1(κ, ω)
F s2(κ, ω)

]

+

[

F b1(κ, ω)
F b2(κ, ω)

]

(2.69)

with:

Kb(κ) =

[

ũb(Ψ̃)ᵀ(κ)KFEM
b ũb(Ψ̃)(κ) ũb(Ψ̃)ᵀ(κ)KFEM

b Φ̃(κ)

Φ̃
ᵀ

(κ)KFEM
b ũb(Ψ̃)(κ) Φ̃

ᵀ

(κ)KFEM
b Φ̃(κ)

]

(2.70)

M b(κ) =

[

ũb(Ψ̃)ᵀ(κ)MFEM
b ũb(Ψ̃)(κ) ũb(Ψ̃)ᵀ(κ)MFEM

b Φ̃(κ)

Φ̃
ᵀ

(κ)MFEM
b ũb(Ψ̃)(κ) Φ̃

ᵀ

(κ)MFEM
b Φ̃(κ)

]

(2.71)
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[

F s1(κ, ω)
F s2(κ, ω)

]

=

[

−
∫

Σ̃bs
ũb(Ψ̃)ᵀ(κ)t̃s(ũi + ũd0)(κ, ω)dS

−
∫

Σ̃bs
Φ̃

ᵀ

(κ)t̃s(ũi + ũd0)(κ, ω)dS

]

=

[

−
∫

Σ̃bs
ũd(Ψ̃)ᵀ(κ)t̃s(ũi + ũd0)(κ, ω)dS

0

]

(2.72)

Ks(κ, ω) =

[

∫

Σ̃bs
ũd(Ψ̃)ᵀ(κ)t̃s(ũd(Ψ̃))(κ, ω)dS 0

∫

Σ̃bs
Φ̃

ᵀ

(κ)t̃s(ũd(Ψ̃))(κ, ω)dS 0

]

=

[

∫

Σ̃bs
ũd(Ψ̃)ᵀ(κ)t̃s(ũd(Ψ̃))(κ, ω)dS 0

0 0

]

(2.73)

[

F b1(κ, ω)
F b2(κ, ω)

]

=

[

∫

Σ̃bσ
ũb(Ψ̃)ᵀ(κ)f̃ b(κ, ω)dS

∫

Σ̃bσ
Φ̃

ᵀ

(κ)f̃ b(κ, ω)dS

]

(2.74)

Hysteretic damping is introduced in the system, leading to the generalized impedance of the
periodic structure:

Zb(ω, κ) = (1 − 2iβ)Kb(κ) − ω2M b(κ) (2.75)

2.2.5 The periodic boundary element method

A direct boundary element method is again used to approximate the stresses t̃s(ũd(Ψ̃))(κ, ω)
and t̃s(ũi + ũd0)(κ, ω) in the expressions for Ks(κ, ω) and F s1(κ, ω), respectively. The method
uses direct boundary integral equations and is based on the reciprocity theorem as presented in
section 2.1.4 .

∫

Γ̃
[t̃n(ũ) · ṽ − t̃n(ṽ) · ũ]dS = 0 (2.76)

The same difficulty as in the variational formulation of the problem arises. The boundary of the
generic cell Γ̃ now consists of Σ̃bs ∪Σsp1 ∪Σsp2 ∪ Γ̃∞ ∪ Γ̃sa. The appearance of the two periodic
boundaries Σsp1 and Σsp2 can again be understood from figure 5.

A solution cannot consist of using the complex conjugate of the fields ṽ and t̃n(ṽ) in the reci-
procity theorem, since this theorem then does not hold.

The solution developed consists of not choosing the fields ṽ equal to the Green’s function (cfr.
section 2.1.4), but of constructing Green-Floquet functions.

Definition (The Green-Floquet function) Let uG(x,y, ek;ω) be the Green’s function, corre-
sponding to the displacement in the point x generated by a point force ek at point y. The
Green-Floquet fundamental solution ũGF (x̃, ỹ, ek;κ, ω) is defined as the infinite sum of Green’s
functions at point x̃ for sources periodically located in space, with a phase shift iκL between
two adjacent locations:

ũGF (x̃, ỹ, ek;κ, ω) =
n=+∞
∑

n=−∞

einκLuG(x̃, ỹ + nLe2, ek;ω) (2.77)

The Green-Floquet fundamental solution is periodic of the second kind with respect to x̃ and ỹ

with a period L in the direction e2 and for wavenumbers κ and −κ respectively.
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ũGF (x̃, ỹ + Le2, ek;κ, ω) = e−iκLũGF (x̃, ỹ, ek;κ, ω)

ũGF (x̃ + Le2, ỹ, ek;κ, ω) = eiκLũGF (x̃, ỹ, ek;κ, ω)

With this Green-Floquet fundamental solution, the following direct boundary integral equation
on the generic cell is obtained [17]:

∫

Σbs

t̃n(ũ)(x̃, κ, ω) · ũGF (x̃, ξ̃, ek;κ, ω)dS

−
∮

Σbs

t̃n(ũGF (x̃, ξ̃, ek;κ, ω)) · ũ(x̃, κ, ω)dS =
1

2
ũ(ξ̃, κ, ω) · ek

(2.78)

Only the soil-structure interface Σbs appears in this equation. The contribution of the boundary
Σ̃∞ disappears from the equation when the radiation conditions are satisfied. The contribution
of the boundary Σ̃sa disappears too when the stresses t̃n(ũg(x, ξ, ek;ω)) verify the free surface
boundary condition on the boundary Σsa of the periodic domain Ωs. The contributions of the
two interfaces Σs1 and Σs2 disappear from the equations due to the derived periodicity properties
and due to Cauchy’s principle.

Equation (2.78) is discretised using boundary elements. Only the interface Σbs has to be meshed.
A collocation method is elaborated and leads to the following system of equations,

[Ũ
GF

(κ, ω)]t̃(κ, ω) = [T̃
GF

(κ, ω)]ũ(κ, ω) (2.79)

with:

t̃(κ, ω) = (t̃11(κ, ω), t̃12(κ, ω), ..., t̃Ei(κ, ω), ..., t̃Ne3(κ, ω))ᵀ (2.80)

[Ũ
GF

(κ, ω)]EiFk =

∫

E

ei · ũGF (x̃E , ξ̃F , ek;κ, ω)dS(x̃E) (2.81)

[T̃
GF

(κ, ω)]EiFk =

∮

E

ei · t̃n(E)(ũ
GF (x̃E , ξ̃F , ek;κ, ω))dS(x̃E) +

1

2
δEF δik (2.82)

(2.83)

As far as the numerical implementation is concerned, the Green-Floquet function is approxi-
mated by a finite sum in equations (2.81) and (2.82):

[Ũ
GF

(κ, ω)]EiFk =

∫

E

ei · ũGF (x̃E , ξ̃F , ek;κ, ω)dS(x̃E) (2.84)

'
∫

E

ei ·
+Nc
∑

n=−Nc

einκLuG(x̃E , ξ̃F + nLe2, ek;ω)dS(x̃E) (2.85)

=

+Nc
∑

n=−Nc

einκL
(

∫

E

ei · uG(x̃E , ξ̃F + nLe2, ek;ω)dS(x̃E)
)

(2.86)

The integrals in these equations are numerically approximated using Gauss integration:
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[Ũ
GF

(κ, ω)]EiFk '
+Nc
∑

n=−Nc

einκL
(

Nq
∑

q=1

wEqu
G(x̃E , ξ̃F + nLe2, ek;ω) · ei

)

(2.87)

leading to:

[Ũ
GF

(κ, ω)] =

+Nc
∑

n=−Nc

einκL[Ũ
G
(ω)]n (2.88)

with:
[

[UG(ω)]n

]

EiFk
=

Nq
∑

q=1

wEqu
G(x̃E , ξ̃F + nLe2, ek;ω) · ei (2.89)

[Ũ
G
(ω)]0 is the 3D BEM term. The matrices [Ũ

G
(ω)]n6=0 are computed translating the sources

ξ̃F by nLe2. Where n is large enough, the distance between the source ξ̃F +nLe2 and the receiver
x̃E is large too. The Green’s function uG(x̃E , ξ̃F + nLe2, ek;ω) then has a smooth shape over
the element E, requiring few Gauss points in the computation of the sum (2.89).

The major advantage of using the Green-Floquet fundamental solution is that the periodic
boundary conditions on the periodic interfaces are implicitly accounted for. These boundaries
do not need to be discretized as would have been the case when the standard Green’s functions
are used. The second advantage, compared to a translation invariant solution, is that the Green-
Floquet functions have the same singularities as the original Green’s functions and that the
same integration techniques can be used.

The method is elaborated in a similar way as in sections 2.1.5 and 2.1.6 to compute Ks and
F s1.

2.2.6 The kinematic basis for the structure

The kinematic basis for the structure has to be determined in such way that the fields Ψ̃m(x̃, κ),
ũb(Ψ̃m)(x̃, κ) and Φ̃i(x̃, κ) are complex valued and periodic of the second kind. For the field
Ψ̃m(x̃, κ), this condition yields for example,

Ψ̃m(x̃ + Le2, κ) = e−iκLΨ̃m(x̃, κ) (2.90)

with L the period in the direction e2 and x̃ belonging to Σbp1.

Assuming that the modes ϕm(x̃) can be build satisfying the boundary conditions in the strictly
periodic case (κ = 0),

ϕm(x̃ + Le2) = ϕm(x̃), ∀x̃ ∈ Ω̃b|x̃ · e2 = −L
2

(2.91)

the displacement fields ũb(Ψ̃m)(x̃, κ) for non vanishing wavenumber κ can easily be built as
follows:

ũb(Ψ̃m)(x̃, κ) = e−iκe2·x̃ϕm(x̃) (2.92)

These displacement fields ũb(Ψ̃m)(x̃, κ) are periodic of the second kind:
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ũb(Ψ̃m)(x̃ + Le2, κ) = e−iκe2·(x̃+Le2)ϕm(x̃ + Le2)

= e−iκe2·x̃e−iκLϕm(x̃)

= e−iκLũb(Ψ̃m)(x̃, κ)

The fields Ψ̃m(x̃, κ) are the traces of the corresponding fields ũb(Ψ̃m)(x̃, κ) on the soil-structure
interface Σbs. A similar method has been developed to determine the fields Φ̃i(x̃, κ).

In a finite element context, the term e−iκe2·x̃ can be interpolated at each node generating a
diagonal matrix Λ(κ). The wavenumber dependant modes then are obtained by multiplying the
matrix ϕm(x̃),interpolating the strictly periodic modes, with Λ(κ). The first order series expan-
sion of Λ(κ) for small wavenumbers shows that the value of the stiffness and the mass matrix of
the structure varies quadraticly with respect to the wavenumber κ. This result shows that the
structure is stiffer for higher wavenumbers. Moreover, unless hysteretic or viscous damping is
introduced in the model, the stiffness matrix and the mass matrix of the structure remain real
valued for small wavenumbers.

Not expanding Λ(κ), it can be shown that the proposed method leads to matrices M b(κ) and
Kb(κ) that are Hermitian, due to the symmetry of the matrices MFEM

b and KFEM
b .

2.2.7 The computation for the negative wavenumbers

The Floquet inverse transformation requires the knowledge of the transformed fields for positive
and for negative wavenumbers. This section proposes a method to avoid the computation for
negative wavenumbers, based on the symmetry of the problem.

The following notation will be used: let x(x1, x2, x3) be a point of the periodic domain Ω.
s(x)(x1,−x2, x3) then is the point of Ω, at the symmetrical position of x with respect to the
plane x2 = 0.

The periodic domain Ω is assumed to be symmetrical with respect to the plane x2 = 0. When
the applied forces are symmetrical with respect to the plane x2 = 0, then displacement fields
us(x) and ub(x) with the following symmetry properties are obtained:

uα1(x) = uα1(s(x))

uα2(x) = −uα2(s(x))

uα3(x) = uα3(s(x))











uα(x) = s(uα(s(x))), ∀x ∈ Ω, α = b, s

The following property can be derived for the Floquet transform of the symmetrical components
of the displacement fields:

Lemma 3 (The Floquet transformation of a symmetrical function) Let u(x) be a function
symmetrical with respect to the plane x2 = 0,

u(x) = u(s(x)), ∀x ∈ Ω
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then:

ũ(x̃,−κ) =
∑

n

e−inκLu(x̃ + nLe2)

=
∑

n′

e+in′κLu(s(x̃) + n′Le2)

ũ(x̃,−κ) = ũ(s(x̃), κ), ∀x̃ ∈ Ω̃

The following property can be derived for the Floquet transform of the antisymmetrical compo-
nent of the displacement fields:

Lemma 4 (The Floquet transformation of an antisymmetrical function) Let u(x) be a function
antisymmetrical with respect to the plane x2 = 0,

u(x) = −u(s(x)), ∀x ∈ Ω

then:

ũ(x̃,−κ) =
∑

n

e−inκLu(x̃ + nLe2)

=
∑

n′

e+in′κL(−u(s(x̃) + n′Le2))

ũ(x̃,−κ) = −ũ(s(x̃), κ), ∀x̃ ∈ Ω̃

The transformed fields ũs(x̃, κ) and ũb(x̃, κ) thus have the following properties:

ũα1(x̃,−κ) = ũα1(s(x̃), κ)

ũα2(x̃,−κ) = −ũα2(s(x̃), κ)

ũα3(x̃,−κ) = ũα3(s(x̃), κ)











ũα(x̃,−κ) = s(ũα(s(x̃), κ)), ∀x̃ ∈ Ω̃, α = b, s (2.93)

The generic cell Ω̃ can be chosen symmetrically with respect to the plane x2 = 0. The value for
a negative wavenumber in a point x̃ can then be computed from the value for the corresponding
positive wavenumber in the corresponding point s(x̃).

The method holds for a structure, a soil, forces and a generic cell, all symmetrical with respect
to the plane x2 = 0. The method can be similarly written for antisymmetrical forces. The
method thus holds for an arbitrary combination of forces, since every combination of forces can
be decomposed in a sum of a symmetrical and of an antisymmetrical part.

2.2.8 The symmetry of the kinematical basis.

In section 2.2.6, the method used to compute the fields Ψ̃m(x̃, κ), ũb(Ψ̃m)(x̃, κ) and Φ̃i(x̃, κ) has
been explained. The fields Ψ̃m(x̃, κ) and ũb(Ψ̃m)(x̃, κ) can be shown to have specific symmetrical
properties due to the periodicity of the first kind of the fields ϕm(x̃):

∀x̃ ∈ Ω̃b|x̃ · e2 = ±L
2

: ũb(Ψ̃m)(x̃,−κ) = e−i(−κ)e2·x̃ϕm(x̃) (2.94)

= e−iκe2·s(x̃)ϕm(s(x̃)) (2.95)

= ũb(Ψ̃m)(s(x̃), κ) (2.96)
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This last symmetry property is introduced in the symmetrical properties of the transformed
fields ũb(x̃, κ) for symmetrical fields ub(x) (2.93).

For the x1-x3-components of the displacements:

∀x̃ ∈ Ω̃b|x̃ · e2 = ±L
2 , β = 1, 3 :

0 = ũbβ(x̃,−κ) − ũbβ(s(x̃), κ) (2.97)

=
∑

m

cm(−κ, ω)ũbβ(Ψ̃m)(x̃,−κ) −
∑

m

cm(κ, ω)ũbβ(Ψ̃m)(s(x̃), κ) (2.98)

=
∑

m

(cm(−κ, ω) − cm(κ, ω))ũbβ(Ψ̃m)(x̃,−κ) (2.99)

In order for the x1-x3-components of arbitrary displacement fields ũb(Ψ̃m)(x̃, κ) to satisfy equa-
tion (2.99), the only solution is that:

cm(−κ, ω) − cm(κ, ω) = 0 ⇔ cm(−κ, ω) = cm(κ, ω) (2.100)

For the x2-components of the displacements:

∀x̃ ∈ Ω̃b|x̃ · e2 = ±L
2 :

0 = ũb2(x̃,−κ) + ũb2(s(x̃), κ) (2.101)

=
∑

m

cm(−κ, ω)ũb2(Ψ̃m)(x̃,−κ) +
∑

m

cm(κ, ω)ũb2(Ψ̃m)(s(x̃), κ) (2.102)

=
∑

m

(cm(−κ, ω) + cm(κ, ω))ũb2(Ψ̃m)(x̃,−κ) (2.103)

In order for the x2-components of arbitrary displacement fields ũb(Ψ̃m)(x̃, κ) to satisfy equation
(2.103), the only solution is that:

cm(−κ, ω) + cm(κ, ω) = 0 ⇔ cm(−κ, ω) = −cm(κ, ω) (2.104)

The conclusion from equations (2.100) and (2.104) is that the only way not to have all zero
participation factors when the forces are applied symmetrically, is to have fields ũb(Ψ̃m)(x̃, κ)
with only displacements in the x2-direction and fields ũb(Ψ̃m)(x̃, κ) with displacements only in
the x1- and x3-direction for points x̃ on the periodic interfaces (∀x̃ ∈ Ω̃b|x̃ ·e2 = ±L

2 ). A similar

reasoning holds for the fields Φ̃i(x̃, κ).

The fields Ψ̃m(x̃, κ), ũb(Ψ̃m)(x̃, κ) and Φ̃i(x̃, κ) thus form an appropriate basis when the x1-
x3-components are uncoupled form the x2-component on the periodic interfaces.

The method proposed in section 2.2.6 results automatically in uncoupled fields. Indeed, when
the generic cell is symmetric with respect to the plane x2 = 0, then only dynamic eigenmodes
ϕm(x̃) symmetrical or antisymmetrical with respect to the plane x2 = 0 can be found. Two
exceptions are the rigid body rotations around the x1- and x3-axes.

Symmetrical eigenmodes Antisymmetrical eigenmodes

ϕm,x1
(s(x̃)) = ϕm,x1

(x̃) ϕm,x1
(s(x̃)) = −ϕm,x1

(x̃)
ϕm,x2

(s(x̃)) = −ϕm,x2
(x̃) ϕm,x2

(s(x̃)) = ϕm,x2
(x̃)

ϕm,x3
(s(x̃)) = ϕm,x3

(x̃) ϕm,x3
(s(x̃)) = −ϕm,x3

(x̃)



The periodic soil-structure interaction problem 21

A supplementary condition has been imposed on the eigenmodes ϕm(x̃), namely the periodicity
of the first kind,

ϕm(x̃ + Le2) = ϕm(x̃), ∀x̃ ∈ Ω̃b|x̃ · e2 = −L
2

(2.105)

leading to:

Symmetrical eigenmodes Antisymmetrical eigenmodes

ϕm,x1
(s(x̃)) = ϕm,x1

(x̃) ϕm,x1
(s(x̃)) = 0

ϕm,x2
(s(x̃)) = 0 ϕm,x2

(s(x̃)) = ϕm,x2
(x̃)

ϕm,x3
(s(x̃)) = ϕm,x3

(x̃) ϕm,x3
(s(x̃)) = 0

The rigid body rotations around the x1- and x3-axes cannot satisfy the periodicity conditions.
Only four rigid body modes are found back satisfying these conditions.

The proposed method results in fields with only x1-x3-displacement components and fields with
only a x2-displacement component on the periodic interfaces.



Chapter 3

Optimisation of the periodic BEM

implementation

The periodic boundary element method as discussed in chapter 2 is implemented in the program
MISS, developed at Ecole Centrale de Paris [8, 9].

This chapter presents an important optimisation realized on the version of MISS used at Ecole
Centrale in September 2002. The optimised release has been validated and is now used. The
optimisations make part of the standard r6.3 release.

3.1 A description of the old implementation

The periodic BEM formulation has been presented in chapter 2. The elastodynamic represen-
tation theorem has been elaborated and a discretisation has lead to a system of equations with
the following form:

[Ũ
GF

(κ, ω)]t̃(κ, ω) = [T̃
GF

(κ, ω)]ũ(κ, ω) (3.1)

The Green-Floquet fundamental solution has been approximated by a finite sum and integrals

have been numerically approximated using Gauss points, leading to [Ũ
GF

(κ, ω)]:

[Ũ
GF

(κ, ω)] =

+Nc
∑

n=−Nc

einκL[Ũ
G
(ω)]n (3.2)

with:
[

[UG(ω)]n

]

EiFk
=

Nq
∑

q=1

wEqu
G(x̃E , ξ̃F + nLe2, ek;ω) · ei (3.3)

and a similar expression for [T̃
GF

(κ, ω)].

To compute each matrix [Ũ
GF

(κ, ω)], the MISS program of September 2002 computed the

whole sum (3.2) and a similar sum for each matrix [T̃
GF

(κ, ω)]. For each wave number and for

each frequency, all matrices [Ũ
G
(ω)]n and [T̃

G
(ω)]n were recomputed. For each combination of

matrices [Ũ
G
(ω)]n and [T̃

G
(ω)]n, all data regarding the computation of a Green’s function were

reread from disk.

22
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The parameters NY and NY2. In chapter 2, it has been explained that, in equation (3.3),
the distance between the source ξ̃F +nLe2 and the receiver x̃E is large for large n. The Green’s
function uG(x̃E , ξ̃F + nLe2, ek;ω) then has a smooth shape over the element E requiring few
Gauss points in the computation of the sum (3.3). In the MISS implementation, two parameters
NY and NY 2 are therefore introduced and the sum (3.2) is computed as follows,

[Ũ
GF

(κ, ω)] =

+(NY2−1)
∑

n2=−(NY2−1)

+(NY −1)
∑

n1=−(NY −1)

ein
′κL
(

Nq(n′)
∑

q=1

wEq(n
′)uG(x̃E , ξ̃F + n′Le2, ek;ω) · ei

)

(3.4)
with

n′ = n2(2NY − 1) + n1 (3.5)

Nc = (2NY 2 − 1)(2NY − 1) (3.6)

For n2 6= 0, very few Gauss points are used. For n2 = 0, a fine distribution is used. The
parameters NY and NY2 have to be chosen in such way that, given the frequency range of
interest and the period L, the use of very few Gauss points is accurate enough for sources
ξ̃F + n′Le2 located at a distance larger than NY Le2 from the generic cell.

The RFIC feature. MISS has a special feature to reduce the effect of spurious frequencies.
Spurious frequencies are the resonances of excavated parts of the soil that have their influence on
the solution of the boundary element method. The MISS feature is called RFIC and introduces

a second set of boundary integral equations. In the implementation, all matrices [Ũ
G
(ω)]n in

sum (3.2) become the sum of two matrices. The feature is theoretically explained in [3] and its
effectiveness is shown in [20].

The discretized Green’s function. The computation of the Green’s function at different
positions for forces at different positions is required. The Green’s functions of a layered half
space are used. They are computed numerically at discretized positions for forces at discretized
positions in the layering. The Green’s functions are then interpolated on these discretized data.

The computation of the displacements in certain points in the soil domain. To
obtain the displacements in certain points in the soil domain, the representation theorem can
be used, as implemented in MISS. The implementations to compute the soil stiffness, the forces
induced by the incident field and the displacements in these points have a common routine

to compute the matrices [Ũ
GF

(κ, ω)] and [T̃
GF

(κ, ω)]. Optimisation work on this routine thus
optimises the three implementations.

3.2 Profiling of the old implementation

The performance of the periodic BEM implementation in MISS has been analysed on a SGI
computer, using the IRIX built-in function Speedshop. A ’Usertime’ experiment has been done,
counting the time spent in the functions of the examined program itself and in functions that
the operating system is performing for the program.
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The MISS program has been evaluated computing a problem with a generic cell with 52 boundary
elements, with the number of periodic source translations ξ̃F + n′Le2 being determined by the
two parameters NY=15 and NY 2=4 and using the RFIC feature requiring the computation of

two combinations of matrices [Ũ
G
(ω)]n and [T̃

G
(ω)]n in the sum (3.2) for each n, instead of one

combination. MISS computed the soil stiffness matrix and the displacements in 1 point of the
soil domain for one wave number and for one frequency. The computer was a SGI Octane with
512 MB Ram and one R10000/44 Mhz CPU. Speedshop listed the following output (shortened):

-------------------------------------------------------------------------

SpeedShop profile listing generated Wed Oct 23 19:03:04 2002

-------------------------------------------------------------------------

Function list, in descending order by exclusive time

-------------------------------------------------------------------------

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure

[14] 234.810 44.7% 44.7% 234.810 44.7% 7827 _read

[17] 66.600 12.7% 57.4% 111.540 22.2% 3718 INTRPU

[20] 66.270 12.6% 70.0% 66.270 12.6% 2209 memcpy

[24] 27.960 5.3% 75.3% 27.960 5.3% 932 ASCTGV

...

[15] 0.000 0.0% 100.0% 295.990 43.0% 7533 RESOU

...

[16] 0.000 0.0% 100.0% 167.070 31.8% 5569 CONTR

[5] 0.000 0.0% 100.0% 392.220 74.7% 13074 UTGSTR

The excl.secs column shows how much time, in seconds, MISS spent in the routine itself. The
incl.secs column shows how much time, in seconds, it spent in the function and descendents of
the function.

MISS spent 44% of the usertime in the operating system function read. During this time MISS

reads disk data. UTGSTR is the name of the routine that computes [Ũ
GF

(κ, ω)] and [T̃
GF

(κ, ω)].
MISS spent 74.7% of the usertime in this routine and in its descendants.

Optimisation should therefor try to reduce significantly the amount of data to be read from
disk and optimisation should concentrate on the routine UTGSTR since it is in this routine and
descendants that most time is spent.

3.3 Optimisation in two stages

The reason that the old implementation spends so much time in the ’UTGSTR’ routine is of

course that the whole sum (3.2) is recomputed completely for all matrices [Ũ
GF

(κ, ω)] and

[T̃
GF

(κ, ω)], rereading the discretized Green’s function for each n′ from disk. The computa-

tional effort can be reduced significantly, since the computation of the matrices [Ũ
GF

(κ, ω)] and

[T̃
GF

(κ, ω)] for all wave numbers κ requires only a single computation of the matrices [Ũ
G
(ω)]n

and [T̃
G
(ω)]n.
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First, the computation of the matrices [Ũ
G
(ω)]n and [T̃

G
(ω)]n has been optimised. The dis-

cretized Green’s functions necessary for their computation are no longer reread for each source
translation n′. The optimized implementation reads the data only twice: once for the source
positions ξ̃F + n′Le2 with n2 = 1 and once for the source positions ξ̃F + n′Le2 with n2 6= 1.

In a second optimisation stage, the structure of the implementation has been changed. It now

computes the matrices [Ũ
G
(ω)]n and [T̃

G
(ω)]n only once per frequency, saves them in memory

and rereads them for all matrices [Ũ
GF

(κ, ω)] and [T̃
GF

(κ, ω)] to be computed.

An important consequence of the optimisations is that the optimised release takes a relatively

large amount of memory to store all matrices [Ũ
G
(ω)]n and [T̃

G
(ω)]n. Given neltot the number

of boundary elements and ndim the number of degrees of freedom, each matrix [Ũ
G
(ω)]n or

[T̃
G
(ω)]n takes the following amount of memory:

(neltot× ndim) × (neltot× ndim) × 2 × 8 bytes

neltot×ndim being the dimension of each squared matrix, the factor 2 appearing since for every
matrix element a real and an imaginary part has to be stored and 8 bytes being the amount of
memory necessary to save a single number in double precision. The total number of matrices to
be saved is 2(2NY 2− 1)(2NY − 1). Given a typical BEM mesh with 70 elements and 3 degrees
of freedom in each centre of gravity of the elements and using a number of periodic sources
determined by NY=15 and NY 2=4, the necessary amount of memory is 270 MByte.

3.4 Optimisation results

The optimisations have been evaluated by comparing the effect on the computation of a typical
problem. The test problem had a generic cell with 70 boundary elements and 3 degrees of freedom
in each centre of gravity of the elements. The parameters NY and NY 2 have been chosen 15 and
4 respectively and the RFIC feature has been used to reduce the effect of spurious frequencies.
The soil stiffness matrix and the displacement components in one point in the soil domain have
been computed for 1 frequency and for 36 wave numbers. The three versions have been tested
on Orchis, a SGI Octane using 1 R10000 CPU at 195 Mhz and disposing of 512 MB Ram, and
on Bacchus, a SGI Origin 2000 with 64 R10000 CPU’s and disposing of 24 GB Ram running
the MISS versions on 4 processors.

Orchis Bacchus

MISS 09/2002 ? 42028s
MISS with disk reading optimisations only 3506s 1128s; 1428s
MISS after both optimisation stages 265s 200s; 210s; 165s

Table 3.1: A comparison of the three MISS releases. On Bacchus, the same experiment has been
repeated two times and three times, for the first and the second optimisation stage, respectively.

The computation times are summarized in table 3.1, showing that the computational effort has
been reduced by both optimisations on Bacchus with a factor of more than 200.

After the two optimisation stages, MISS computes the matrices [Ũ
g
(ω)]n and [T̃

g
(ω)]n only

once per frequency ω. The cost in computation time to sum these matrices to [Ũ
GF

(κ, ω)] and
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[T̃
GF

(κ, ω)] for every κ afterwards is very small. Summing the matrices [Ũ
g
(ω)]n and [T̃

g
(ω)]n to

the matrices [Ũ
GF

(κ, ω)] and [T̃
GF

(κ, ω)] isn’t faster on 4 Bacchus processors than on 1 Orchis
processor. The 4 Bacchus processors are however faster in computing the set of matrices to be
summed. This is why the difference in computation time between Orchis and Bacchus becomes
so small after the two optimisation stages.

The question mark in the table indicates that the time needed by MISS 09/2002 on Orchis has
not been measured. This release would have taken an amount of time significantly larger than
the 42028s of Bacchus.

The new optimised version has been used afterwards to create animations. For these purposes,
the displacements in the soil domain have to be computed in a large amount of points. For 54
points in the soil domain on the generic cell, a computation time of approximately 12 minutes
has been found per frequency.

3.5 Conclusions and perspectives

The periodic method presented in chapter 2 to describe the soil-structure interaction of very
long periodic structures is a very powerful method that reduces an enormous problem to a single
generic cell.

The time demanding part in the method is the periodic BE-formulation. The implementation
has been optimised in two stages. First the disk reading has significantly been reduced, then the
computation of the sum has been optimised. The computation times have been reduced with a
tremendous factor of more than 200.

Very moderate computation times have been obtained, both on the Bacchus supercomputer and
on the Orchis workstation.



Chapter 4

Numerical model of the Cité

Universitaire site in Paris

The numerical model presented in the previous chapter has been used to model a dynamic
tunnel-soil interaction problem. In particular, a model of the Cité Universitaire site in Paris has
been made. Measurements have been performed at the same site and will allow a validation
of the model. The numerical model for this site has been developed previously by Prof. T.M.
Al-Hussaini [3] and by Dr. Othman. This chapter briefly presents the site and its model and
reports on the convergence analysis.

4.1 Introduction

Numerical computations of the ground vibration have been carried out for the Cité Universitaire
site in Paris. This site is located on the RATP RER B line, between the metro stations Cité
Universitaire and Gentilly. The metro tunnel is a masonry cut-and-cover tunnel at a shallow
depth below the ground surface. Two tracks are running in the tunnel.

Figure 1 shows a plan view of the site, with the location of the metro tunnel. Figure 2 shows the
metro tunnel at the station Cité Universitaire and figure 3 shows a typical cross section. Figure
4 shows one symmetrical half of the model of this cross section, as well as the modelled soil
layering. It shows that the tunnel thickness is 0.6 m on the top and 1.5 m on the two sides. The
top of the tunnel is 2.3 m below the ground surface. The masonry is modelled with a Young’s
modulus of 14 GPa, a Poisson ratio of 0.15, a density of 2400 kg/m3 and a hysteretic damping
ratio of 2%.

The tunnel is considered infinitely long with an invariant cross section. As discussed in chapter
2, the problem can be reduced to a single generic cell, shown in figure 5. The period has been
taken equal to L=0.3 m. The tunnel has been modelled using finite elements. Isoparametric
8-node brick elements have been chosen. The element distribution is shown in figure 5.

The ballast, sleepers and track have not yet been modelled. Their influence on the dynamic
behaviour is important only above 80 Hz [22].

The soil layering at the site has been determined from a Spectral Analysis of Surfacs Waves
(SASW test) [19]. 2 layers are taken into account, on top of a homogeneous half space. 3 different

27
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Figure 1: The plan of the test site.

Figure 2: The metro tunnel at the station Cité
Universitaire.

Figure 3: The cross section of the metro tunnel.
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Figure 4: The model of the cross section of
the tunnel and soil characteristics.

Figure 5: The single generic cell and the
position of the applied forces.

materials are distinguished. The layering is summarized in table 4.1. A hysteretic damping ratio
of 0.05 is assumed for all 3 materials.

Layer Thickness [m] Cs [m/s] Cp [m/s] ρ [kg/m3]

1 1.4 115 282 1700
2 2.8 220 539 1700
3 ∞ 315 772 1700

Table 4.1: The soil stratigraphy.

4.2 The applied forces

The cases of a non-moving harmonic and of a transient excitation on the tunnel invert are
considered. The force has been applied at a position with coordinates (-2.5,0,-8.25) in the frame
of reference defined in figure 6.

The applied force is transformed to the wavenumber domain with the Floquet transformation
leading to two equivalent forces appied on two nodes of the finite element model of the generic
cell (figure 5). Their spectral content in the wavenumber domain is uniform and equal to 1/2.

4.3 The visualization model

To visualise the results, a visualization model will be used in the next chapters, as shown in
figure 6. The generic cell is repeated 80 times in the positive y-direction. Three surfaces in
the soil are meshed: the free surface S1, two horizontal surfaces S2 at the depth of the tunnel
invert and a vertical surface S3 between the free surface and the tunnel top. Their displacements
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Figure 6: The tunnel, the non-moving force and the free surface.

on the generic cell are computed using the elastodynamic representation theorem. A Floquet
inverse transformation leads to the displacements on the repeated cells. Colours are applied to
the visualization model, relative to the vertical displacement component. The colours on the
three soil surfaces are exagerated ten times versus the colours applied to the tunnel.

4.4 The convergence analysis

4.4.1 The reduced modal basis

Figure 7: Mode 11 at 57.6 Hz (Only x-z
displacements).

Figure 8: Mode 17 at 101.5 Hz (only y-
displacements).

A kinematic basis for the tunnel has to be determined, consisting of modes ũb(Ψ̃m)(x̃, κ) and
Φ̃i(x̃, κ). A basis of modes ũb(Ψ̃m)(x̃, κ) is sufficient. Including ballast, sleepers and rails in the
model requires the usage of Φ̃i(x̃, κ) modes.

The modes ũb(Ψ̃m)(x̃, κ) are derived from the dynamic eigenmodes ϕm(x̃) of the generic tunnel
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cell with free surface boundary conditions on Σbs and satisfying the supplementary periodicity
constraints. Due to these constraints and the symmetry of the cell, displacements in the y-
direction are uncoupled from displacements in the x-z-directions on the periodic interfaces.
Only 4 rigid body modes ϕm(x̃) are found, instead of 6, since the rigid body rotations around
x and z axes do not satisfy the periodicity conditions.

The eigenfrequencies of the modes are listed in table 4.2.

Mode 1 2 3 4 5 6 7 8 9 10
Freq. (Hz) 0 0 0 0 9.9 14.0 24.0 36.9 41.9 52.0

Mode 11 12 13 14 15 16 17 18 19 20
Freq. (Hz) 57.6 65.1 74.3 83.4 93.5 94.5 101.5 114.3 125.9 134.3

Mode 21 22 23 24 25 26 27 28 29 30
Freq. (Hz) 146.1 156.8 164.2 164.9 177.9 189.9 194.3 204.8 222.6 224.8

Table 4.2: The eigenfrequencies of the generic tunnel cell.

Figure 9: The amplitude of the vertical displacement in the tunnel point under the force, com-
puted with different numbers of modes.

A convergence analysis has been carried out on the number of modes needed for the present
study. The displacements in the frequency domain in the tunnel point under the force have been
computed with 15, 20, 25 and 30 modes. From figure 9, it has been concluded that 25 modes
are necessary for the convergence of the displacement amplitudes for frequencies up to 80 Hz.
The frequency of the 25th mode is 177.9 Hz. All further computations have been made using
30 modes. The frequency of the 30th mode is 224.8 Hz. Modes 11 and 17 are shown in figures 7
and 8 respectively.
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Figure 10: The real part of element (11,11) of the soil impedance matrix for p=0 s/m and for
different numbers Nc.

4.4.2 The periodic boundary element method

The soil impedance is computed using a periodic boundary element method. The fundamental
solution used is the Green-Floquet function, that is approximated in the implementation by a
finite sum, the number of terms taken into account being determined by the parameters NY
and NY 2. Different elements of the soil impedance matrix have been computed in the slowness-
frequency domain for different combinations of NY and NY 2 and a convergence has been found.
Figure 10 shows the real part of element (11,11) of the soil impedance in a frequency range from
0.1 Hz to 80.1 Hz and for a slowness p=0 s/m, computed with different numbers of periodic
source locations determined byNY=160 andNY 2=1 (Nc=159),NY=15 andNY 2=4 (Nc=101)
and NY=15 and NY 2=2 (Nc=43). For the combination NY 2=15 and NY=4, a convergence
is observed and this combination has been used.

4.4.3 The sampling in the wavenumber-frequency domain

According to equation (2.54), a computation in a wavenumber range from −π/L to π/L is
necessary. For the low frequencies (up to 15 Hz), it has been observed, however, that a range in
wavenumbers from -0.6 1/m to 0.6 1/m is sufficient, since, as shown on figure 11, the solution
is descending rapidly with κ. A sampling of 0.015 1/m is used. For the higher frequencies (from
15 to 80 Hz), a range in slowness p (with p = κ/ω) from -0.004 s/m to 0.004 s/m has appeared
to be more suitable as shown on figure 12. A sampling of 0.0001 s/m is used.

Based on the symmetry of the generic cell, a solution has been developed to avoid the compu-
tation of the negative wave numbers/slowness. The system of equations (2.69) in chapter 2 is
solved for the positive wavenumbers only (or only for the positive slowness). The inverse Floquet
transformation (2.54) is computed afterwards accounting for the symmetry. A simple trapezoidal
integration scheme is used.
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Figure 11: The amplitude of the vertical
displacement in the wavenumber domain
for f=5 Hz for different tunnel points.
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4.5 The generalized impedance of the tunnel and of the soil
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Figure 13: The real part of the element
(11,11) of the generalized tunnel impedance
matrix.
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Figure 14: The real part of element (11,11)
of the generalized tunnel impedance matrix
for slowness p=0 s/m.

Figure 13 shows the real part of the element (11,11) of the generalized tunnel impedance matrix
in a slowness range from 0 to 0.007 s/m and in a frequency range from 0.1 to 80.1 Hz. The
real part of the impedance increases with the wavenumber approximately as κ2. Indeed, in
chapter 2, it has been found that the tunnel stiffness matrix varies quadratically with respect
to the wavenumber κ. Moreover, for small wavenumbers, it has been found that the tunnel
stiffness remains real valued, as does the tunnel mass matrix. Introducing hysteretical damping
as proposed in chapter 2, proportional to the tunnel stiffness matrix Kb(κ), thus leads to an
imaginary part of the generalized tunnel impedance, varying quadratically with the wavenumber
too. This result shows that, the higher the wavenumber, the stiffer the tunnel and the higher
the hysteretic damping. For small values of the slowness p, the inertial term is dominant: the
real part of the impedance becomes negative and decreases with the frequency as ω2 (figure 14).
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Figure 15: The real part of the element
(11,11) of the soil impedance matrix.
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Figure 16: The imaginary part of element
(11,11) of the soil impedance matrix.

Figures 15 and 16 show the real and the imaginary part of the element (11,11) of the soil
impedance matrix in a slowness range from 0 to 0.007 s/m and in a frequency range from 0.1
to 80.1 Hz.

The shape of the soil impedance is less regular than the shape of the generalized tunnel impedance.
As for the tunnel, the soil is stiffer as κ increases. The inertial effect can also be observed for
low slowness.

Due to the unboundedness of the soil domain, accounting for the radiation conditions, an impor-
tant imaginary part is found for the soil impedance, introducing damping in the system. This
damping almost disappears at large slowness. Indeed, for larger the slowness, the component of
the wave propagation in the direction of the tunnel is more impotant. For larger slowness, less
propagation away from the tunnel thus is observed and less energy is radiated away.



Chapter 5

Impulse loads on a tunnel invert:

response in the free field

The previous chapter described the modelled site, its numerical approximations and reported
on the convergence analysis for the numerical model. This chapter computes the harmonic and
transient response for a point force on the tunnel invert. The response in the free field and in
tunnel points is animated and based on these animations, the results are investigated.

5.1 The transfer functions in the spatial-frequency domain

To investigate the transfer functions for a force on the tunnel invert, the response of the tunnel
has been computed for harmonic loads at different frequencies. The transfer functions for the
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Figure 1: The amplitude of the vertical dis-
placement in points at the free surface.
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Figure 2: The amplitude of the vertical dis-
placement of tunnel points and points at
the free surface.

displacements at the points on the free surface (0,0,0), (-8,0,0), (-16,0,0) and (-24,0,0) are shown
in figure 1. The transfer functions for the displacements at the tunnel points (-2.5,-0.15,-8.25)
and (0,-0.15,-2.3) and at the point on the free surface (0,0,0) are shown in figure 2.

35
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In figures 1 and 2, at low frequencies, an important peak is found at 12-18 Hz for points at the
free surface close to the tunnel and for the points at the tunnel top. The peak does not appear
for points further away from the tunnel.

At high frequencies, it is observed that the displacement amplitude for free surface points and
for points at the tunnel top is much smaller than the amplitude found at the low frequencies.
Figure 2, however, shows that the displacement amplitude in the point under the force at high
frequencies is only slightly smaller than the amplitude at low frequencies.

5.2 The response on harmonic loads on the tunnel invert

(a) t=0 s (b) t=T/8

(c) t=T/4 (d) t=3T/8

Figure 3: The harmonic response of the tunnel and the free field at 14 Hz at the time steps t=0
s, t=T/8, t=T/4 and t=3T/8 respectively, with the period T=1/14 s.

The transfer functions in the frequency domain are further investigated animating the harmonic
response of the tunnel and the free field at different frequencies on the visualisation model, as
presented in chapter 4. First, the low frequency response is investigated. Figure 3 shows the
harmonic response at 14 Hz at the time steps t=0 s, t=T/8, t=T/4 and t=3T/8 respectively,
with the period T=1/14 s.
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The figure shows that the soil above the tunnel moves in phase with the tunnel roof. The soil
above the tunnel can be considered to be an equivalent mass, the tunnel being an equivalent
spring. The peak at 14 Hz then corresponds to the resonance peak of this mass-spring system.
The peak is damped due to the radiation of waves away from the tunnel.

Figure 4 shows the harmonic response at 80 Hz at the timesteps t=0 s, t=T/8, t=T/4 and
t=3T/8 respectively, with the period T=1/80 s. At high frequencies, an important propagation
of the displacements is observed. The displacements propagate along the plates of the tunnel in
the direction of the tunnel axis and perpendicular to the tunnel axis. Wave propagation in the
tunnel invert also appears but the waves are strongly reflected by the tunnel walls, as can be
observed from figure 5.

(a) t=0 s (b) t=T/8

(c) t=T/4 (d) t=3T/8

Figure 4: The harmonic response of the tunnel and the free field at 80 Hz at the timesteps t=0
s, t=T/8, t=T/4 and t=3T/8 respectively, with the period T=1/80 s.

In the soil, propagation is observed too, along and perpendicular to the tunnel axis. At the free
surface above the tunnel, high phase velocities are observed in the direction along the tunnel
axis. The propagation perpendicular to the tunnel shows much lower phase velocities, leading
to an elliptical wave front on the free surface, as visible on figure 4.

Figure 6 shows the evolution of the phase of the vertical displacement at the free surface along
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(a) t=0 s (b) t=T/8

Figure 5: The harmonic response of the tunnel at 80 Hz at the timesteps t=0 s and t=T/8 with
T=1/80 s.

a line x=-4 m in the direction of the positive y-axis, at 80 Hz. A wavelength of 24 m can be
estimated, corresponding to a phase speed of 1920 m/s in the direction of the tunnel. Similarly,
the propagation speed of the vertical displacements perpendicular to the tunnel axis can be
estimated to be approximately 650 m/s for a sinusoidal force at 80 Hz.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Ph
as

e 
(r

ad
)

Distance along the tunnel (m)

2*Pi 

Pi 

Figure 6: The phase of the vertical displacement at the free surface along a line in the y-direction
at x=-4 m at 80 Hz.
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5.3 The transfer functions in the slowness-frequency domain

The transfer functions in the slowness-frequency domain are investigated in order to explain
the high phase velocities observed in the previous section at the higher frequencies at the free
surface. The dispersion curves of different free plates, curved plates and of an infinite soil layer
on an infinite plate will be computed and compared to the slowness-frequency response of the
tunnel.
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Figure 7: The amplitude of the vertical ve-
locity in a point at the tunnel roof in the
frequency-slowness domain.
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Figure 8: The amplitude of the vertical ve-
locity in a point at the tunnel invert in the
frequency-slowness domain.

This response is shown in figure 7 for a point on the tunnel roof and in figure 8 for a point on
the tunnel floor, in a slowness range from -0.007 s/m to 0.007 s/m and in a frequency range
form 0.1 Hz to 80.1 Hz. As discussed in chapter 2, the response is found in a slightly narrowing
slowness band at high frequencies.

5.3.1 A first simplified model: an infinite plate

First, a comparison is made with the dispersion curve of an infinite free plate.

Figure 9: The model of an infinite plate.

The infinite plate and its axes are shown in figure 9.

The dynamic eigenmodes of the plate are determined. Following Bonnet-Ben Dhia [15], they
are the solutions of the homogeneous equations (no source terms), periodic in time and bounded
in space.
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The dynamic plate equation is found in [1] and in [16]:

∂4u1

∂4x2
+ 2

∂4u1

∂2x2∂2x3
+
∂4u1

∂4x3
+
ρh

D

∂2u1

∂2t
=

q

D
with D ≡ Eh3

12(1 − ν2)
(5.1)

The source term q is the vertical force applied on the plate. This force q are zero (homogeneous
equation); the following solution is proposed:

u1 = Re(u1(x3)e
iκx2eiωt)

This solution is periodic in time.

An invariance in the direction x3 is assumed. The plate equation then yields:

(iκ)4 +
ρh

D
(iω)2 = 0 (5.2)

When solved for κ, this equation has four solutions. After eliminating the non-bounded solutions,
the following two solutions are retained:

κ = ±i 4

√

ω2ρh

D
(5.3)

c =
ω

κ
=

√
ω 4

√

D

ρh
(5.4)

Dispersion is found. Indeed the phase speed c depends on the frequency (equation (5.4)). The
higher the frequency, the larger the phase speed.
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Dispersion curve for plate thickness 1.5 m
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Figure 10: The dispersion curves for a plate with thickness 0.6 m and for a plate with thickness
1.5 m. Ths slowness (the inverse of the phase speed determined by the dispersion relation (5.4)
is shown in function of the frequency.

Figure 10 shows the dispersion curves for a plate with the characteristics of the tunnel roof at
the centre of the tunnel (thickness 0.6 m) and with those of the tunnel roof plate near the tunnel
wall (thickness 1.5 m). At 80 Hz, phase speeds of 462 m/s and 729 m/s are found, corresponding
to slowness of 0.0021 s/m and 0.0014 s/m respectively. These speeds thus are too small to explain
the fast propagation along the tunnel.
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5.3.2 The influence of the plate curvature

The tunnel at the Cité Universitaire site has a roof that has been modelled as an elliptically
curved plate. The longitudinal bending mode of the roof plate is stiffened by the curvature,
increasing the phase speeds found in the previous paragraph. The influence, however, is very
small. Doyle [16] derives that the curvature causes terms ∼ 9

4R4 that have to be evaluated

against ω2ρh
D

. For the roof plate at the Cité Universitaire site with a radius R ≈ 7.25 m:

ω2ρh

D
= 3.2 m−2 >>

9

4R4
= 8.2e−4 m−2 (5.5)

At the lowest frequencies, the curvature thus is important. But it cannot explain the fast propaga-
tion along the tunnel at the high frequencies. The influence of the curvature at these frequencies
is negligibly small. Indeed the curvature is much greater then the wavelength.

5.3.3 A second simplified model: an infinite soil layer on an infinite plate

Figure 11: The model of an infinite layer on an infinite plate.

A simple free plate model could not explain the high phase velocities at the free surface. The
soil layer above the tunnel roof plate must be taken into account. The dispersion curves in the
slowness-frequency domain of an infinite soil layer on an infinite plate are therefore computed.

The infinite system and its axes are shown in figure 11. The problem is simplified supposing
an invariance in the x3-direction. The displacements in the x1-x2-directions then uncouple from
the displacements in the x3-direction and only P-SV waves can then be considered for the x1-
x2-components (when the boundary conditions don’t couple the displacements again) [15].

The following form for the displacements in the soil can be proposed:

ũs(x, t) = Re(us(x)eiωt) (5.6)

A classical Hemholtz decomposition, accounting for the invariance in the x3-direction, then leads
to:

us1 =
∂ϕ(x1, x2)

∂x1
+
∂ψ(x1, x2)

∂x2
(5.7)

us2 =
∂ϕ(x1, x2)

∂x2
− ∂ψ(x1, x2)

∂x1
(5.8)
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Assuming,
us(x1, x2) = ûs(x1)e

iκx2 (5.9)

the following form is found for the potentials:

ϕ(x1, x2) = ϕ̂(x1)e
iκx2 (5.10)

ψ(x1, x2) = ψ̂(x1)e
iκx2 (5.11)

with:

ûs1(x1, x2) =
∂ϕ̂(x1)

∂x1
+ (iκ)ψ̂(x1) (5.12)

ûs2(x1, x2) = (iκ)ϕ̂(x1) −
∂ψ̂(x1)

∂x1
(5.13)

The governing equations are the Navier equations:

∆ϕ(x1, x2) +
ω2

c2p
ϕ(x1, x2) = 0 (5.14)

∆ψ(x1, x2) +
ω2

c2s
ψ(x1, x2) = 0 (5.15)

Introducing equations (5.10) and (5.11) leads to the following form of the solutions:

ϕ̂(x1) = Ape
ik1px1 +A′

se
−ik1px1 (5.16)

ϕ̂(x1) = Ase
ik1sx1 +A′

se
−ik1sx1 (5.17)

with:

k1p =

√

ω2

c2p
− κ2 (5.18)

k1s =

√

ω2

c2s
− κ2 (5.19)

The boundary conditions to be imposed are:

• The free surface boundary conditions at x1 = hL:

σ(us) · e1

∣

∣

∣

x1=hL

= 0 (5.20)

For the x1-x2-components, with equation (5.9) and with σij(u) = λ(divu)δij + 2µεij(u),
these conditions yield:







{

(λ(∂ûs1

∂x1
+ (iκ)ûs2) + 2µ∂ûs1

∂x1
)eiκx2

}

∣

∣

∣

x1=hL

= 0
{

µ((iκ)ûs1 + ∂ûs2

∂x1
)eiκx2

}

∣

∣

∣

x1=hL

= 0
(5.21)

Equations (5.12) and (5.13), and afterwards equations (5.16) and (5.17) are introduced in
equations (5.21), leading to two equations.
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• The soil displacements at x1 = 0 are introduced as the displacements upl1 in the plate
equation (continuity). The normal soil traction at x1 = 0 then must be equal to the force
q in the plate equation (equilibrium):







upl1 = us1

∣

∣

∣

x1=0

q = (σ(us) · e1)1

∣

∣

∣

x1=0

(5.22)

And with equation (5.9):







upl1 = ûs1e
iκx2

∣

∣

∣

x1=0

q =
{

(λ(∂ûs1

∂x1
+ (iκ)ûs2) + 2µ∂ûs1

∂x1
)eiκx2

}

∣

∣

∣

x1=0

(5.23)

These equations are introduced in the plate equation (5.1). Afterwards introducing equa-
tions (5.12) and (5.13), and finally equations (5.16) and (5.17) leads to one equation.

• Only plate bending is taken into account. The plate displacements in the x2-direction are
very small with respect to the displacements in the x2-direction at x1 = 0. For simplifica-
tion, the plate displacements in the x2-direction are supposed to be vanishing at x1 = 0.
Continuity then imposes vanishing x2-displacements on the soil layer at x1 = 0:

us2

∣

∣

∣

x1=0
= 0 (5.24)

And with equation (5.9):

ûs2e
iκx2

∣

∣

∣

x1=0
= 0 (5.25)

Afterwards introducing equation (5.13), and finally equations (5.16) and (5.17) in this
equation leads to one equation.

These four boundary conditions can be elaborated to a system of four homogeneous equations in
four variables Ap, A

′
p, As and A′

s, having a non-vanishing solution only when the determinant of
the system matrix is vanishing. Only certain combinations of frequency and wavenumber make
the determinant vanishing and these combinations are the dispersion curves of the infinite soil
layer on an infinite plate system.

The dispersion curves are computed for a soil layer with the average characteristics of the two
soil layers above the tunnel on top of a plate having the characteristics of the tunnel roof. They
are shown in figure 14 in a slowness range from -0.0018 s/m to 0.0018 s/m and in a frequency
range from 20 to 120 Hz.

Figure 12 shows the response of the tunnel in the same slowness and frequency ranges in a
point at the tunnel roof for a force on the tunnel floor. To excite the phenomenon of the fast
propagation more, the force can be applied on the tunnel roof, leading to a response shown in
figure 13.

In figure 15, the dispersion curves have been plotted on top of the tunnel response for the force
on the roof. The maxima of this response are found in the vicinity of the dispersion curves. At the
higher frequencies, the dispersion curves have a smaller radius of curvature. Indeed, for increasing
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Figure 12: The amplitude of the vertical
velocity in a point at the tunnel roof for
a force applied at the tunnel invert in the
frequency-slowness domain.
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Figure 13: The amplitude of the vertical
velocity in a point at the tunnel roof for
a force applied at the tunnel roof in the
frequency-slowness domain.

Figure 14: The dispersion curves of the in-
finite soil layer on an infinite plate model
in the frequency-slowness domain.

Figure 15: The dispersion curves of an in-
finite soil layer on infinite plate system on
top of the amplitude of the vertical veloc-
ity in a point at the tunnel roof for a force
applied at the tunnel roof in the frequency-
slowness domain. (more contours than in
figure 13 are shown.)
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frequencies, the tunnel response is found in a narrowing slowness range. The dispersion curves
determined by the simplified model thus explain the content in the frequency-slowness domain
of the vertical displacement component in the soil above the tunnel roof at higher frequencies.
With a reasonable agreement, the wave propagation in the tunnel roof-top layers system can be
compared with the propagation in the simplified model of the infinite soil layer on an infinite
plate.

Neither the model of a free plate, neither the model of the curved free plate was able to explain
the fast propagation observed at the free surface avove the tunnel roof. The soil layer above
the plate must be included in the simplified model for a reasonable ressemblance with the wave
propagation above the tunnel roof. The high phase velocities along the tunnel can thus be
attributed to guided waves inside the tunnel roof-top layers system.

5.3.4 A third simplified model: an infinite plate on an elastic half space

The analysis of the tunnel response in the slowness frequency domain can be finalized with a
third simplified model. Similarly to the model of an infinite soil layer on top of an infinite plate,
a model of an infinite plate on top of an elastic half space is made, serving as a simplified model
for the tunnel bottom plate on top of the half space of the Cité Universitaire site.

The determinant of the system matrix of the simplified model is computed for the half space of
the Cité Universitaire site and for a plate with the characteristics of the tunnel bottom plate.
The modulus has been plotted in figure 17 in a slowness range from -0.005 s/m to 0.005 s/m
and in a frequency range form 10.1 Hz to 100.1 Hz.
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Figure 16: The dispersion curves of a free
plate with the characteristics of the bottom
plate of the tunnel; of a free plate with the
double thickness of the tunnel bottom plate
of the tunnel. cp and cs are the phase speeds
of the third soil layer.
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Figure 17: The modulus of the determinant
divided by ω2 of the infinite plate on elastic
half space model versus slowness and fre-
quency (for a plate with thickness 0.4 m).
The colour scale is logaritmic.

It is difficult to distinguish dispersion curves (lines corresponding to a vanishing determinant).
However, the zone wherein the determinant remains very small has clear features.

At high frequencies, this zone is limited by the dispersion curve of the free plate (figure 17). At
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these frequencies the wavelength in the soil is small and the bending waves in the plate almost
only feel the plate.

At low frequencies, the wavelength in the soil is larger and the waves in the plate feel the soil.
The zone of the very small determinant has a limited extension above the line 1/cR or 1/cs in
the slowness-frequency domain. The extension is lareger for lower frequencies.

The zone of the small determinant computed by the simplified model can be compared to the
tunnel response computed by the 3D tunnel model (figures 7 and 8). The response shows the
predicted features: at higher frequencies, the response is limited in a slightly narrowing slowness
band. At lower frequencies, the contents broadens and is limited by a line between 1/cR and the
free plate dispersion curve.

It is difficult to make an accurate estimation of the stiffness of the plate for the computation
with the simplified model. Figure 17 has been made using the characteristics of the bottom plate
of the tunnel. This can be a good estimation at the high frequencies, since the animations show
that the bottom plate then behaves rather independently from the tunnel walls. For the low
frequencies, the bottom plate is stiffened by the tunnel walls and the tunnel roof. The effect is
estimated in figure 16 where a dispersion curve of a stiffer plate is drawn.

5.4 The response on transient loads on the tunnel invert

5.4.1 The transient tunnel excitation
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Figure 18: Time history of the applied
Gaussian force (t1=0.1 s, t2=1.1 s and
T=0.0025 s).
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Figure 19: Frequency content of the applied
Gaussian force.

In this section, the transient response of the tunnel and the free field is computed due to a
hammer impact on the tunnel invert. The hammer is modelled in the time domain by means of
a very narrow Gaussian function:

f(t) = −e−
t2

T2 with T=0.0025 s. (5.26)

Due to the limitations on the computation of Green’s functions of a layered half space, the
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3D tunnel-soil interaction model cannot compute the quasi-static response (ω = 0 rad/s). The
Fourier transform of a Gaussian function however is a Gaussian function and its static component
is not vanishing. In order to overcome this problem, two hammer impacts are applied, the first
impact in the negative z-direction (figure 18) (downwards) and the second, one second later,
in the positive Z-direction (upwards). As a result, the static component of the load vanishes.
However, this technique requires a finer sampling with respect to the frequency. Indeed, as can
be observed from figure 19, the frequency content of the applied force oscillates heavily. The
shift in the time domain t2 − t1 between the second and the first hammer impact introduces
a factor (eiωt1 − eiωt2) in the frequency domain. With f(t) and F (ω) the time history and the
frequency content of a single downwards Gaussian hammer impact:

f(t) ↔ F (ω) (5.27)

f(t− t1) − f(t− t2) ↔ F (ω)(eiωt1 − eiωt2) (5.28)

The fast Fourier transform algorithm is used to compute the transformations between the time
and the frequency domain. A time window of 2 seconds is chosen. The step in the frequency
domain is 0.5 Hz and the frequency range goes up to 200 Hz. A step in the time domain of 0.0025
s is used. Figures 18 and 19 show the time history and the frequency content of the applied force.

5.4.2 The transient tunnel response

The response on the first hammer impact, the downwards Gaussian force, has been animated
on the visualization model.

Figure 20 shows the response at the timesteps t=0.1 s, t=0.116 s, t=0.136 s and t=0.0156 s,
respectively.

Figure 20a shows the hammer impact on the tunnel invert (t=0.1 s). Figure 20b is shortly after
the impact (t=0.116 s). At the free surface, downwards displacements can be observed close to
the tunnel. However, small upwards displacements are observed on the whole free ground surface
further away from the tunnel. Figure 20c and 20d are more time after the impact (t=0.136 s
and t=0.156 s). A bigger front of vertical downwards displacements propagates away from the
tunnel, immediately followed by a front of vertical upwards displacements.

In order to investigate the propagation perpendicular to the tunnel, seismograms have been
made of the horizontal and vertical displacement components at the free surface on the line y=0
(figure 6 in chapter 4). These seismograms are shown in figures 21 and 22.

Comparison with the response on single forces in the stratigrapy

Five different types of waves can be identified on these seismograms. All waves are emitted by
the tunnel and are propagating in a layered half space. Thus, this wave field can be compared to
waves induced by single forces at different depths in the stratigraphy. The same Gaussian forces
are applied at 0 m, 3 m and 9 m, corresponding respectively to the free surface, the depth of the
tunnel roof and the depth of the tunnel invert. The transfer functions in the slowness-frequency
domain are given in figures 23, 25 and 27. The seismograms with the vertical response at the
free surface are shown in figures 24, 26 and 28.

First the response at a Gaussian force, applied at the free surface, is investigated. Waves (1) and
(2) in the seismogram are classical refracted waves in the layers on top of the underlying half
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(a) t=0 s (b) t=0.116 s

(c) t=0.136 s (d) t=0.156 s

Figure 20: The response of the tunnel and the free field on the downwards Gaussian hammer
impact at the timesteps t=0.1 s, t=0.116 s, t=0.136 s and t=0.0156 s, respectively.
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Figure 21: The seismogram of the vertical displacements for points on a line y=0 at the free
surface for the Gaussian transient force applied at the tunnel invert.
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Figure 22: The seismogram of the horizontal displacements for points on a line y=0 at the free
surface for the Gaussian transient force applied at the tunnel invert.
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Figure 23: The amplitude of the vertical
displacement in the ω−p domain for a ver-
tical Dirac impulse applied at a depth of 0
m.

−45 −40 −35 −30 −25 −20 −15 −10 −5 0 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

T
im

e 
(s

)

Distance perpendicular to the tunnel (m)

(1) 

(2) 

(3) 

(4) 

(5) 

Figure 24: The seismogram of the vertical
displacements for points on a line y=0 at
the free surface for the Gaussian transient
force applied at a depth of 0 m.

Figure 25: The amplitude of the vertical
displacement in the ω−p domain for a ver-
tical Dirac impulse applied at a depth of 3
m.
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Figure 26: The seismogram of the vertical
displacements for points on a line y=0 at
the free surface for the Gaussian transient
force applied at a depth of 3 m.

Figure 27: The amplitude of the vertical
displacement in the ω−p domain for a ver-
tical Dirac impulse applied at a depth of 9
m.
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Figure 28: The seismogram of the vertical
displacements for points on a line y=0 at
the free surface for the Gaussian transient
force applied at a depth of 9 m.
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space, propagating at the P-wave speed of the half space and of the second layer respectively.
Waves emitted at the free surface and arriving at the interface between the first layer and the
second layer at the critical angle of incidence, cause refracted waves that propagate along the
interface at the speed of the underlying second layer. They emit waves propagating upwards
at the critical angle. Similar waves exist at the interface between the second layer and the half
space. These waves result in the observation at the free surface of waves (1) and (2) [2].

Waves (3) correspond to the Rayleigh waves of the half space at low frequencies. Waves (5)
correspond to the Rayleigh waves of the first layer at high frequencies.

Two important peaks (4) and (6) in the ω − p domain cause highly dispersive waves (4) in the
seismogram. Waves (4) are the Rayleigh waves of the layering between the Rayleigh wave of the
first layer (5) and the Rayleigh wave of the half space (3).

The response on a Gaussian force, applied at a depth of 3 m, can be examined similarly. Figure
25 shows that the force at a depth of 3 m can hardly excite the high-frequent Rayleigh wave of
the first layer. The refracted waves (1) and (2), as well as the Rayleigh waves (3) and (4) are
clearly observed in the seismogram.

Finally, the response on a Gaussian force, applied at a depth of 9 m is investigated. The low-
frequent Rayleigh wave of the half space (3) remains the most important peak in the ω − p
domain. Rayleigh wave (4) can hardly be observed. Only refracted wave (1) is found.
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Figure 29: The time to the arrival at the
free surface of a refracted P-wave created
at t=0 s at the point (-2.5,0,-8.25).

Figure 30: Two refracted P-waves created
by a source at the point (-2.5,0,-8.25); (the
reflected waves and the created SV waves
have been omitted).

The curvature of the waves in the seismograms

The waves in the seismogram of figure 28 for the force at a depth of 9 m, as well as the waves
in the seismogram of figure 21 of the 3D tunnel model have a significant curvature for points
at the free surface in the vicinity of the single force or of the tunnel. The reason is explained
in figures 29 and 30. Figure 29 shows the time to the arrival at the free surface of a refracted
P-wave created at t=0 s at the point (-2.5;0;-8.25). For the points at the free surface close to
the source, it is understood from figure 30, that it is mostly the vertical distance to the free
surface that determines the time to the arrival of this wave. For points at the free surface, in the
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vicinity of the source, the distance to the source is almost constant which causes a small slope
of the curve in figure 29 for these points.

For points further away from the source, the important distance becomes rather the horizontal
distance. At each interface, the P-wave is refracted more vertically to the free surface. The only
way for this wave to reach points far away from the source thus is to stay a long distance in the
third layer and then to refract to the surface. The curve in figure 29 thus has a slope equal to
the P-wave speed of the third layer for points further away. The transition from the small slope
to the slope Cp(3) for the far points thus causes the effect of curvature.

Conclusion: the propagation perpendicular to the tunnel

It can now be understood that the tunnel bottom plate excites the Rayleigh wave of the half
space at low frequencies ((3) in seismogram 21) and generates body waves in the fast half space
((1) in the seismogram). The upper parts of the tunnel walls and the tunnel roof generate
refracted waves in the layering ((1) and (2) in the seismogram). This upper part of the tunnel
still contributes to Rayleigh waves of the half space at low frequencies, but it is only this part
that can excite the dispersive Rayleigh waves (4) at medium frequencies and the high frequency
Rayleigh waves of the first layer (5).

5.5 Conclusion and further development

In this chapter, the 3D model describing tunnel-soil interaction has been analysed. The model
has been used to compute response in the tunnel and in the free field due to harmonic and
transient loads on the tunnel invert.

Animations of the results have been used to make interpretations about the tunnel-soil interac-
tion.

It has been shown that the tunnel and the soil response in the vicinity of the tunnel are strongly
affected by the free surface and the layering. In particular, a low frequency resonance of the
soil mass above the tunnel has been identified. Moreover, the computed results have shown
a high anisotropy of wave propagation along the tunnel and perpendicular to it. High phase
velocities along the tunnel have been attributed with a reasonable agreement to guided waves
inside the tunnel roof-top layers system. It has also been shown that the wave-field radiated at
some distance from the tunnel is mainly governed by refracted waves and generalized Rayleigh
waves of the layered medium. The high frequency filtering induced by the source embedding has
been shown to be governed by the depth of the tunnel roof and not by the depth of the tunnel
invert. As a conclusion, the wave-field induced by a point force applied at the bottom of the
tunnel cannot be approximated by an equivalent force in the soil at the corresponding depth
since an additional force at the roof depth seems to be needed to mimic the coupled numerical
solution.

Within the frame of the Convurt project, a similar model is made of a site on the Bakerloo and
Jubilee lines in London. This tunnel is a deep bored tunnel. The layer above the tunnel roof
plate is approximately 24 m thick, much more than the 2.1 m for the tunnel considered in this
work. A comparison of the results of the two models will be possible. In particular, an analysis
of the influence of the tunnel depth on the (fast) propagation in the direction of the tunnel will
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be very interesting.

The periodic tunnel-soil interaction model used in this paragraph is the basic ingredient allowing
a computation of more complex problems. Further research will include the track, the ballast and
the sleepers in the model. The case of a moving load will be considered. And an excitation model
will be introduced. Finally, the propagation of uncertainties in the model will be investigated
by means of Monte Carlo simulations.

In the next chapter, the periodic tunnel model will be used to compute the transmission to
a nearby building. The displacement field emitted by the tunnel will be considered to be an
incident field for the building, again fully taking account of soil-structure interaction.



Chapter 6

Impulse loads on a tunnel invert:

response in a nearby building

The Convurt project carried out measurements in particular sites where reradiated noise and
vibrations transmitted from tunnel to adjacent structures cause disturbances. At the Cité Uni-
versitaire site in Paris, vibrations have been measured in the free field and in a nearby building,
more particularly in the student residence ”Maison du Mexique”. In order to validate the nu-
merical models, a 3D numerical prediction model describing the tunnel-soil and soil-building
interaction have been made for this site. The approach is outlined in this chapter. Finally,
results of the site model are compared to on site measurements.

6.1 The characteristics of the building

Figure 2 shows a plan view of the site, the location of the metro tunnel RER B as well as the
”Maison du Mexique” between the metro stations of Cité Universitaire and Gentilly.

The ”Maison du Mexique” is a 5-storey student dormitory. Figures 1 and 4 show the front view
and the side view of the building. Figure 3 shows the ground floor.

In a first modelling stage, only the main central building is taken into account. The small
transverse part seen on the side view is not included in the model, nor is the bigger transverse
part seen on the plan.

The whole building is a reinforced concrete frame structure with two sets of eight columns 6.2
m from each other. In a first stage, only this structural frame is modelled. Later, the outer
and inner walls and the stair cases will be included. These components significantly stiffen the
building.

6.1.1 The location of the ”Maison du Mexique” with respect to the tunnel

For the tunnel, a right-handed Cartesian frame of reference (x’,y’,z’) is chosen, with the origin
on the bottom plate of the tunnel, in the middle of the cross section and in the section wherein
the hammer impact measurements were carried out. The reference frame of the tunnel is used
as the global reference frame.

54
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Figure 1: The front view of the ”Maison du Mex-
ique.”

Figure 2: The plan of the test site.

Figure 3: The ground floor. Figure 4: The side view of the ”Maison du Mex-
ique”.
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Figure 5: The position of the building with re-
spect to the tunnel.

Figure 6: The beam-column connection.

The local right-handed Cartesian frame of reference of the building (x,y,z) has its origin in the
lower right corner of the ground floor of the building.

Figure 5 shows the two frames of reference.

The origin of the reference frame of the building is assumed to have coordinates x’=23.49 m
and y’=24.3 m in the global reference frame. The angle θ indicated on figure 5 is assumed to
be 25.33◦. These coordinates are approximations and should be determined more precisely for
future modelling.

6.1.2 Material properties and geometrical characteristics of the building frame

As already mentioned, the building shape is a reinforced concrete frame structure. The centre-
to-centre column distances vary around 6.2 m. The floor-to-ceiling height on each floor is equal
to approximately 2.85 m.

The concrete is modelled with a Young modulus E of 33000 N/m2, a Poisson ratio ν of 0.2 and
a density ρ of 2500 kg/m3 [13].

Figure 6 shows a typical beam-column connection. The dimensions of all beams and columns
for all storeys are summarized in table 6.1. The slab thickness is assumed to be 13 cm.

Ceiling Cx Cy By Bz Dx Dz

[m] [m] [m] [m] [m] [m]

-1 0.70 0.41 0.41 0.55 0.27 0.55
0 0.65 0.41 0.41 0.27 0.33
1 0.62 0.30 0.30 0.33 0.27 0.33
2 0.62 0.30 0.30 0.33 0.27 0.33
3 0.62 0.30 0.30 0.33 0.27 0.33
4 0.62 0.30 0.30 0.33 0.27 0.33
5 0.62 0.30 0.30 0.33 0.27 0.33

Table 6.1: Column and beam dimensions at all floors.
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6.1.3 The constraint equations

A finite element model has been previously built by Christophe Coster at KULeuven [13],
using the program ANSYS. At ECP, soil structure interaction is computed using the combined
computer codes MISS and the Structural Dynamics Toolbox in Matlab; MISS being used for
the BEM part of the problem, the SDT being used for the FEM part of the problem. The
ANSYS model has been imported in the SDT in order to continue the model development in
this Matlab-toolbox.

Using the SDT built-in function ans2sdt, the mesh of the structure has been easily imported.
Eigenmodes computed by ANSYS can also easily be imported. However material properties,
geometrical properties, element orientations and constraints are not imported.

The introduction of the material and geometrical properties and of the element orientations is
relatively easy in the SDT; however the introduction of constraints is not.

In the ANSYS model, the beams were modelled using line elements, the plates were modelled
using plane elements. To account for the thickness of the plates and the beams, the connection
of the beams to the plates was not made using coincident nodes. Constraint equations were used
relying the beam nodes to the nodes at the plate edges. The translational displacements of the
nodes at the plate edges were computed from the translations and rotations of the underlying
beam nodes based on the distance between the corresponding nodes. The rotations of the nodes
at the plate edges were completely free. (ANSYS command CERIG with UXYZ option).

In the SDT however, this type of constraint equation is not possible (in an automatic way). In a
first attempt, the constraint equations have been approximated by connecting the corresponding
nodes using beam elements with a high, but penalized stiffness, using a rigid connection at the
beam and a connection coupling only the translational degrees of freedom at the plate edge
(SDT CELAS elements with 123 option). At higher frequencies, this however didn’t give accurate
results, because the penalized stiffness got too small at higher frequencies.

Therefor, another approach has been chosen and the SDT RIGID elements with 123456 option
have been used: SDT then generates constraint equations based on the distance between corre-
sponding nodes. These constraint equations, however, couple all 6 degrees of freedom and thus
all 6 at the plate edges too.

As far as the implementation is concerned, the SDT generates a transformation matrix T re-
lating all dofs mdof with the dofs cdof , which are the free dofs after applying the constraint
equations. The displacements defined on all dofs u(mdof) are related to the displacements on
the free dofs u(cdof) as follows:

u(mdof) = T ∗ u(cdof)

The model mass matrix m and stiffness matrix k, can be projected on this new basis:

mc = T ᵀ ∗ m ∗ T

kc = T ᵀ ∗ k ∗ T

All operations e.g. mode extraction are then performed on these projected mass and stiffness
matrices [4].
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6.1.4 The foundation of the building

Figure 7: The chosen foundation. Figure 8: Model layout and notations.

A precise modelling of the foundation is necessary to obtain accurate results for the soil-structure
interaction. At present, however, no information is available on the foundation of the building.
A possible foundation therefore has been designed, consisting in putting individual squared
plates under each column. The dimensions of the plates are determined by the bearing capacity
of the soil. An ultimate limit state load on each column of 2173 kN can be estimated. Using
the Mohr-Coulomb criterion, it has been concluded that a squared dimension of 1.5 m has a
bearing capacity of 2243 kN and thus is a sufficient dimension (assumptions: freatic area is the
free surface, dry soil weight=16 kN/m3, saturated soil weight=20 kN/m3, ϕ’=30◦, c′=0 kN/m2,
safety factor of 2). A more precise computation is necessary using measured soil characteristics.

Those squared foundations are supposed to be rigid and massless, and are modelled by surface
elements.

The individual foundations have been connected with beam elements, the properties of the
beams being equal to the horizontal longitudinal beams at the ground floor. The beams have
been coupled to the foundations only in the central point of each foundation plate. The 6 degrees
of freedom have been coupled. The complete foundation is shown in figure 7.

The only modelled contact between the soil and the building consists of the rigid squared foun-
dations plates.

6.2 The dynamic soil-structure interaction analysis

6.2.1 The kinematic basis

The displacements on Σbs are decomposed on a basis of modes Ψm(x), as proposed in chapter
2 . The model layout and notations are repeated in figure 8. The displacement fields ub(x, ω)
and us(x, ω) then can be expanded as:

ub(x, ω)
∣

∣

∣

Σbs

= us(x, ω)
∣

∣

∣

Σbs

=
∑

m

cm(ω)Ψm(x) (6.1)
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Figure 9: The 6 rigid body displacement modes of one rigid foundation plate.

us(x, ω) =
∑

m

cm(ω)ud(Ψm)(x, ω) + ui(x, ω) + ud0(x, ω) in Ωs (6.2)

where ud(Ψm)(x)
∣

∣

∣

Σbs

= Ψm(x); ui(x, ω) + ud0(x, ω)
∣

∣

∣

Σbs

= 0

ub(x, ω) =
∑

m

cm(ω)ub(Ψm)(x) +
∑

i

ci(ω)Φi(x) in Ωb (6.3)

where ub(Ψm)(x)
∣

∣

∣

Σbs

= Ψm(x);Φi(x)
∣

∣

∣

Σbs

= 0

Since the interface Σbs consists only of the 16 foundation plates and since these foundation plates
are assumed to be rigid, these modes Ψm(x) are chosen to be the individual rigid body modes
of each of these plates, as shown on figure 9. This way, 16 times 6 modes are defined.

A set of modes Φi(x) is added to the basis of modes ub(Ψm)(x). Their trace on the interface
Σbs is vanishing, in order to satisfy the compatibility on the interface Σbs. The fields Φi(x) are
chosen to be the eigenmodes of the building resting on a rigid foundation with eigenfrequencies
in the range of interest.

6.2.2 The variational formulation

The variational formulation of the problem is elaborated as in chapter 2.

The following system of equations is found:

(Ks(ω) − ω2M b + Kb + Cb)

(

cM (ω)
cI(ω)

)

=

[

F s(ω)
0

]

(6.4)
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The soil stiffness matrix Ks(ω)

Ks(ω) =

[
∫

Σbs
ud(Ψ)ᵀts(ud(Ψ))(ω)dS 0

0 0

]

(6.5)

The soil stiffness matrix is computed by the MISS program.

The building mass matrix M b

M b =

[

ub(Ψ)ᵀMFEM
b ub(Ψ) ub(Ψ)ᵀMFEM

b Φ

ΦᵀMFEM
b ub(Ψ) ΦᵀMFEM

b Φ

]

(6.6)

The matrices ub(Ψ)ᵀMFEM
b ub(Ψ), ub(Ψ)ᵀMFEM

b Φ and ΦᵀMFEM
b ub(Ψ) are real, fully pop-

ulated matrices.

The matrix ΦᵀMFEM
b Φ is the identity matrix, since dynamic eigenmodes are orthogonal, and

since the SDT normalizes dynamic eigenmodes to the mass matrix.

The building stiffness matrix Kb

Kb =

[

ub(Ψ)ᵀKFEM
b ub(Ψ) ub(Ψ)ᵀKFEM

b Φ

ΦᵀKFEM
b ub(Ψ) ΦᵀKFEM

b Φ

]

(6.7)

The matrix ub(Ψ)ᵀKFEM
b ub(Ψ) is a real, fully populated matrix.

The matrix ub(Φ)ᵀKFEM
b Ψ is vanishing. Indeed, the matrix KFEM

b Ψ corresponds to the forces
applied on the building when displacements Ψ are imposed on the interface Σbs. On this interface,
the displacements Φ are vanishing.

The matrix ub(Ψ)ᵀKFEM
b Φ vanishes too due to symmetry.

The matrix ΦᵀKFEM
b Φ is a diagonal matrix with elements ω2

j , ωj being the pulsation of the
j-th eigenmode.

The building damping matrix Cb

Cb =

[

0 0
0 CbI

]

(6.8)

It is assumed that the modes ub(Ψ) are not damped.

Modal damping is imposed on the modes Φ. CbI thus is an imaginary diagonal matrix with
elements −2iξωj , with ωj the pulsation of the j-th eigenmode. ξ is chosen 2%.

The forces induced by the incident field F s(ω)

The induced forces F s(ω) can be computed following the method outlined in chapter 2. For
their computation, the knowledge of the incident field for the building in the centers of gravity
of the boundary element mesh of the interface Σbs is necessary.
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The incident field for the building is the field radiated by the tunnel. It is assumed that the field
radiated by the tunnel when forces are applied on the tunnel invert, can be computed neglecting
the influence of the field diffracted by the building.

As outlined in chapter 2, a formulation for the total field is used to compute F s(ω). This method,
writes the representation theorem for the interior soil domain (the excavated part of the soil) and
for the exterior soil domain (the soil with excavation). As shown in chapter 2, the contributions
of all boundaries in the equations disappear, except from the contribution of the soil-structure
interface. A numerical computation requires a mesh of the whole soil-structure interface. The
method thus doesn’t fully hold, since only the sixteen foundation plates are taken into account
instead of the whole interface.

6.2.3 The numerical implementation

Figure 10: The 6 modes ub(Ψm)(x) corresponding to the 6 rigid body modes of the first foun-
dation plate. The colors are relative to the vertical displacement component.

First, the kinematic basis of the building is computed. Following the previous paragraph, the
computation of the fields ub(Ψm)(x) from the fields Ψm(x) is a classic, static FEM problem.
The 6 ub(Ψm)(x) modes corresponding to the 6 rigid body modes of the first foundation plate
Ψm(x) are shown in figure 10. Once computed, these fields ub(Ψm)(x) are normalized with
respect to the mass matrix of the building.

Then, the set of modes Φi(x) is added to the basis of modes ub(Ψm)(x). They are the dy-
namic eigenmodes resting on a fixed basis, in the frequency range of interest. Using the SDT
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(a) Mode 1 at 1.32 Hz. (b) Mode 2 at 1.64 Hz. (c) Mode 3 at 1.84 Hz.

(d) Mode 35 at 14.85 Hz. (e) Mode 43 at 15.54 Hz. (f) Mode 535 at 83.25 Hz.

Figure 11: A few modes Φi(x).
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IRA/Sorensen solver, which is the appropriate method for large sparse matrices KFEM
b and

MFEM
b . A computation is performed for the 0-100 Hz range. In the 0-10 Hz range, modes of

longitudinal bending (1-4th), of transverse bending (1-3th) and of torsion (1-3th) are found.
From 10 to 100 Hz, higher order bending and torsion are found as well as a high density of plate
bending modes. 750 modes are found in the 0-100 Hz range.

A more refined study of the eigenmodes in the range 0-12 Hz can be found in the work of Coster
[13]. A few mode shapes on fixed basis are shown in figure 11. Figures 11a,11b and 11c show the
first longitudinal bending, the first transversal bending, and the first torsion mode, respectively.
Figures 11d, 11e and 11f show a few plate bending modes found at higher frequencies.

The next sections will study the building response in the 0-80 Hz range. The modal basis of 750
modes in the 0-100 Hz range thus might be too small to accurately model the highest frequencies.

To compute the forces F s(ω) induced by the incident field, the tunnel-soil-building interaction
model is used to compute the displacement field radiated by the tunnel, in the centres of gravity of
the elements of the building foundation. These centres of gravity do not have positions periodic
with a periodicity length L in the direction e2. Therefore, the Floquet periodicity cannot be
explicitly used and a separate computation is necessary for each centre of gravity.

A computation for the negative wavenumbers is necessary since the centres of gravity do not
have positions symmetrical with respect to the x′-z′-plane.

The BEM mesh of the building foundation has 400 elements and the computation thus is very
demanding in computer memory and computing time (MISS takes approximately 3 GB RAM
and more than 60 minutes per frequency).
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Figure 12: The amplitude of the vertical displacement component of the field radiated by the
tunnel and of the field diffracted by the building at the free surface at 30 Hz.

The field radiated by the tunnel is computed neglecting the presence of the building. The foun-
dation of the building, however, radiates a diffracted field, that consists of the locally diffracted
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field and the radiated field. This field has been computed in the points of the free surface and
compared to the field radiated by the tunnel (figure 12 ), leading to the conclusion that the
latter is five times larger than the field diffracted by the building, confirming that the initial
assumption is reasonable.

6.3 The building response on harmonic loads on the tunnel in-

vert

Figure 13: The visualisation model.

The harmonic response of the building on a force applied at a position (x′,y′,z′)=(-2.5;0;-8.25) on
the tunnel invert has been computed and animated. The visualization model is shown in figure
13. The same visualization surfaces for the soil are used as in chapter 5. On these surfaces,
only the field radiated by the tunnel is shown. The model visualizes the beams, plates and
foundation of the building. The constraints between the plates and the beams are visualized as
beam elements too. The colours are relative to the vertical displacement component and all are
equally scaled.

Figures 15 and 16 show the harmonic responses at 10 Hz and 20 Hz at the timesteps t=0 s,
t=T/8, t=T/4 and t=3T/8, with T=1/10 s and T=1/20 s, respectively. At these low frequencies,
the figures show that the longitudinal and transverse bending modes and the torsion modes of
the building are excited.

The inclination of the building with respect to the tunnel axis causes the waves to arrive from
the tunnel at the building at an important angle. This causes an important excitation of the
torsion modes of the building at low frequencies with a maximum at 20 Hz as shown in figure
15.

As already mentioned, the only modelled contact between the building and the soil consists of
the foundation of the building. The excavated part of the building thus can show large torsion
or bending displacements without feeling any resistance from the surrounding soil. Their is no
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(a) t=0 s (b) t=T/8

(c) t=T/4 (d) [t=3T/8

Figure 14: The harmonic response at 10 Hz at the timesteps t=0 s, t=T/8, t=T/4 and t=3T/8
with the period T=1/10 s.
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(a) t=0 s (b) t=T/8

(c) t=T/4 (d) [t=3T/8

Figure 15: The harmonic response at 20 Hz at the timesteps t=0 s, t=T/8, t=T/4 and t=3T/8
with the period T=1/20 s.
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(a) t=0 s (b) t=T/8

(c) t=T/4 (d) t=3T/8

Figure 16: The harmonic response at 60 Hz at the timesteps t=0 s, t=T/8, t=T/4 and t=3T/8
with the period T=1/60 s.
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compatibility between the soil and building displacements at the free surface. This is clearly
visible in figure 14.

At low frequencies, the wavelength in the soil is much larger than the transverse dimension of
the building. At these frequencies, the translational degrees of freedom of the foundation plates
are dominant.

Figure 16 shows the harmonic response at 60 Hz at the instances t=0 s, t=T/8, t=T/4 and
t=3T/8, with T=1/60 s. At high frequencies, mainly the plate bending modes of the building
are excited. At higher frequencies, higher plate bending modes are excited. The wavelength in
the soil gets smaller than the transverse building dimension. At high frequencies, the rotational
degrees of freedom of the foundation plates are dominant.

6.4 The transfer functions

Figure 17 shows the average of the vertical velocities in the middle of the transverse beams of
the first and the sixth floor, the average of the vertical velocities in the middle of the plates
at the first and the sixth floor, as well as the vertical velocity of the field radiated by the
tunnel in a point under the building with coordinates (-13,0,-3.235). The velocities are anal-
ysed since they are important in a later study of the re-radiated noise. The unity dB is used
((20/log(10))*log(v/vref )) with vref = 1.

At low frequencies (0-10 Hz), the longitudinal and transverse bending and the torsion are excited.
The beams and the plates have similar velocities.

At approximately 10 Hz the plate bending modes become important and at around 15-20 Hz, a
huge plate bending resonance shows up.

At the frequencies from 20 to 30 Hz, a range of low velocities for plates and beams at the first
floor, corresponding to a decrease of the velocity of the radiated field of the tunnel.

At high frequencies, the velocities in the building are smaller than the velocity of the radiated
field of the tunnel. A possible reason is that the radiated field of the tunnel mostly excites the
rotation of the foundation plates at these frequencies. Those rotations cause bending and torsion
in the columns of the basement, but do not cause important displacements in the building.

Figure 18 is similar to figure 17, but shows accelerations. At low frequencies, the plate resonance
around 15-20 Hz is again found, together with a range of smaller accelerations between 20 and
30 Hz. The radiated field of the tunnel has smaller accelerations in this range. Only the first
floor shows similar, small accelerations in this range too. The accelerations at the sixth floor are
larger.

At high frequencies, the accelerations in the building are again smaller than the accelerations of
the radiated field of the tunnel.

Finally, figure 19 makes a first comparison of the results of the numerical model with the mea-
surement data. The comparison is made for channel F501z of event Mex06-1, for hammer impact
analysis [21]. The measured acceleration is divided by the measured force in order to compare
the transfer functions.

The amplitudes at low frequencies seem to correspond. The peak at around 15-20 Hz is found
back, but not in the 10-15 range. The range of lower accelerations after this peak is also retrieved.
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Figure 17: The amplitude of the vertical velocities at the middle of transverse beams and plates
at the first and the sixth floor, as well as the amplitude of the vertical velocity component of
the field radiated by the tunnel.
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Figure 18: The amplitude of the vertical accelerations at the middle of transverse beams and
plates at the first and the sixth floor, as well as the amplitude of the vertical acceleration
component of the field radiated by the tunnel.
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Figure 19: A comparison of the predicted vertical acceleration amplitudes with the measured
acceleration amplitudes divided by the measured force in point F501z event m06-1.

At high frequencies, the predicted vertical acceleration amplitudes are smaller than the measured
values. This can be due to the fact that the measured data correspond to the impact on the
rail track, whereas the predicted values are for a force on the tunnel invert. In the report on
the modelling of the track and ballast on the tunnel invert [22], it is found that the track
receptance (track displacement divided by applied force) has an important maximum at these
high frequencies. This maximum corresponds to the uncoupling of the track on the ballast
stiffness. The rail and the sleepers vibrate in phase. In the near future, the track and ballast
will be included in the tunnel-soil model. The influence of this maximum can then be studied.
Another reason might be a too small modal basis at the highest frequencies.

6.5 Conclusion and further development

In this chapter, a method has been proposed to couple the 3D tunnel-soil interaction model to
a 3D soil-building interaction model. The displacement field radiated by the tunnel has been
computed without the presence of the building in the model and this radiated field has been
used as the incident field for the building.

The soil-building interaction model has been elaborated: a kinematic basis has been proposed
and the corresponding variational formulation has been derived.

The presented method has been implemented using the combined programs MISS (BEM) and
SDT (FEM). First results have been obtained and few problems have been identified. In the fu-
ture, the model has to be further developed to improve an already good computation-measurements
correlation.
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The two major uncertainties encountered in the modelling were about the foundation of the
building and about its actual position. In this work, a designed foundation has been assumed
and an approximate position of the building with respect to the tunnel has been used. An
accurate modelling of the foundation is essential.

The only contact modelled between the soil and the building in the soil-building interaction
model, consisted of the building foundation. It has been shown that, at low frequencies, the
torsion and the longitudinal and transverse bending are important. As a result, however, the
basement can have large displacements uncoupled from the surrounding soil. A solution could
consist in including the basement walls in the model and to model a contact between soil and
basement walls too. This would also solve the problem of the total field formulation. This solution
would however drastically increase the number of points in which the incident field has to be
computed and for which the radiated field of the tunnel-soil model thus has to be computed. It
is this last computation that is the time and memory demanding part of the computation.

A further development of the building model is necessary. The two small buildings built aside
of the main building can be included in the model, as can the walls and stair cases. Including
these components will stiffen the building, certainly regarding the torsion and bending modes.
Including the walls without coupling them to the soil might even be a sufficient solution for the
problem in the previous paragraph.

It has been noted too that the modal basis in the present model probably is not sufficiently large
to accurately model the high frequency range. However, 750 modes have been found already
between 0 and 100 Hz. A memory of about 1 GB RAM was required to compute this basis.

Significantly detailing the model and thus increasing the number of dofs, combined with a larger
modal basis, could however cause serious memory problems regarding the computation of the
modes.

The present analysis only consists in the response on harmonic loads on the tunnel invert. An
analysis with transient loads can be done. A very fine sampling interval in the frequency domain
is necessary due to the heavily oscillating behaviour of the tunnel-soil-building transfer function.

The Convurt consortium will most probably organize a second measurement campaign in the
”Maison du Mexique”. Further analysis of the developed prediction model will be a very useful
source of information for this campaign.
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Matlab and MISS input files: the

harmonic response of the

tunnel-soil-system

Relevant files: createnmodel2.m, createtrans.m, MVFDreadc.m, postanimation.m, postcontrolfig-
ure.m, postcalc5.m, postkselements.m, postmaster3.m, readTOT.m, TOTread.m; ctvar.mat, volmesh.mat;
MISS.IN, cititunnel.chp, cititunnel.miss;animationfreq.mat, runanifreq.m; anifreq14hz.avi, ani80hza.avi,
ani80hzb.avi, ani80hzc.avi, ani80hz.gif

A.1 The problem characteristics

- NBFEMelts: Number of elements of the finite element mesh of the tunnel generic cell.

- NBFEMnodets: Number of nodes of the finite element mesh of the tunnel generic cell.

- NBFEMgroupts: Number of groups of elements of the finite element mesh of the tunnel
generic cell.

- NBBEMelts: Number of elements of the boundary element mesh of interface between the
soil and the tunnel generic cell.

- NBDOFts: Number of degrees of freedom in each node of the mesh of the tunnel generic
cell.

- NBMODEts: Number of dynamic eigenmodes of the tunnel generic cell.

- NBFREQts: Number of frequencies computed for.

- NBSLOWts: Number of positive slowness/wave numbers computed for.

- NBCTRts: Number of control points in the generic soil cell.

- NBCELLSts: Number of repeated cells to compute the Floquet inverse transform for.
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A.2 The Matlab pre-processing results files

ctvar.mat

- Description: contains the mass and stiffness matrice m and k of the generic cell
of the tunnel, as well as its degrees of freedom mdof and eigenmodes phi with
corresponding frequencies wj.

- The matrices:

m ∈ M(NBFEMnodets ∗NBDOFts,NBFEMnodets ∗NBDOFts)
k ∈ M(NBFEMnodets ∗NBDOFts,NBFEMnodets ∗NBDOFts)
mdof ∈ M(NBFEMnodets ∗NBDOFts, 1)
phi ∈ M(NBFEMnodets ∗NBDOFts,NBmodets)
wj ∈ M(NBMODEts, 1)

volmesh.mat

- Description: contains the finite element mesh of the generic cell of the tunnel FEnode

and FEelt.

- The matrices:

FEnode ∈ M(NBFEMnodets, 7)

FEelt ∈ M(NBFEMelts+NBFEMgroupts, 10)

A.3 The MISS processing

A.3.1 Description

The MISS3D program is used to compute the periodic BEM problems. It computes the dynamic
soil stiffness matrix and the radiated fields in the control points.

A.3.2 The MISS input files

MISS.IN

- Description: MISS main input file containing the commands to be executed and the
problem description.

cititunnel.miss

- Description: the boundary element mesh.

cititunnel.chp

- Description: the modes imposed on the boundary element mesh.

A.3.3 The MISS program

miss3d.x

- Description: Miss3d.x running on Unix, Linux and MacOSX platforms.
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A.3.4 The MISS output files

cititunnel.01.IMPDC

- Description: the soil impedance matrix.

cititunnel.01.CTR

- Description: the locally diffracted field (if any), and the radiated fields in the control
points.

A.4 The Matlab-SDT post processing

A.4.1 Description

The MISS results are imported in the Matlab environment and post processed using Matlab and
SDT routines.

A.4.2 The MISS-Matlab coupling routines

MVFDreadc.m

- Description: reads MISS output file .IMPDC (can also read .FS).

TOTread.m, READTOT.m

- Description: read MISS output file .CTR.

A.4.3 The post processing routines

postmaster3.m

- Description: the main post processing file. The characteristics of the problem are
specified in this file. Running it from the Matlab prompt then invokes the other
routines.

postcalc5.m

- Description: the main computation file. The routine reads the pre-processing and
processing results files, assembles and solves the system of equations, and computes
the necessary Floquet inverse transformations.

- Input files: cititunnel.miss, cititunnel.chp, ctvar.mat, volmesh.mat and b.mat con-
taining the applied force b.

- Output files: ks.mat containing the soil stiffness matrix ks, uc.mat containing the
radiated fields in the control points uc, def.mat containing the displacements of
the generic cell in the frequency-slowness/wave number domain def , ut.mat con-
taining the displacements in the control points of the generic cell in the frequency-
slowness/wave number domain ut, and transfer.mat containing the displacements of
the tunnel nodes of the repeated cells in the frequency domain deftt and the dis-
placements in the control points of the repeated cells in the frequency domain uttt

and the frequency range w.
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- The matrices:

b ∈ M(NBDOFts ∗NBFEMnodets, 1)

ks ∈ M(NBMODEts,NBMODEts,NBSLOWts,NBFREQts)

uc ∈ M(3, NBCTRts,NBMODEts,NBSLOWts,NBFREQts)

def ∈ M(NBDOFts ∗NBFEMnodets, 2 ∗NBSLOWts− 1, NBFREQts)

ut ∈ M(3, NBCTRts, 2 ∗NBSLOWts− 1, NBFREQts)

deftt ∈ M(NBDOFts ∗NBFEMnodets,NBFREQts,NBCELLSts)

uttt ∈ M(3, NBCTRts,NBFREQts,NBCELLSts)

w ∈ M(1, NBFREQts)

postanimation.m

- Description: output to an animation of the harmonic response.

- Input files: transfer.mat

- Output files: animationfreq.mat containing the mesh of the repeated visualization
model FEnode and FEelt, the corresponding degrees of freedom mdof , the cor-
responding displacements defttt, and the frequency range w.

- The matrices:

FEnode ∈ M(NBFEMelts ∗ (NBCELLS/2 + 1) +NBCTRts ∗NBCELLS, 7)
mdof ∈ M(NBFEMnodets ∗ (NBCELLS/2 + 1) ∗ NBDOFts + NBCTRts ∗
NBCELLS ∗ 3, 1)

defttt ∈ M(NBFEMnodets ∗ (NBCELLS/2 + 1) ∗ NBDOFts + NBCTRts ∗
NBCELLS ∗ 3, NBFREQts)

createnmodel2.m, createtrans.m, postcontrolfigure.m, postkselements.m

- Description: small scripts called by postmaster3.m, postcalc5.m and postanimation.m.

A.5 The Animations

animationfreq.mat and runanifreq.m

- Description: the animation of the harmonic tunnel-soil response presented in chapter
5. Executing the Matlab routine loads the animationfreq.mat file and calls SDT-
routines for the animation.

anifreq14hz.avi

- Description: the animation of the harmonic tunnel-soil response at 14 Hz.

anifreq80hza.avi

- Description: the animation of the harmonic tunnel-soil response at 80 Hz.

anifreq80hzb.avi

- Description: the animation of the harmonic tunnel-soil response at 80 Hz. Only upper
tunnel parts are shown. All colors are equally scaled.

anifreq80hzc.avi

- Description: the animation of the harmonic tunnel-soil response at 80 Hz. Only visu-
alization surface 2 is shown. All colours are equally scaled.
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Matlab and MISS input files: the

transient response of the

tunnel-soil-system

Relevant files: animationtime.m, createhammer.m; animationtime.mat, runanitime.m; anitime.avi

B.1 The problem characteristics

- NBFEMelts: Number of elements of the finite element mesh of the tunnel generic cell.

- NBFEMnodets: Number of nodes of the finite element mesh of the tunnel generic cell.

- NBDOFts: Number of degrees of freedom in each node of the tunnel generic cell.

- NBCTRts: Number of control points in the generic soil cell.

- NBCELLSts: Number of repeated cells to compute the Floquet inverse transform for.

- NBFREQts: Number of positive frequencies computed for.

- NBTIMEts: Number of time samples saved to disk.

B.2 The pre-processing

The transfer functions to all points of the visualization model are computed using the routines
described in the previous appendix.
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B.3 The processing

B.3.1 Description

The transfer functions are multiplied with the force in the frequency domain, and an inverse
Fourier transformation then leads to the transient response in the time domain.

B.3.2 The processing files

createhammer5.m

- Description: computes the Gaussian transient force in the frequency and time domain.

- Output files: b.mat containing the transient force in the frequency domain b.

- The matrices:

b ∈ M(1, 2 ∗ (NBFREQts− 1))

animationtime2.m

- Description: reads the transfer functions, multiplies them with the force, computes
the inverse Fourier transform. The output is the transient animation in the time
domain.

- Input files: transfer.mat, b.mat.

- Output files: animationtime.mat containing the mesh of the repeated visualization
model FEnode and FEelt, the corresponding degrees of freedom mdof , the cor-
responding displacements defttt and the times at the time samples saved to disk
time.

- The matrices:

FEnode ∈ M(NBFEMnodets∗ (NBCELLS/2+1)+NBCTRts∗NBCELLS, 7)
mdof ∈ M(NBFEMnodets ∗ (NBCELLS/2 + 1) ∗ NBDOFts + NBCTRts ∗
NBCELLS ∗ 3, 1)

defttt ∈ M(NBFEMnodets ∗ (NBCELLS/2 + 1) ∗ NBDOFts + NBCTRts ∗
NBCELLS ∗ 3, NBTIMEts)

time ∈ M(1, NBTIMEts)

B.4 The animations

animationtime.mat and runanitime.m

- Description: the animation of the transient tunnel-soil response presented in chapter
5. Executing the Matlab routine loads the animationtime.mat file and calls SDT-
routines for the animation.

anitime.avi

- Description: the animation of the transient tunnel-soil response.
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Matlab and MISS input files: the

harmonic response of the

tunnel-soil-building system

Relevant input files: createmaison3.m, createmaison4.m, file.RST, createBEM.m, createcontr-
pos.m, createpsimodessoil.m; MISS.IN, cititunnel.miss, cititunnel.chp, createUI.m, UIwrite.m;
createpsimodesrigid.m, normalizepsimodesrigid.m, createphimodes.m, createMISSfiles.m; MISS.IN,
mexique.miss, mexique.chp, mexique.UI; assembleandsolverigid.m, createfullmodelrigid.m

Relevant results files: resmaison.mat, BEMmesh.mat, BEMgravpos.mat, psimodesBEM.mat; mex-
ique.UI, normPSImodes.mat, modesphi.mat, mexique.miss, mexique.chp; mexique.01.IMPDC,
mexique.01.CTR, mexique.01.FS; u.mat, animationhouse.mat

C.1 The problem characteristics

- NBFREQbs: Number of frequencies computed for.

- NBFEMeltbs: Number of elements of the finite element mesh of the building.

- NBFEMnodebs: Number of nodes of the finite element mesh of the building.

- NBFEMnodebs: Number of groups of elements of the finite element mesh of the building.

- NBFEMMDOFbs: Total number of dofs of the finite element mesh of the building.

- NBFEMCDOFbs: Reduced number of dofs of the finite element mesh of the building,
after applying the rigid constraints.

- NBBEMeltbs: Number of elements of the boundary element mesh of the soil-building-
interface.

- NBBEMnodebs: Number of nodes of the boundary element mesh of the soil-building-
interface.
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Figure 1: The position of the building with respect to the tunnel. Used axes in the computation.

- NBpsimodebs: Number of modes with a non-vanishing trace on the soil-building-interface.

- NBphimodebs: Number of modes with a vanishing trace on the soil-building-interface.

- NBFEMeltbst: Number of elements of the finite element mesh of the soil-tunnel-building
visualization model.

- NBFEMnodebst: Number of nodes of the finite element mesh of the soil-tunnel-building
visualization model.

- NBFEMmdofbst: Number of degrees of freedom of the finite element mesh of the soil-
tunnel-building visualization model.

C.2 The Matlab and MISS pre-processing

C.2.1 Description

The position of the building and the tunnel are shown in figure 1, as well as the used axis frames.
The used axis frames in the computation differ from those used in the report.

First, the building model is constructed in the Matlab-SDT environment. Then, the mass and
stiffness matrix of the building are computed, as well as the basis of modes. At last, the modes on
the BEMmesh of the foundation are determined and the necessary MISS input files are written.

C.2.2 The construction of the building model

createmaison3.m and createmaison4.m

- Description: loads the ansys model into the SDT, adds CELAS constraint equations
(later manually changed to RIGID constraint equations, introducing matrices T and
cdof and computes the mass and stiffness matrices m and k.

- Input files: file.rst (the ansys building mesh)
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- Output files: resmaison.mat containing the mesh of the building model FEnode and
FEelt, the transformation matrix of the rigid elements T , the degrees of freedom
after applying the rigid constraints cdof , all degrees of freedom mdof , and the mass
and stiffness matrices m and k.

- The matrices:

FEnode ∈ M(NBFEMnodebs, 7)

FEelt ∈ M(NBFEMeltbs+NBFEMgroupbs, 7)

mdof ∈ M(NBFEMMDOFbs, 1)

cdof ∈ M(NBFEMCDOFbs, 1)

T ∈ M(NBFEMMDOFbs,NBFEMCDOFbs)

m ∈ M(NBFEMMDOFbs,NBFEMMDOFbs)

k ∈ M(NBFEMMDOFbs,NBFEMMDOFbs)

createBEM.m, createcontrpos.m

- Description: compute the finite element mesh of the foundation. The BEM mesh of
the soil-building interface is equal to this FEM mesh. The centers of gravity of the
elements of this mesh are also computed.

- Input files: resmaison.mat

- Output files: BEMmesh.mat containing the finite element mesh of the foundation
FEnodexpyp (in the building local reference frame), FEnodexy (in the global
axis frame) and FEeltxy. BEMgravpos.mat containing the position of the centers
of gravity of the elements of the mesh, gravposxpyp (in the building local reference
frame) and gravposxy (in the global reference frame).

- The matrices:

FEnodexpyp ∈ M(NBBEMnodebs, 7)

FEnodexy ∈ M(NBBEMnodebs, 7)

FEeltxy ∈ M(NBBEMeltbs+ 1, 10)

gravposxpyp ∈ M(NBBEMeltbs, 3)

gravposxy ∈ M(NBBEMeltbs, 3)

createpsimodessoil.m

- Description: the modes Ψm(x) defined on the boundary element mesh are computed
as proposed in 6.2.1 . A first order approximation of the rotations is made.

- Input files: BEMmesh.mat

- Output files: PSImodesBEM.mat containing the modes PSImodesBEM

- The matrices:

PSImodesBEM ∈ M(NBBEMnodebs ∗ 3, NBpsimodebs)

createUI.m

- Description: the tunnel-soil interaction model is used to compute the displacements in
the centers of gravity of the foundation elements, due to an excitation on the tunnel
invert.



The Matlab and MISS pre-processing 81

- Input files and used files: MISS.IN, cititunnel.miss, cititunnel.chp, volmesh.mat, ct-
var.mat, cititunnel.01.IMPC, cititunnel.01.CTR, postmaster3.m, postcalc5.m, UIwrite.m.

- Output files: mexique.UI containing the displacements in the centers of gravity UI

in binary Big Endian 64-bit long data type; and animationfreqgr.mat containing an
animation of the harmonic tunnel-soil response.

- The matrices:

UI ∈ M(3, NBBEMelts, 1, 1, NBFREQbs)

createpsimodesrigid.m

- Description: the modes ub(Ψm)(x) defined on the building finite element mesh cor-
responding to the modes Ψm(x) defined on the building foundation are computed.

- Input files: resmaison.mat

- Output files: PSImaison.mat containing the modes psimodes.

- The matrices:

psimodes ∈ M(NBFEMMDOFbs,NBpsimodebs)

normalizepsimodesrigid.m

- Description: the modes ub(Ψm)(x) defined on the building finite element mesh and
the corresponding modes Ψm(x) defined on the building foundation are normalized
to the building mass matrix.

- Input files: resmaison.mat, PSImaison.mat, PSImodesBEM.mat

- Output files: normpsimodes.mat containing the modes psimodesnorm defined on
the building finite element mesh and the modes psimodesBEMnorm defined on
the building foundation.

- The matrices:

psimodesnorm ∈ M(NBFEMMDOFbs,NBpsimodebs)

psimodesBEMnorm ∈ M(NBBEMnodebs ∗ 3, NBpsimodebs)

createphimodes.m

- Description: the fields Φi(x) are added to the basis of modes ub(Ψm)(x).

- Input files: resmaison.mat

- Output files: modesphi.mat containing the modes phi, the corresponding frequencies
wi and mdofphi containing all degrees of freedom of the building.

- The matrices:

phi ∈ M(NBFEMMDOFbs,NBphimodebs)

wi ∈ M(NBphimodebs, 1)

mdofphi ∈ M(NBFEMMDOFbs, 1)

createMISSfiles.m

- Description: the files necessary for the MISS computation of the soil-building-interaction
problem are written.

- Input files and used files: BEMmesh.mat, normPSImodes.mat, miswrite.m

- Output files: mexique.miss containing the boundary element mesh, mexique.chp con-
taining the non-vanishing modes defined on the building foundation.
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C.3 The MISS processing

C.3.1 Description

The MISS3D program is used to compute the BEM problems. It computes the dynamic soil
stiffness matrix, the radiated fields in the control points, and the locally diffracted field in the
control points.

C.3.2 The MISS input files

MISS.IN, mexique.miss, mexique.chp, mexique.UI

C.3.3 The MISS program

miss3d.x

C.3.4 The MISS output files

mexique.01.IMPDC

- Description: the soil impedance matrix.

mexique.01.CTR

- Description: the locally diffracted field and the radiated fields in the control points.

mexique.01.FS

- Description: the force induced on the foundation by the incident field.

C.4 The Matlab postprocessing

assembleandsolverigid.m

- Description: the soil-structure interaction system described in section 6.2.2 is assem-
bled and solved. The displacements of the foundation, of the building and of the
control points are computed and saved in u.mat.

- Input files: resmaison.mat, modesphi.mat, normPSImodes.mat, mexique.01.IMPDC,
mexique.01.CTR, mexique.01.FS.

- Output files: u.mat containing the displacements u defined on the building finite
element mesh, and ufond defined on the building foundation.

- The matrices:

u ∈ M(NBFEMMDOFbs,NBFREQbs)

ufond ∈ M(NBBEMeltbs ∗ 3, NBFREQbs)

createfullmodelrigid.m

- Description: output to an animation of the harmonic tunnel-soil-building response.
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- Input files: animationfreqgr.mat, resmaison.mat, BEMmesh.mat, u.mat.

- Output files: fulmodelrigid.mat containing the finite element mesh of the full visual-
ization model described in chapter 6 FEelt and FEnode; animationhouse.mat con-
taining the finite element mesh FEelt and FEnode, the corresponding degrees of
freedom mdof , the corresponding displacements defttt, and the frequencies freq.

- The matrices:

FEelt ∈ M(NBFEMeltbst, 10)

FEnode ∈ M(NBFEMnodebst, 7)

mdof ∈ M(NBFEMmdofbst, 1)

defttt ∈ M(NBFEMmdofbst,NBFREQbs)

freq ∈ M(1, NBFREQbs)
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du Mexique’ on the RER B line at Cité Universitaire in Paris. Report BWM-2003-02,
Department of Civil Engineering K.U.Leuven, February 2003. CONVURT EC-Growth
Project G3RD-CT-2000-00381.

[22] N. Vincent, P. Bouvet, and J. Charlier. Convurt, development of excitation model. Technical
report, Vibratec, 2002. CONVURT EC-Growth Project G3RD-CT-2000-00381.


