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Abstract— Vibrations due to the passage of trains in tun-
nels propagate through the soil and produce vibrations and
re-radiated noise in adjacent structures. Within the frame
of the EC-Growth project CONVURT (”The control of vi-
bration from underground railway traffic”), an efficient and
modular numerical prediction tool is being developed to
predict vibration and re-radiated noise in adjacent build-
ings from excitation due to metro trains in tunnels for both
new-build and existing situations. The model will be val-
idated by means of in situ experiments at the site of Cité
Universitaire in Paris and at Regent’s Park in London. The
development of a coupled periodic finite element-boundary
element method and the results obtained from the in-situ
experiments conducted in Paris are described in the present
paper.
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I. Introduction

The passage of trains in tunnels generates ground-borne
vibrations that propagate to adjacent structures and may
produce vibrations and re-radiated noise. The amplitude
of vibrations depends on several factors as the vehicle char-
acteristics, the train speed, the track and wheel irregulari-
ties, the properties of the tunnel, the propagation of waves
through the soil and the properties of the structures.

Two-dimensional finite element models with (local) ab-
sorbing boundary conditions are frequently used [1], [2], [3],
but necessitate important simplifications to translate the
three-dimensional moving load into an equivalent line load
and do not allow to incorporate three-dimensional struc-
tures. Moreover, two-dimensional models underestimate
radiation damping in the soil. The computational results
may give a qualitative indication of vibration isolation ef-
ficiency (insertion loss) in the design phase. Underlying
simplifying assumptions, however, compromise their use as
absolute or quantitative predictions.

Within the frame of the EC-Growth project CONVURT
(”The control of vibration from underground railway traf-
fic”), an efficient and modular numerical prediction tool is
being developed to predict vibration and re-radiated noise
in adjacent buildings from excitation due to metro trains
in tunnels for both new-build and existing situations. The
model will be validated by means of elaborate in situ ex-
periments at a site on the RER B line of RATP at Cité
Universitaire in Paris and at another site on the Bakerloo
line of London Underground in Regent’s Park, London.

The three-dimensional (3-D) dynamic tunnel-soil inter-
action problem is solved by a coupled substructure ap-
proach [4] exploiting the invariance or the periodicity of

the tunnel in the longitudinal direction [5], [6], [7]. The
paper describes a 3-D numerical model based on a finite
element formulation for the tunnel structure with a modal
reduction technique coupled with a boundary element for-
mulation for a horizontally layered soil medium. The soil-
structure interaction problem for the whole tunnel-soil sys-
tem is restricted within the analysis of a generic cell by us-
ing Floquet transform. The impedance of the soil along the
interface between the tunnel and the soil is computed with
a boundary element formulation, using the Green-Floquet
functions defined on a generic cell with the same width
as the tunnel segment. Use is made of recent progress to
model moving sources at the surface of a layered halfs-
pace [8], [9]. The modal coordinates are calculated in the
frequency-wavenumber domain. The dynamic representa-
tion theorem is used to compute the radiated wave field in
the soil, while the inverse Floquet transformation is used
to obtain the response in the frequency domain.

Elaborate in-situ experiments have been performed at
the site of Cité Universitaire in Paris for the purpose of
site characterization as well as validation of the numerical
model. A spectral analysis of surface waves (SASW) test
has been performed to obtain the thickness and the dy-
namic characteristics of the shallow layers of the soil. The
vibrations at different points in the tunnel, in the free field
and in a five-story reinforced concrete building have been
measured during the passage of service trains, as well as
a test train at variable speed. Furthermore, transfer func-
tions between the track and the free field and the building
have been recorded, using an impact hammer.

The main objective of the paper is to describe the devel-
opment of the numerical prediction model and to comment
on the experimental results obtained at the site of Cité
Universitaire in Paris.

II. Numerical prediction model

In this section, the stepwise development of the numer-
ical prediction model for a 3-D dynamic coupled linear
tunnel-soil interaction problem is discussed. The problem
geometry, the Floquet transformation using the periodicity
of the problem in longitudinal direction, the basic equations
of the generic cell and the solution of the generic problem
by periodic coupled FEM-BEM approach are discussed in
the following subsections.

A. Problem geometry

A long tunnel is considered as an unbounded open set Ωt,
with given elastic properties and assumed to be embedded



in a layered elastic halfspace Ω. The horizontally layered
soil domain is denoted by Ωs, while Ω (= Ωt∪Ωs) represents
the global domain.

The tunnel Ωt is assumed to be periodic in the longitu-
dinal y-direction, defined by the unit vector ey. Hence, the
generic cell in the tunnel may be defined by:

Ω̃ = {x ∈ Ω | 0 < x · ey < L} (1)

The tunnel Ωt is constructed as an assemblage of an infinite
number of elementary bounded cells Ω̃tn. The definitions
of Ωt and Ω̃tn are given as

Ωt = ∪+∞
n=−∞Ω̃tn (2)

Ω̃tn =
{
x ∈ Ω /x− nLey ∈ Ω̃t

}
(3)

The elementary soil domain Ω̃s in the reference cell has
a similar definition.

The interface between the tunnel Ωt and the soil Ωs is
denoted by Σ. In the reference cell, the interface between
the tunnel and the soil segments Ω̃t and Ω̃s is denoted by
Σ̃. The total interface Σ can be decomposed as follows:

Σ = ∪+∞
n=−∞Σ̃n (4)

The boundary ∂Ω̃ of the generic cell Ω̃ can be decom-
posed as follows:

∂Ω̃ = Γ̃σ ∪ Γ̃∞ ∪ Σ0 ∪ ΣL (5)

where Γ̃σ is the part of the boundary where Neumann
boundary conditions are specified. The left and the right
boundaries of the reference cell are denoted by Σ0 and ΣL

and defined as follows:

Σ0 =
{
x ∈ δΩ̃ /x · ey = 0

}

ΣL =
{
x ∈ δΩ̃ /x · ey = L

} (6)

Sommerfeld’s radiation conditions should hold on Γ̃∞.

B. Floquet transformations

The problem of dynamic soil-tunnel interaction can be
considered as a three-dimensional problem having a peri-
odicity with period L in one direction ey. The position
vector x ∈ IR3 of any point in the problem domain Ω is
conveniently decomposed as:

x = x′ + yey = x′ + ỹey + nLey = x̃ + nLey (7)

where x′ denotes the position vector in the (x, z)-plane
perpendicular to the longitudinal direction ey, while x̃ is
the position vector in the reference cell Ω̃.

The Floquet transform f̃(x̃, κ) of a general non-periodic
function f(x) = f(x̃ + nLey) defined on a three-
dimensional problem domain Ω which is periodic with pe-
riod L in the direction ey is defined as:

f̃(x̃, κ) =
+∞∑

n=−∞
f(x̃ + nLey) exp (+inLκ) (8)

f̃(x̃, κ) is a continuous function of κ in the interval κ ∈
]−π/L, +π/L[. It is a periodic function of the second kind
with respect to x̃ or ỹ as the following relation holds:

f̃(x′, L, κ) = exp (−iκL)f̃(x′, 0, κ) (9)

If the Floquet transform f̃(x̃, κ) is known on the reference
cell Ω̃, the function f(x̃ + nLey) can be reconstructed for
any x = x̃ + nLey using the inverse Floquet transform:

f(x̃ + nLey) =
L

2π

∫ +π/L

−π/L

f̃(x̃, κ) exp (−inLκ)dκ (10)

Equations (8) and (10) define the Floquet transform pair.

C. Generic problem

It has been discussed in the previous subsection that,
for a three-dimensional problem defined on a three-
dimensional domain with periodicity L along longitudinal
direction ey, the analysis can be restricted to the generic
domain Ω̃. The boundary of ∂Ω̃ of the generic domain
Ω̃ is decomposed as ∂Ω̃ = Γ̃σ ∪ Σ0 ∪ ΣL where Γ̃σ is the
restriction of Γσ on the generic cell and Σ0 and ΣL are
additional boundaries on which periodic conditions are im-
posed. Specifying the equilibrium equations in Ω̃s and Ω̃t,
the boundary conditions on Γ̃σs and Γ̃σt and the coupling
equations on Σ̃, the following generic problem have to be
solved.

For every κ ∈] − π/L, +π/L[ and for every frequency
ω ∈ IR, the soil displacements ũs(x̃, κ, ω) in Ω̃s should
satisfy the following equations:

div σs(ũs) = −ρsω2ũs in Ω̃s (11)
ts(ũs) = 0 on Γ̃σs (12)

ũs(x̃) = exp (−iκL)ũs(x̃− Ley) on Σ̃Ls (13)

The tunnel displacements ũt(x̃, κ, ω) in Ω̃t should satisfy
the following equations:

div σt(ũt) + ρtb = −ρtω2ũt in Ω̃t (14)
tt(ũt) = ft on Γ̃σt (15)

ũt(x̃) = exp (−iκL)ũt(x̃− Ley) on Σ̃Lt (16)

On the boundary Σ̃ between the tunnel Ω̃t and the soil Ω̃s,
displacement continuity and stress equilibrium conditions
are imposed by the following equations:

ũs = ũt on Σ̃ (17)
ts(ũs) + tt(ũt) = 0 on Σ̃ (18)

The global solution is recovered using the inverse Floquet
transform.

D. Numerical solution of the generic problem

The numerical solution of the problem stated in the pre-
vious subsection will be built using the classical domain
decomposition approach using FEM for the structure and
BEM for the soil.



D.1 The subdomain approach

As the tunnel domain Ω̃t is bounded, the displacement
field ũt(x̃, κ, ω) in the tunnel can be decomposed on a basis
of functions Ψn(x̃, κ)(n = 1, . . . , N) that are periodic of the
second kind:

ũt(x̃, κ, ω) =
N∑

n=1

Ψn(x̃, κ)cn(κ, ω) = Ψ(x̃, κ)c(κ, ω) (19)

The soil displacements ũs(x̃, κ, ω) are subsequently writ-
ten as the sum of an elastodynamic wave field ũ0(x̃, κ, ω)
that is equal to zero on the interface Σ̃ and a scattered
wave field ũsc(x̃, κ, ω):

ũs(x̃, κ, ω) = ũ0(x̃, κ, ω) + ũsc(x̃, κ, ω) (20)

The displacement ũ0(x̃, κ, ω) is written as the sum of the
incident wave field ũi(x̃, κ, ω) and the locally diffracted
wave field ũd0(x̃, κ, ω), so that equation (20) may be rewrit-
ten as:

ũs(x̃, κ, ω) = ũi(x̃, κ, ω) + ũd0(x̃, κ, ω) + ũsc(x̃, κ, ω) (21)

The sum of the locally diffracted wave field and the scat-
tered wave field is called the diffracted wave field. The
displacement field ũs(x̃, κ, ω) in the soil can be further de-
composed into:

ũs(x̃, κ, ω) = ũi(x̃, κ, ω) + ũd0(x̃, κ, ω)

+
N∑

n=1

ũdn(x̃, κ, ω)cn(κ, ω) (22)

The following boundary conditions hold on the restriction
Σ̃ of the interface Σ on the reference cell:

ũdn(x̃, κ) = Ψn(x̃, κ) on Σ̃
ũi(x̃, κ, ω) + ũd0(x̃, κ, ω) = 0 on Σ̃ (23)

A standard Galerkin procedure is used to write the stress
equilibrium on Σ̃ in a weak sense for any function Ψn(x̃, κ)
in the basis and the following linear system of equations is
obtained:

[
Kt(κ)− ω2Mt(κ) + Ks(κ, ω)

]
c(κ, ω)

= Ft(κ, ω) + Fs(κ, ω) (24)

where the matrices Kt(κ) and Mt(κ) are the stiffness and
mass matrices of the tunnel, the matrix Ks(κ, ω) is the
impedance matrix of the soil, the vector Ft(κ, ω) is the
generalized force vector transmitted from the track to the
tunnel and the vector Fs(κ, ω) is the generalized force vec-
tor due to the incident wave field.

D.2 The tunnel impedance

The kinematics of the structure is described by the dy-
namic eigenmodes Φn(x̃) of the unit cell, that are the so-
lutions of the generalized eigenvalue problem:

KFEM
t Φn = ω2

nMFEM
t Φn (25)

where KFEM
t and MFEM

t are the finite element stiffness and
mass matrix of the unit cell. The eigenmodes Φn(x̃) are
periodic functions of the first kind on the unit cell Ω̃t as
the following kinematical conditions are imposed:

Φn(x̃ + Ley) = Φn(x̃) ∀x̃ ∈ Σ̃Lt & ∀x̃ + Ley ∈ Σ̃Rt (26)

The fields Ψ(x̃, κ) are subsequently constructed as the fol-
lowing periodic functions of the second kind:

Ψn(x̃, κ) = exp (−iκỹ)Φn(x̃) (27)

The matrices Kt(κ) and Mt(κ) in the governing equation
(24) are the stiffness and mass matrices of the tunnel:

KtIJ =
∫

Ω̃t

σ(Ψ∗I) : ε(ΨJ )dΩ = Ψ∗TI KFEM
t ΨJ (28)

MtIJ =
∫

Ω̃t

ρtΨ∗I ·ΨJdΩ = Ψ∗TI MFEM
t ΨJ (29)

while Ft is the generalized force vector transmitted from
the track to the tunnel:

FtI =
∫

Σ̃

Ψ∗I · f̃dV = Ψ∗TI f̃ (30)

D.3 The soil impedance

The matrix Kt(κ, ω) in equation (24) is the impedance
matrix of the soil, defined as:

KsIJ =
∫

Σ̃

Ψ∗I · ts(ũdJ)dΣ (31)

where the stresses ts(ũdI) are calculated with a periodic
boundary element formulation with Green-Floquet func-
tions defined on the periodic structure with period L along
the tunnel. In equation (24), Fs(κ, ω) is the generalized
force vector due to an incident wave field:

FsI = −
∫

Σ̃

Ψ∗I · (t(ũi) + t(ũd0)) dΣ (32)

The stress vector t(ũd0) is also computed using a peri-
odic boundary element formulation. In the case of dynamic
tunnel-soil interaction problem where the external loading
is applied on the tunnel invert, however, the force vector
Fs(κ, ω) can generally be disregarded.

If uG
ij(y,x, ω) denotes the Green’s tensor or the reponse

in the direction ej in the receiver x of a horizontally lay-
ered halfspace due to a unit harmonic force in the direction
ei in the source point y, then the Green-Floquet tensor
ũGF

ij (ỹ, x̃, κ, ω) is defined as:

ũGF
ij (ỹ, x̃, κ, ω) =

+∞∑
n=−∞

exp (+inκL)uG
ij(y + nLey,x, ω)

(33)

The dynamic representation theorem now becomes:

c(ξ̃)ũi(ξ̃, κ, ω)

=
∫

Σ̃∪Σ̃Ls∪Σ̃Rs

t̃j(ũ)(x̃, κ, ω)ũGF
ij (ξ̃, x̃, κ, ω)dΣ

−
∫

Σ̃∪Σ̃Ls∪Σ̃Rs

t̃GF
ij (ξ̃, x̃, κ, ω)ũj(x̃, κ, ω)dΣ (34)



After discretization of the unknown displacement and trac-
tion vectors along the boundary Σ̃ between the tunnel and
the soil, the following system of equations is obtained:

ŨGF (κ, ω)t̃(κ, ω) = T̃GF (κ, ω)ũ(κ, ω) (35)

This system of equations is used to solve for the unknown
tractions ts(ũdJ) in equation (31), which allows to compute
the soil impedance matrix Kt(κ, ω).

D.4 Wave propagation in the soil

Once the modal coordinates c(κ, ω) are computed from
the general equation (24), the displacements ũt(x̃, κ, ω) of
the tunnel are obtained from equation (19). The tractions
t̃t(Ψn)(x̃, κ, ω) imposed by each mode Ψn(x̃, κ) are first
computed using a periodic boundary element formulation.
The traction vector t̃t(x̃, κ, ω) on Σ̃ is finally obtained as:

t̃t(x̃, κ, ω) =
N∑

n=1

t̃t(Ψn)(x̃, κ, ω)c̃n(κ, ω) (36)

The incident wave field ũinc(ξ̃, κ, ω) is obtained by appli-
cation of the dynamic representation theorem in the un-
bounded soil domain corresponding to the reference cell:

ũinc
i (ξ̃, κ, ω) =

∫

Σ̃

ũGF
ij (ξ̃, x̃, κ, ω)t̃tj(x̃, κ, ω)

−t̃GF
ij (ξ̃, x̃, κ, ω)ũtj(x̃, κ, ω)dΣ (37)

where uGF
ij (ξ̃, x̃, κ, ω) and tGF

ij (ξ̃, x̃, κ, ω) are the Green-
Floquet tensors and the integration is performed on the
tunnel-soil interface Σ̃ in the reference cell.

The incident wave field in the soil is obtained after eval-
uation of the inverse Floquet transformation.

III. Numerical example

The metro tunnel on the line RER B of RATP at Cité
Universitaire in Paris is a masonry cut-and-cover tunnel
with two tracks at a shallow depth of about 9.3 m below
the free surface and a width of 11.9 m (figure 1). The slab
thickness is 0.6 m at the top and 0.4 m at the bottom,
while the wall thickness is 1.5 m. The masonry is assumed
to have a Young’s modulus Et = 14000 MPa, a Poisson’s
ratio νt = 0.15, a density ρt = 2400 kg/m3 and a hysteresis
damping ratio βt = 0.02.

The tunnel is considered to be infinitely long with a cross
section that is invariant in the longitudinal ey direction.
The length L of the reference cell is chosen as 0.3 m. The
reference cell is modelled with 8-node isoparametric brick
elements (figure 2). Preliminary calculations only consider
the transfer functions between the tunnel invert and the
free field; therefore, the track is not yet included in the
finite element model of the reference cell.

The eigenmodes Φn(x̃) of the reference cell of the tunnel
are subjected to the periodicity condition (26). Figure 3
shows two modes of the reference cell that involve flexural
motion in the transverse (x, z)-plane. The modes Ψ(x̃, κ)
are subsequently constructed using the periodicity condi-
tion (27). As calculations will be made for excitation fre-
quencies upto 80 Hz, 30 eigenmodes of the tunnel segment

Fig. 1. Cross section of the metro tunnel on the line RER
B of RATP at Cité Universitaire.

a. Cross section.

b. Reference cell.

Fig. 2. (a) Cross section of the model of the metro tunnel
with the soil stratigraphy and (b) finite element mesh
of the reference cell and the applied forces.

a. Mode 6 at 14.0 Hz. b. Mode 8 at 36.9 Hz.

Fig. 3. Flexural modes of the reference cell of the tunnel.

(upto 225 Hz) are used to describe the kinematics of the
tunnel.

The tunnel is embedded in a soil consisting of a shal-
low layer of 1.6 m of fill material, a layer of Beauchamp



sand with a thickness of approximately 3.2 m and a stiffer
layer with a thickness of 7.8 m with marl and gravel on
top of a halfspace consisting of chalk. A Spectral Analy-
sis of Surface Waves (SASW) test has been performed to
determine the thickness and the dynamic characteristics
of the soil layers [10] and revealed the presence of a shal-
low layer with a thickness of d = 1.4m and a shear wave
velocity Cs = 115 m/s on top of a layer with d = 3.0m
and Cs = 220 m/s on a halfspace with Cs = 315m/s. A
Poisson’s ratio νs = 0.4, a density ρs = 1700 kg/m3 and a
material damping ratio βs = 0.05 is assumed in all layers.

A. Response in the wavenumber-frequency domain

The response of the tunnel-soil system due to a unit har-
monic load on the tunnel invert in the frequency range
between 0.1 Hz and 80.1 Hz are computed. The fre-
quency step is equal to 2 Hz. Two forces are applied
on both edges of the generic cell, resulting in a uni-
form wavenumber content. Computations are made in the
wavenumber-frequency domain. For low frequencies upto
15 Hz, wavenumbers are sampled upto κmax = 0.6 m−1

with a step ∆κ = 0.015m−1, which is largely sufficent as
the solution is shown to rapidly decay with increasing κ.
For higher frequencies between 15 and 80 Hz, a sampling
in the slowness domain corresponding to pmax = κmax/ω =
0.004 s/m and ∆p = 0.0001 s/m is preferred.
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Fig. 4. Real part of the diagonal elements Kt(6, 6) and
Kt(8, 8) of the tunnel impedance matrix as a function
of the slowness p = κ/ω and the frequency ω.

Figure 4 shows the real parts of the diagonal elements
Kt(6, 6) and Kt(8, 8) of the tunnel impedance, correspond-
ing to the flexible bending modes 6 and 8, as a function of
the slowness p = κ/ω and the frequency ω. At low values
of the slowness and the frequency, the inertial term domi-
nates the real part of the tunnel impedance, while at high
values of the slowness and the frequency, the stiffness term
dominates the tunnel impedance.

B. Impedance of the soil

The impedance matrix Ks(κ, ω) of the soil is computed
according to equation (31), using a periodic boundary ele-
ment formulation. Figure 5 shows the real and the imagi-
nary part of the elements Ks(6, 6) and Ks(8, 8) of the soil
impedance matrix, corresponding to modes 6 and 8, as a
function of the slowness p = κ/ω and the frequency ω.

The (negative) imaginary part represents attenuation
due to radiation and material damping in the soil. At
zero slowness or infinite phase velocity in the longitudi-
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Fig. 5. Real and imaginary parts of the diagonal elements
Ks(6, 6) and Ks(8, 8) of the soil impedance matrix as
a function of the slowness p = κ/ω and the frequency
ω.

nal y-direction, the absolute value of the imaginary part
increases, resulting in higher attenuation. For a fixed fre-
quency, the absolute value of the imaginary part decreases
for increasing slowness or decreasing phase velocity; it fi-
nally becomes very small, reflecting the absence of radia-
tion damping in the soil at high values of the slowness.

C. Response of the tunnel

The solution of the general system of equations (24) in
the wavenumber-frequency domain finally results in the
modal coordinates c(κ, ω). Figure 6 shows the modulus
of the modal coordinates c6 and c8 as a function of the
slowness p = κ/ω and the frequency ω.
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Fig. 6. Modulus of the modal coordinates c6 and c8 of the
tunnel as a function of the slowness p = κ/ω and the
frequency ω.

The response of the tunnel in the wavenumber-frequency
domain is obtained through the synthesis of the contribu-
tion of all modes according to equation (19). The stresses
along the tunnel-soil interface are evaluated and the dy-
namic representation theorem (34) is used to compute the
incident wave field in the soil in the wavenumber-frequency
domain.

D. Response in the free field

In the present example, the response is computed in the
soil at points on the free surface and at the level of the



tunnel base, at both sides of the tunnel upto a distance of
24 m from the central axis of the tunnel, as well as on a
vertical line between the tunnel roof and the free surface.

Figure 7a shows the modulus of the transfer functions
between the tunnel and 4 points at the free surface in the
same cross section where the force is applied. A dominant
peak around 14 Hz can clearly be observed. Figure 8 shows
the real part of the displacements of the tunnel and the soil
due to a harmonic loading on the tunnel invert at 14 Hz.
It is clearly demonstrated that the soil above the tunnel
and the tunnel roof move in phase. The peak at 14 Hz on
figure 7a is due to resonance that can be explained with a
single degree of freedom system where the tunnel acts as a
spring and the soil above the tunnel represents the mass.
This is confirmed in figure 7b where the displacements of
the tunnel roof and the soil above the tunnel are shown to
be equal.
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Fig. 7. Modulus of the transfer functions for points (a) at
the free surface and (b) at the tunnel floor, the tunnel
roof and the free surface.

a. t = 0. b. t = T/8.

c. t = 2T/8. d. t = 3T/8.

Fig. 8. Real part of the displacements of the tunnel and
the soil due to a harmonic excitation on the tunnel
invert at 14 Hz at (a) t = 0, (b) t = T/8, (c) t = 2T/8,
and (d) t = 3T/8.

Figure 9 shows the real part of the displacements of the
tunnel and the soil due to a harmonic loading on the tunnel
invert at 80 Hz. Waves are propagating in the tunnel in the
longitudinal and the transverse direction and radiated into
the soil. The projection of the displacement field on the free
surface in figure 10 clearly reveals elliptical wave fronts, as
the waves that propagate in the transverse direction have

a lower velocity than the waves that propagate along the
longitudinal direction. The latter can be demonstrated as
guided waves inside the tunnel-soil system.

a. t = 0. b. t = T/8.

c. t = 2T/8. d. t = 3T/8.

Fig. 9. Real part of the displacements of the tunnel and
the soil due to a harmonic excitation on the tunnel
invert at 80 Hz at (a) t = 0, (b) t = T/8, (c) t = 2T/8,
and (d) t = 3T/8.

Fig. 10. Real part of the displacements at t = 0 at 80 Hz
at the free surface.

IV. Experimental results

The results of the free field transfer function measure-
ments between the track and the free field are presented
here. Before going into the discussion about the results,
the characteristics of the track and the experimental setup
are briefly reviewed below.

A. The characteristics of the track

Two classical ballast tracks supported on mono-block
concrete sleepers are running in the tunnel. The mass per
unit length of the UIC60 rail is 60 kg/m and the vertical
bending stiffness is 6.4 × 106 Nm2. The rail is supported
on grooved rubber pads with a thickness of 9 mm which
are resting on the sleepers. Mono-block concrete sleepers
(VXP U61) are used. Each sleeper has a length of 2.27 m,
a width of 0.29 m and a thickness of 0.14 m. The sleeper
distance is 0.6 m. The mass of each sleeper is 200 kg and
Young’s modulus is 30 GPa. The thickness of the ballast
layer is 0.4 m.

The direct rail receptance, measured with a weak static
pre-load and a small dynamic force amplitude, shows a first
resonance around 80-90 Hz, from which a ballast stiffness



per unit area of 100 MN/m3 and a loss factor of 0.80 can
be estimated. The second resonance frequency around 600
Hz allows to derive a dynamic rail pad stiffness of about
375MN/m and a loss factor of 0.50 (measured at 600 Hz
and a small force amplitude, without a static pre-load).
The pinned-pinned frequency of the track is about 1200 Hz,
which is a common value for tracks with a UIC60 rail and a
sleeper distance of 0.60 m. Measurements of direct sleeper
receptance confirm the values of the natural frequencies of
the track as determined by the direct rail receptance.

B. The experimental setup

During the transfer function measurements, the excita-
tion on the left rail of track 1 is generated with an impact
hammer with a mass of 5.3 kg and a soft head as to ex-
cite in the low frequency range below 400 Hz. A load cell
is placed on the impact hammer and measures the impact
force on the rail head. Figure 11 shows the time history and
frequency content of the vertical impact force. The peak
value of the force is about 10.75 kN, while the frequency
content is limited to the range below 400 Hz.
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Fig. 11. (a) Time history and (b) frequency content of
impact force.

Figure 12 shows the position of accelerometers for mea-
suring transfer functions between the track and the free
field. The impact force and corresponding accelerations
are measured in 16 channels for 14 impacts of the hammer.

C. Response in the free field

Figure 13 shows the time history of the free field vertical
accelerations as a function of the distance perpendicular to
the tunnel for a hammer impact on the left rail of track 1.
The function values in this seismogram have been rescaled
so that the arrival times and the dispersive nature of the
wave propagation can better be appreciated. On the con-
trary, the attenuation of the waves with increasing distance
to the track is no longer visible.

Figures 14 and 15 show the time history and frequency
content of the free field vertical acceleration on the top
of the tunnel (0 m) and at 64 m from the tunnel. The
maximum amplitude of the acceleration az(0, 0, 0, t) in the
near field (figure 14a) is about 0.017 m/s2. The peak value
of the acceleration az(64, 0, 0, t) (figure 15a) in the far field
is 0.001 m/s2. These results demonstrate the decrease in
the amplitude of the acceleration with increasing distance
from the tunnel due to material and radiation damping in
the soil. It is observed from figures 14b and 15b that the
dominant frequency range is between 30 to 120 Hz. At

Fig. 12. Location of the measurement points.
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Fig. 13. Time history of the free field vertical accelerations
as a function of the distance to the tunnel.

a large distance from the tunnel, the high frequencies are
attenuated due to material damping in the soil. A spurious
frequency component at 110 Hz can be noticed.
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Fig. 14. (a) Time history and (b) frequency content of the
free field acceleration on the tunnel top (0 m).

D. Validation of the numerical model

Figure 16 shows the comparison of the computed and
measured vertical seismograms in the free field. The com-
putation has been performed with the numerical model de-
scribed earlier in this paper. It is seen from figure 16 that
at distances 4 m, 8 m, 12 m, 16 m, 24 m and 32 m, the
computed vertical seismograms match reasonably well with
experimentally obtained seismograms, exhibiting a similar
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Fig. 16. Comparison of computed and experimentally ob-
tained vertical seismograms.

dispersive nature of propagating waves in the soil medium
and arrival times with increasing distance. Refracted lon-
gitudinal waves and Rayleigh waves are seen in the figure.
For points farther away from the tunnel, the waves travel
for longer distances in the third layer and then refract to
the surface.

V. Conclusion

The theoretical basis for the development of the numer-
ical model for prediction of ground borne vibrations has
been discussed in this paper. The model is based on a
coupled periodic FE-BE method using a substructure ap-
proach, where the Floquet transformation is used to exploit
the periodicity of the tunnel in longitudinal direction.

The experimental validation in this paper is limited to a
preliminary comparison of the transfer functions between
the tunnel and the free field and the computed response.
A reasonable good correspondence of the arrival times and
dispersive nature of the waves is observed.
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