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Abstract

A numerical model is developed to predict vibrations and re-radiated noise in buildings from excita-
tion due to metro trains in tunnels. The three-dimensional dynamic tunnel-soil interaction problem is
solved with a subdomain formulation, using a finite element formulation for the tunnel and a boundary
element method for the soil. The periodicity of the geometryis exploited using the Floquet transform,
limiting the discretization to a single bounded reference cell. The responses of two different types of
tunnel due to a harmonic load on the tunnel invert are compared, both in the frequency-wavenumber
and spatial domains. The tunnel of the line RER B of RATP in theCité Universitaire in Paris is
a shallow cut-and-cover masonry tunnel embedded in layers of sand. The tunnel of the Bakerloo
line of London Underground in Regent’s Park is a deep cut-and-cover tunnel with a cast iron lining
embedded in London clay.

1 Introduction

Within the frame of the EC-Growth project CONVURT [1], a modular numerical prediction tool is
developed to predict vibration and re-radiated noise in buildings from excitation due to metro trains
in tunnels for both newly built and existing situations [2].

The three-dimensional dynamic tunnel-soil interaction problem is solved with a subdomain for-
mulation, using a finite element formulation for the tunnel and a boundary element method for the
soil. The periodicity of the tunnel and the soil is exploitedusing the Floquet transform, limiting the
discretization to a single bounded reference cell of the tunnel [3, 4].

The model will be validated by means of in situ experiments that have been performed at a site
in the Cité Universitaire on the line RER B of RATP in Paris and a site in Regent’s Park on the
Bakerloo line of London Underground. The tunnel in Paris is ashallow cut-and-cover masonry tunnel
with two tracks, embedded in layers of sand, gravel and marl,while the tunnel in London is a deep
cut-and-cover tunnel with a cast iron lining and a single track, embedded in homogeneous London
clay.

After a review of the governing system of equations, detailson the geometry and construction of
both tunnels are presented. The response due to a harmonic load on the tunnel invert is compared,
allowing to draw conclusions on the dynamic behaviour of both tunnel-soil systems. It is demon-
strated how the vibration isolation efficiency of a floating slab track can efficiently be computed using
a Craig-Bampton substructuring technique [5].
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2 Dynamic tunnel-soil interaction model

2.1 Problem outline

The three-dimensional dynamic soil-tunnel interaction problem is assumed to be periodic with period�
in the longitudinal direction�� along the tunnel axis and can be restricted to periodic fieldsof the

second kind defined on a reference cell
��

(figure 1). The boundary� �� of this domain is decomposed
into the free surface

��� and the boundaries�	 and�
 on which periodic conditions are imposed.
The generic cell

��
is decomposed into two subdomains: the soil

���
and the tunnel

���. The interface
between these subdomains is denoted by

����. The boundary
���� is the free surface of the soil, while

a surface force
�� is applied on

���� (figure 1).

Figure 1: Problem outline and notations.

The position vector� of any point in the problem domain
�

is decomposed as� � � � ����,
where

� is the position vector in the reference cell
��

and� is the cell number. The Floquet trans-
formation

�� ����� of a non-periodic function
� ��� � � �� � ����� defined on a three-dimensional

domain
�

, that is periodic in the direction�� with period
�

, transforms the distance�� between the�-th cell and the reference cell
��

to the wave number� and is defined as [4]:�� ����� � �������� ���������� ��!���� (1)

The function
�� ����� is periodic of the first kind with respect to�with a period"#$� and periodic of

the second kind with respect to
�:�� ��%��� �&��� � �� �'!��� �� ��%�(� �&��� (2)

The function
� �� � ����� can be reconstructed for any� � � � ���� using the inverse Floquet

transform:� �������� � �"# ) �*+
�*+
 �� ������� �'!����d� (3)
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2.2 Navier equations

Using the Floquet transformation, all displacement and traction fields������ and
������ defined on

the periodic domain
�

are transformed to the fields
�������� and

�������� defined on the generic
cell

��
.

The Navier equations in the soil domain
���

and the boundary conditions on
���� are written as

follows for every frequency� � IR and wave number� �� '#$���#$��
:

div
������ � '���� �� in

���
(4)������ � 0 on

���� (5)����� � �� �'!������� '���� on �
 (6)

together with the radiation conditions on the displacementfield.
The following Navier equations and boundary conditions hold in the tunnel domain

��� with bound-
ary

����:
div

�� ���� � '���� �� in
��� (7)�� ���� � �� on
���� (8)�� ��� � �� �'!����� �� '���� on �
 (9)

Continuity of displacements and equilibrium of stresses must hold on the tunnel-soil interface
����:�� � �� on

���� (10)�� ���� � ������ � 0 on
���� (11)

2.3 Weak variational formulation

Multiplying the Navier equations (4) and the boundary equations (5) and (6) with the complex con-
jugate of any virtual field

	� �����, integrating over the problem domain and the boundaries, and
integrating by parts, the following weak variational form is obtained for the tunnel:

)
�� �	�� � ������� '�� )
�� �� 	� � �� � �� � )� 
�� 	� � �� ������ �)
��� 	� � ���� (12)

where the boundary� ��� can be decomposed into the tunnel-soil interface
���� and the two boundaries�	 and�
 at the two edges

�� � ��$" of the generic cell. As the actual and the virtual displacement
fields are periodic of the second kind, the contribution of the integral on the sum of the boundaries�	
and�
 vanishes [3]. Accounting for the stress equilibrium (11) along the tunnel-soil interface

����,
the weak variational equation becomes:

)
�� �	�� � ������� '�� )
�� �� 	� � �� � �� �)
��� 	� � ������������� � )
��� 	� � ���� (13)

where
������� denotes the wave field that is scattered by the tunnel into thesoil that obeys displace-

ment continuity (10) along the tunnel-soil interface
����.
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2.4 Coupled periodic finite element - boundary element formulation

As the tunnel is bounded, the displacement field
�� �������can be decomposed on a basis of functions�� ����� that are periodic of the second kind:�� ������� � ��

��� �� ������� ����� � ���� (14)

The modes
�� ����� are periodic of the second kind and constructed as follows from the periodic (of

the first kind) eigenmodes
�	� ��� of the reference cell:�� ����� � �� �'!��� � �� �	� ��� (15)

The soil displacements
����x ����� can be written as the superposition of waves that are radiated by

the tunnel into the soil:��������� � ��������������
� ��

��� ���� ������������ ����� �
��
��� ��� ��������� ����� (16)

The numerical solution of the dynamic tunnel-soil interaction problem is obtained using the clas-
sical domain decomposition approach based on the finite element method for the structure and the
boundary element method for the soil. The displacements in the structure

�� ������� are interpolated
as: �� � 	�� � N� �� � N� ���� (17)

Employing the same approximation for the virtual displacements
	� �������, the following system of

equations is finally obtained:

K� ��� '��M� ��� �K

������������� � F� ����� (18)

whereK� ��� andM� ��� are the projections of the finite element stiffness and mass matrices on the
tunnel modes:

K� ��� � �T�KFE� �� � �T� )
�� �LN��TD
�
LN���� ��

M� ��� � �T�MFE� �� � �T� )
�� NT� ��N��� �� (19)

F� ����� is the generalized force vector applied on the tunnel invert:

F� ����� � �T� )
��� NT� ���� (20)

andK
������ is the dynamic stiffness matrix of the soil:

K
������ � )
��� �T�NT� �������N� ������ (21)

The stresses
�������N� ���� on the tunnel-soil interface are calculated with a periodicboundary ele-

ment formulation with Green-Floquet functions defined on the periodic structure with period
�

along
the tunnel [2, 3].
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2.5 Craig-Bampton substructuring method

In order to analyze the influence of different track structures in the tunnel on the vibrations generated,
it is advantageous to differentiate between the degrees of freedom of the tunnel invert and the track.
Therefore, the displacement vector

�� ������� of the tunnel is discretized alternatively as follows
using a Craig-Bampton substructuring method [5]:�� � 	�� � N� �� � 


N�� N�� � � ������ � � 

N�� N�� � � ��� ����

0
��� � � ���

��� � (22)

where the subscripts�� and �� refer to the track and the tunnel invert, respectively. The modes in
equation (22) are periodic of the second kind and constructed from periodic modes of the first kind:� ��� ����

0
��� � � � ����� 0

0 ����� � � �	�� ��	��
0

�	�� 	 (23)

where the diagonal matrices����� and����� are constructed according to equation (15). The modes�	�� are the eigenmodes of the track clamped at the tunnel invert.The modes
�	�� are the modes of

the free tunnel without track. The displacements
��	�� are the quasi-static transmission of the tunnel

modes into the track, computed as:��	�� � ' 
KFE�������KFE���� �	�� (24)

whereKFE���� andKFE���� are block submatrices of the finite element stiffness matrixKFE of the tunnel.
Introducing the decomposition (22) into equation (13) results:��� ��� ����

0
��� �T ��KFE���� KFE����

KFE���� KFE���� � '��
�MFE���� MFE����

MFE���� MFE���� �� � ��� ����
0

��� �
� � 0 0

0 K
� ��� ���

��� � � �
F��
0 � (25)

K
������ is the dynamic stiffness matrix of the soil:

K
������ � )
��� �T��NT�� �������N�� ������� (26)

F�� ����� is the generalized force vector applied on the track:

F�� ����� � �T�� )
��� NT�� ����� (27)

The impedance of the soil in equation (25) is only influenced by the tunnel modes and does not change
when a calculation is made for another track structure in thetunnel.

2.6 Wave propagation in the soil

When the displacements
�� �������and the stresses

�� �������on the tunnel-soil interface are known,
the incident wave field

�inc�� ����� is obtained by application of the dynamic representation theorem
in the unbounded soil domain corresponding to the referencecell:��inc� �� ����� � )
��� ��GF�� ��� ���������� ������� ' ��GF�� ��� ���������� ��������� (28)

with
��GF�� ��� ������ and

��GF�� ��� ������ the Green-Floquet tensors [3, 4]. The incident wave field in
the soil is obtained by evaluating the inverse Floquet transform (3).
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3 Numerical results for the RER B tunnel in Paris

3.1 Site characteristics

The metro tunnel on the line RER B of RATP at Cité Universitaire in Paris is a masonry cut-and-
cover tunnel with two tracks at a shallow depth of about 9.3 m below the surface and a width of 11.9 m
(figure 2). The slab thickness is 0.6 m at the top and 0.4 m at thebottom, while the wall thickness is 1.5
m. The masonry has a Young’s modulus�� � ��(((MPa, a Poisson’s ratio�� � (���, a density�� �"�((kg/m� and a hysteresic material damping ratio�� � (�(". The track is a classical ballasted track
with UIC 60 rails supported every 0.60 m by grooved rubber pads on monobloc concrete sleepers.

Figure 2: Cross section of the metro tunnel on
the line RER B of RATP at Cité Universitaire.

Figure 3: Cross section of the metro tunnel on
the Bakerloo line at Regent’s Park.

The tunnel is embedded in a shallow layer of fill material (thickness
� � ���m), a layer of Beau-

champ sand (
� � 	�"m) and a stiffer layer with marl and gravel (

� � 
��m) on top of chalk. A SASW
test revealed a shallow layer with

� � ���m and a shear wave velocity�� � ���m/s on top of a layer
with

� � "��m and�� � ""(m/s on a halfspace with�� � 	��m/s [6]. A Poisson’s ratio�
� � (��, a

density�
� � �
((kg/m� and a material damping ratio�

� � (�(� is assumed in all layers.

3.2 Kinematics of the tunnel

a. Mode 5 at 9.90 Hz. b. Mode 6 at 13.96 Hz. c. Mode 9 at 41.95 Hz.

Figure 4: The first (a,b) in-plane and (c) out-of-plane modesof the cell of the RER B tunnel.

The cut-and-cover masonry tunnel is invariant in the�-direction. The periodicity introduced by the
discrete support of the rails is neglected as the track is notincluded in the model. The length

�
of the

reference cell is equal to 0.3 m, while 8-node isoparametricbrick elements are used. The kinematic
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basis for the tunnel consists of modes
��� ������ that are derived from the eigenmodes

�	� ��� of the
tunnel cell with free boundary conditions on

���� and periodicity conditions at both ends�	 and�
.
Due to these constraints and the symmetry of the cell, displacements in the�-direction are decoupled
from displacements in the%- and&-directions and only 4 rigid body modes are found. Figure 4 shows
the first two in-plane and the first out-of-plane flexible modes

�	� ���� of the cell. The response of
the tunnel-soil system due to a harmonic load on the tunnel invert will be computed in the frequency
range upto 80 Hz. Convergence analysis shows that 30 tunnel modes need to be included.

3.3 Impedance of the tunnel
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Figure 5: Impedance of the RER B tunnel: (a)�� ����� as a function of� and�, (b) �� ����� as a
function of� for fixed values of�, and (c) log

�
abs

�
detK��� as a function of� and� (30 modes).

Figure 5a shows the real part of the element�� �����of the impedance matrix of the RER B tunnel,
corresponding to mode 6 (figure 4b), as a function of the frequency� and the slowness� � �$�.
The case where� � ( (figure 5b) corresponds to the 2D case where the phase velocity is infinite; the
impedance equals the square of the eigenfrequency�� at� � (and decreases with�� for increasing�.
It is equal to zero at��. For non-zero values of�, the tunnel increases with�� or ��. The frequency��
corresponds to the cut-on frequency of a dispersive mode propagating along the tunnel that becomes
non-dispersive for high frequencies with a phase velocity equal to the shear wave velocity along the
tunnel. The modes of the free tunnel are not determined by theindividual elements of the tunnel
impedance matrix, however, but are related to the zeroes of the determinant of the tunnel impedance
matrix K�. Figure 5c demonstrates the dispersive behaviour of the tunnel modes, where the slowness
tends to a value�$�� � (��"� � �(��s/m for the in-plane modes and�$�� � (��(	 � �(�� s/m for
the out-of-plane modes, with�� and�� the shear and longitudinal wave velocities in the masonry.

3.4 Impedance of the soil

Figures 6a and 6b show the real and imaginary part of the element ������� of the impedance matrix
K
�

of the soil, corresponding to the 6th mode of the RER B tunnel.The real part increases for
increasing values of�, while the imaginary part becomes less negative, reflectingthe absence of
radiation damping in the soil for high values of�. Figure 6c shows the determinant ofK

�
and allows

to identify the dispersive behaviour of the waves propagating near the soil’s surface.

3.5 Response due to harmonic loading

Figure 7 shows the transfer functions (vertical displacements) at some points along the free surface
in the cross section where the load is applied, while figure 8 shows the transfer functions at points on
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Figure 7: Transfer functions at the points
along the free surface (0,0,0) (solid line), (-
2,0,0) (dashed), (-10,0,0) (dotted) and (-20,0,0)
(dashed-dotted).
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Figure 8: Transfer functions at the points (-
2.50,-0.15,-8.25) on the tunnel invert (solid
line), (0,-0.15,-2.30) on the tunnel apex (dashed)
and (0,0,0) on the free surface (dotted).

a. � � (. b. � � �$�. c. � � "�$�. d. � � 	�$�.
Figure 9: Displacements of the tunnel and the soil due to a harmonic excitation on the tunnel invert at
14 Hz at (a)� � (, (b) � � �$�, (c) � � "�$�, and (d)� � 	�$� for the RER B tunnel.

the tunnel invert, the tunnel apex and the free surface. The peak at 14 Hz is due to resonance of the
soil above the tunnel; figure 8 confirms that the displacements of the tunnel apex and the soil above
the tunnel are equal. Figure 9 shows the displacements of thetunnel and the soil due to a harmonic
loading on the tunnel invert at 14 Hz. The soil above the tunnel can be considered as a mass, which
is moving in phase with the tunnel, that behaves as a spring. The peak at 14 Hz corresponds to the
eigenfrequency of this equivalent SDOF system, while damping is due to the radiation of waves away
from the tunnel. Figure 10 shows similar results at a frequency of 80 Hz. On the free surface above
the tunnel, higher phase velocities (about 1920 m/s) are observed along the tunnel axis than in the
direction perpendicular to the tunnel (about 650 m/s), resulting in an elliptical wave front.
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a. � � (. b. � � �$�. c. � � "�$�. d. � � 	�$�.
Figure 10: Displacements of the tunnel and the soil due to a harmonic excitation on the tunnel invert
at 80 Hz at (a)� � (, (b) � � �$�, (c) � � "�$�, and (d)� � 	�$� for the RER B tunnel.

4 Numerical results for the Bakerloo line tunnel in London

4.1 Site characteristics

The tunnel on the Bakerloo line of London Underground in Regent’s Park is a deep bored tunnel with
a cast iron lining and a single track, embedded in London clayat a depth of about 28 m. The tunnel
has an internal radius of 1.83 m and a wall thickness of 0.022 m. There are six longitudinal stiffeners
and one circumferential stiffener at an interval of 0.508 m,resulting in a periodic structure (figure 3).
The track is a non-ballasted concrete slab track with Bull head rail supported on hard Jarrah wooden
sleeper via cast iron chairs. The sleeper distance is 0.9 m. Both ends of a sleeper are concreted into
the invert and the space between the sleepers is filled with shingle. Resilience is mainly provided by
the timber sleepers, as the rails are not supported by rail pads.

Geological maps show that the thickness of the London clay layer at the site is 40 m. GeoDelft
has performed CPT upto a depth of 21 m [7]. A shallow top layer with a thickness of 4 to 6 m
has inclusions of sand and gravel and varying cone resistance. Bender element tests on undisturbed
samples at several confining pressures result in an average shear wave velocity of 124 m/s and a
longitudinal wave velocity of 1604 m/s [7]. A material damping ratio of 0.042 in the top layer and
0.039 in the second layer has been determined with free torsion pendulum tests [7]. SCPT upto a depth
of 21 m confirmed the presence of a shallow stiff layer with a thickness of 4 to 6 m and�� � 	"�m/s
on top of a homogeneous halfspace with�� � ""(m/s [7]. SASW tests revealed the presence of a
homogeneous clay layer with�� between 200 and 260 m/s.

In the numerical predictions, the tunnel is assumed to be embedded in a layered soil consisting of
a layer with a thickness of 5 m,�� � "
�m/s,�� � ����m/s,�

� � ���(kg/m� and�
� � (�(�" on

top of a halfspace with�� � ""(m/s,�� � ��
�m/s,�
� � ���(kg/m� and�

� � (�(	�.
4.2 Kinematics of the tunnel

The tunnel in London is periodic as its lining is made of cast iron segments with circumferential
stiffeners. The length

�
of the cell is equal to the segment length of 0.508 m. The sleeper distance

is equal to 0.9 m and introduces a second periodicity, which is not accounted for as the track is not
included in the model. The finite element model of the reference cell consists of 4-node quadrilateral
shell elements; the stiffeners are modelled with beam elements, that are rigidly connected to the shell.

Figure 11 shows the first two in-plane and the first out-of-plane flexible modes
�	� ��� of the

reference cell. The response of the tunnel-soil system due to a harmonic load on the tunnel invert is
computed in the frequency range upto 80 Hz. Convergence analysis shows that 20 tunnel modes need
to be included, which is lower than for the RER B tunnel, due tothe higher stiffness of the tunnel.
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a. Mode 5 at 20.94 Hz. b. Mode 6 at 24.32 Hz. c. Mode 11 at 153.53 Hz.

Figure 11: The first (a,b) in-plane and (c) out-of-plane modes of the cell of the Bakerloo line tunnel.

4.3 Impedance of the tunnel
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Figure 12: Impedance of the Bakerloo line tunnel: (a)�� ����� as a function of� and�, (b) �� �����
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Figure 13: Impedance of the soil for the Bakerloo line tunnel: (a) real and (b) imaginary part of
������� as a function of� and�, and (c) log
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��� as a function of� and� (20 modes).

Figures 12a and 12b show the element�� ����� of the impedance matrix of the tunnel, corre-
sponding to the 5th mode of the reference cell that involves in-plane bending of the section (figure
11a). Figure 12c shows the determinant of the tunnel impedance matrixK� based on 20 modes of the
reference cell, from which the dispersive behaviour of the tunnel modes can clearly be observed.
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4.4 Impedance of the soil

Figures 13a and 13b show the real and imaginary part of the element�������of the impedance matrix
K
�

of the soil, corresponding to the 5th mode of the tunnel. Figure 13c shows the determinant ofK
�
;

no dispersive waves are observed now, as the tunnel is embedded in a deep, homogeneous clay layer.

4.5 Response due to harmonic loading

The Bakerloo line tunnel is embedded at a depth of 28 m in the London clay and the response is
not affected by resonance in the soil. Figure 14 shows the response of the tunnel-soil system for a
harmonic excitation at 20 Hz on the tunnel invert. The tunnelcross-section is relatively stiff but the
tunnel diameter is small, contributing to the flexibility inthe longitudinal�-direction. The propagation
of waves into the soil is concentric and similar to the wave pattern caused by a point load in the soil.

a. � � (. b. � � �$�. c. � � "�$�. d. � � 	�$�.
Figure 14: Displacements of the tunnel and the soil due to a harmonic excitation on the tunnel invert
at 20 Hz at (a)� � (, (b) � � �$�, (c) � � "�$�, and (d)� � 	�$� for the Bakerloo line tunnel.

4.6 Floating slab track
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a. Tunnel apex.

0 20 40 60 80
10

−14

10
−13

10
−12

10
−11

10
−10

Frequency [Hz]

D
is

pl
ac

em
en

t [
m

]

b. Free field above tunnel.

Figure 15: Displacements (a) at the tunnel apex and (b) at thefree field above the tunnel for the
Bakerloo line tunnel without (solid line) and with (dashed line) FST.

The hypothetical case of a floating slab track (FST) with a resonance frequency of 11.68 Hz in
the Bakerloo line tunnel is considered, using the Craig-Bampton substructuring technique. Figure
15 compares the displacements at the tunnel apex and in the free field above the tunnel for the cases
without and with FST; the isolation effect above 20 Hz can be observed. Figure 16 shows the dis-
placements of the tunnel with FST and the soil at a frequency of 50 Hz (different color scale than
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figure 14). The FST distributes (lower) vibrations along thetunnel that are radiated in the soil in
directions parallel to the tunnel.

a. � � (. b. � � �$�. c. � � "�$�. d. � � 	�$�.
Figure 16: Displacements of the tunnel with FST and soil due to a harmonic excitation on the tunnel
invert at 50 Hz at (a)� � (, (b) � � �$�, (c) � � "�$�, and (d)� � 	�$� for the Bakerloo line tunnel.

5 Conclusion

A periodic coupled FE-BE formulation is used to study the dynamic interaction between a tunnel and
a layered soil due to harmonic excitation on the tunnel invert. Two cases have been considered: a
shallow cut-and-cover masonry tunnel on the RER B line of RATP and a deep bored tunnel on the
Bakerloo line of London underground. The solution of the governing equations in the frequency-
wavenumber domain allows to study the different waves that dominate the tunnel-soil interaction
problem. The Craig-Bampton technique allows to efficientlyanalyse the effect of different track
structures on the vibrations radiated into the soil.
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