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Abstract

A numerical model is developed to predict vibrations andadiated noise in buildings from excita-
tion due to metro trains in tunnels. The three-dimensiogahdic tunnel-soil interaction problem is
solved with a subdomain formulation, using a finite elementiulation for the tunnel and a boundary
element method for the soil. The periodicity of the geometigxploited using the Floquet transform,
limiting the discretization to a single bounded refereneke @ he responses of two different types of
tunnel due to a harmonic load on the tunnel invert are conch&@h in the frequency-wavenumber
and spatial domains. The tunnel of the line RER B of RATP in@i& Universitaire in Paris is
a shallow cut-and-cover masonry tunnel embedded in layesammd. The tunnel of the Bakerloo
line of London Underground in Regent’s Park is a deep cutaowdr tunnel with a cast iron lining
embedded in London clay.

1 Introduction

Within the frame of the EC-Growth project CONVURT [1], a mdalunumerical prediction tool is
developed to predict vibration and re-radiated noise itdings from excitation due to metro trains
in tunnels for both newly built and existing situations [2].

The three-dimensional dynamic tunnel-soil interactioolgem is solved with a subdomain for-
mulation, using a finite element formulation for the tunnetla boundary element method for the
soil. The periodicity of the tunnel and the soil is exploitezing the Floquet transform, limiting the
discretization to a single bounded reference cell of theéuf8, 4].

The model will be validated by means of in situ experiment thave been performed at a site
in the Cité Universitaire on the line RER B of RATP in Paridaa site in Regent’s Park on the
Bakerloo line of London Underground. The tunnel in Parisstallow cut-and-cover masonry tunnel
with two tracks, embedded in layers of sand, gravel and mdnile the tunnel in London is a deep
cut-and-cover tunnel with a cast iron lining and a singlekreembedded in homogeneous London
clay.

After a review of the governing system of equations, detaishe geometry and construction of
both tunnels are presented. The response due to a harmadioiothe tunnel invert is compared,
allowing to draw conclusions on the dynamic behaviour ohhoinnel-soil systems. It is demon-
strated how the vibration isolation efficiency of a floatitegstrack can efficiently be computed using
a Craig-Bampton substructuring technique [5].



2 Dynamic tunnel-soil interaction model

2.1 Problem outline

The three-dimensional dynamic soil-tunnel interactioolybem is assumed to be periodic with period
L in the longitudinal directiore, along the tunnel axis and can be restricted to periodic fieldise
second kind defined on a reference €elfigure 1). The boundar§2 of this domain is decomposed
into the free surfac&, and the boundaries, andX; on which periodic conditions are imposed.
The generic celf2 is decomposed into two subdomains: the §Qiland the tunnef),. The interface
between these subdomains is denote(ijgy The boundar)fsg is the free surface of the soil, while
a surface forcdf, is applied o'y, (figure 1).
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Figure 1: Problem outline and notations.

The position vector: of any point in the problem domai is decomposed a8 = & + nlLe,,
wherez is the position vector in the reference cgllandn is the cell number. The Floquet trans-
formation £ (%, ) of a non-periodic functiorf(x) = f(& + nLe,) defined on a three-dimensional
domains2, that is periodic in the directioa, with periodL, transforms the distancel. between the
n-th cell and the reference céllto the wave number and is defined as [4]:

“+oc

f(&, k) = Z f(Z+nLe,)exp (+inLk) (1)

n=—oo

The functionf(a"c, k) is periodic of the first kind with respect towith a period27 /L and periodic of
the second kind with respect o

f(#,L,2r) = exp(=irL)f(%,0,%,k) (2)
The functionf (& + nLe,) can be reconstructed for amy= = + nLe, using the inverse Flogquet
transform:
L +7/L

f(&¢+nLle,) = o | p f(&,k)exp (—inLk)dk (3)



2.2 Navier equations

Using the Floquet transformation, all displacement anctiva fieldsu(z,w) andt(x,w) defined on
the periodic domain are transformed to the fields(z, x,w) andt(z, x,w) defined on the generic
cell Q.

The Navier equations in the soll domdih and the boundary conditions dn, are written as
follows for every frequency € R and wave numbet €| — 7 /L, +x/L[:

dive,(a,) = —p'wi, in Q, (4)
t,(a,) =0 on T,, (5)
Us(Z) = exp (—ikL)us(E — Le,) on X, (6)

together with the radiation conditions on the displacenfieid. .
The following Navier equations and boundary conditionsihiothe tunnel domai; with bound-
aryl'y,:

dive,(a,) = —p'w?i, in (7)
Et(ﬁ't) = ft on Ty (8)
U, () = exp (—ikLl)T,(Z — Ley) on X, 9)

Continuity of displacements and equilibrium of stressestrhold on the tunnel-soil interface,:

'&t - '&5 on its (10)

(@) +t, () =0 on X, (11)

2.3 Weak variational formulation

Multiplying the Navier equations (4) and the boundary eopret (5) and (6) with the complex con-
jugate of any virtual fieldo,(&, <), integrating over the problem domain and the boundaried, an
integrating by parts, the following weak variational forsnabtained for the tunnel:

/E(ﬁt):&(ﬁ,t)dV—w?/ POy - dV = / ﬁ_t-ft(at)ds+/ 0, - f,dS (12)
Q Q4 o Tt

where the boundar&@t can be decomposed into the tunnel-soil interfageand the two boundaries
Yo andX;, at the two edgeg = +1/2 of the generic cell. As the actual and the virtual displaceime
fields are periodic of the second kind, the contribution efititegral on the sum of the boundaries
andX;, vanishes [3]. Accounting for the stress equilibrium (1Drg the tunnel-soil interfacg,;,
the weak variational equation becomes:

[ @0 : 5 (@)dv — o / oAV + / B E (i (@))dS = / % £.dS (13)
Q Q4 3ts I'to

whered,.(a,) denotes the wave field that is scattered by the tunnel intedli¢hat obeys displace-
ment continuity (10) along the tunnel-soil interface.



2.4 Coupled periodic finite element - boundary element féatian

As the tunnel is bounded, the displacement figld, ~, w) can be decomposed on a basis of functions

1,,(Z, k) that are periodic of the second kind:
N —~ -~
(2, k,w) = P, (B, K)ay(kw) = ¥ (24)
m=1
The modeaﬁm(:i, ) are periodic of the second kind and constructed as folloara the periodic (of
the first kind) eigenmodeé?n(:i) of the reference cell:

- . o\ 70

Y, (Z,k) = exp(—ike, &), (&) (15)
The soil displacementd;,(X, x,w) can be written as the superposition of waves that are ratiate
the tunnel into the soil:

Us(ZT, kW) = Use(U) (T, K, w)
N ) N
= Zﬁ,sc(tbm)(:ﬁ,/f,w)am(/f,w) = Zﬂdm(:ﬁ,m,w)am(m,w) (16)

The numerical solution of the dynamic tunnel-soil intei@ctproblem is obtained using the clas-
sical domain decomposition approach based on the finiteeglemethod for the structure and the
boundary element method for the soil. The displacementsistructurei,(Z, x,w) are interpolated
as:

U ~ U= Nt@t = Ntitat (17)

Employing the same approximation for the virtual displaeats?, (&, «, w), the following system of
equations is finally obtained:

[Kt(’%) - CUQMt(’%) + Ks(/{/aw)] a(/{/aw) = Ft(’%aw) (18)
whereK,(x) andM,(x) are the projections of the finite element stiffness and maatsicas on the
tunnel modes:

=T =T -
Ki(k) = @,Ki"®, =@, [ (LN;)'D(LN;)dV ¥,

of}

—T - —T -
Mi(rk) = ¥,M;°F, =T, : N p'NdV &, (19)

F.(k,w) is the generalized force vector applied on the tunnel invert

=T -
Fi(h,w) = ¥, [ N/ fdS (20)

Tio

andK(k,w) is the dynamic stiffness matrix of the soil:

T - -
Ko(k,w) = / W, N t,(@,.(N,))dS (21)
Ets

The stresses, (i, (N, ®,)) on the tunnel-soil interface are calculated with a peridmiondary ele-
ment formulation with Green-Floquet functions defined aaplkriodic structure with periofl along
the tunnel [2, 3].



2.5 Craig-Bampton substructuring method

In order to analyze the influence of different track struesun the tunnel on the vibrations generated,
it is advantageous to differentiate between the degreegeddm of the tunnel invert and the track.
Therefore, the displacement vecf(z, x,w) of the tunnel is discretized alternatively as follows
using a Craig-Bampton substructuring method [5]:

~ “ ~ 11 lil @5
e R U g S LA A R Pl
—t ¢ t

where the subscripts andt; refer to the track and the tunnel invert, respectively. Thedes in

equation (22) are periodic of the second kind and construfcten periodic modes of the first kind:
0 ~ s0

it i: At t 0 :| it lt
4 —Lr — rbr r b 23
[ 0 ﬂtt :| [ 0 Atttt 0 22 ( )
where the diagonal matrice,,;, andA,,,, are constructed according to equation (15). The modes

i? are the eigenmodes of the track clamped at the tunnel inve&.modesi?t are the modes of

. . ~ s0 . . ..
the free tunnel without track. The dlsplacememfg are the quasi-static transmission of the tunnel

modes into the track, computed as:

~ s0 0

ltr = B (K ;Etr ) B K E‘Ett itt (24)

whereK?E andKFE are block submatrices of the finite element stiffness matfixof the tunnel.
Introducing the decomposition (22) into equation (13) hssu

T = =5 7! ~
[LT LT] ([Kfﬁ, KZ%}_MQ[MEE, ME%D[LT
0 ¥, Kie, Ki MG Mig 0

Lo i) 1% ) @

Ks(k,w) is the dynamic stiffness matrix of the soil:

=HESE
EA A
_ 1

—T - -
Ky(rw) = / &, NTZ, (2,0 (N,, &, ))dS (26)
Zts

F., (r,w) is the generalized force vector applied on the track:

T ~
Fi(kw) = ¥, / N/ f, dS (27)
Fta
The impedance of the soil in equation (25) is only influencgthle tunnel modes and does not change
when a calculation is made for another track structure inuhael.
2.6 Wave propagation in the soil

When the displacements (&, », w) and the stresség(&, ,w) on the tunnel-soil interface are known,
the incident wave fieldi"°(¢, k,w) is obtained by application of the dynamic representatieotém
in the unbounded soil domain corresponding to the referealte

)

"€, K, w) = [ ﬂQF(é,i,ﬁ,w)ftj(:E, K,w) — f?f(é,:i,li,w)ﬂtj(:i, K,w)dY (28)
Ets

with ﬂg':(é,:i,n,w) andf?f(f,:i, k,w) the Green-Floquet tensors [3, 4]. The incident wave field in
the soil is obtained by evaluating the inverse Floquet fans(3).
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3 Numerical resultsfor the RER B tunnel in Paris

3.1 Site characteristics

The metro tunnel on the line RER B of RATP at Cité Universéadn Paris is a masonry cut-and-
cover tunnel with two tracks at a shallow depth of about 9.3 the surface and a width of 11.9 m
(figure 2). The slab thicknessis 0.6 m at the top and 0.4 m d&tdtiem, while the wall thickness is 1.5
m. The masonry has a Young’s modulis= 14000 MPa, a Poisson’s ratio’ = 0.15, a densityp’ =
2400 kg/n? and a hysteresic material damping ratfo= 0.02. The track is a classical ballasted track
with UIC 60 rails supported every 0.60 m by grooved rubberspadmonobloc concrete sleepers.

h, =0102m

Figure 2: Cross section of the metro tunnel on Figure 3: Cross section of the metro tunnel on
the line RER B of RATP at Cité Universitaire. the Bakerloo line at Regent's Park.

The tunnel is embedded in a shallow layer of fill materialdkiniess? = 1.6 m), a layer of Beau-
champ sandd = 3.2 m) and a stiffer layer with marl and gravel £ 7.8 m) on top of chalk. A SASW
test revealed a shallow layer with= 1.4 m and a shear wave velocify, = 115 m/s on top of a layer
with d = 2.8 m andC = 220 m/s on a halfspace witth;, = 315m/s [6]. A Poisson’s ratio® = 0.4, a
densityp® = 1700 kg/n? and a material damping rati$f = 0.05 is assumed in all layers.

3.2 Kinematics of the tunnel

a. Mode 5 at 9.90 Hz. b. Mode 6 at 13.96 Hz. c. Mode 9 at 41.95 Hz.
Figure 4: The first (a,b) in-plane and (c) out-of-plane maoafabe cell of the RER B tunnel.
The cut-and-cover masonry tunnel is invariant inghgirection. The periodicity introduced by the

discrete support of the rails is neglected as the track isnchided in the model. The lengihof the
reference cell is equal to 0.3 m, while 8-node isoparameétiak elements are used. The kinematic



basis for the tunnel consists of modgs, (i, «) that are derived from the eigenmodg$, (&) of the
tunnel cell with free boundary conditions @h, and periodicity conditions at both engls andX ;.
Due to these constraints and the symmetry of the cell, dispi@nts in thg-direction are decoupled
from displacements in the- andz-directions and only 4 rigid body modes are found. Figureaigh
the first two in-plane and the first out-of-plane flexible mege (z) of the cell. The response of
the tunnel-soil system due to a harmonic load on the tunretinvill be computed in the frequency
range upto 80 Hz. Convergence analysis shows that 30 turod#$meed to be included.
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3.3 Impedance of the tunnel
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Figure 5: Impedance of the RER B tunnel: {&)(6,6) as a function ofv andp, (b) K,(6,6) as a
function ofw for fixed values op, and (c) logabgdetK,)) as a function ofu andp (30 modes).

Figure 5a shows the real part of the elem&p{6, 6) of the impedance matrix of the RER B tunnel,
corresponding to mode 6 (figure 4b), as a function of the eqyw and the slownesg = «/w.
The case wherg = 0 (figure 5b) corresponds to the 2D case where the phase vyeioaifinite; the
impedance equals the square of the eigenfrequenayw = 0 and decreases with? for increasingo.

It is equal to zero ats. For non-zero values @f the tunnel increases wiii or 2. The frequency
corresponds to the cut-on frequency of a dispersive modeageting along the tunnel that becomes
non-dispersive for high frequencies with a phase veloatyatto the shear wave velocity along the
tunnel. The modes of the free tunnel are not determined bynteidual elements of the tunnel
impedance matrix, however, but are related to the zerodsead@terminant of the tunnel impedance
matrixK,. Figure 5¢c demonstrates the dispersive behaviour of theetunodes, where the slowness
tends to a valueé /C; = 0.628 x 1072 s/m for the in-plane modes andC, = 0.403 x 103 s/m for
the out-of-plane modes, with; andC), the shear and longitudinal wave velocities in the masonry.

3.4 Impedance of the soill

Figures 6a and 6b show the real and imaginary part of the elemg6, 6) of the impedance matrix
K, of the soil, corresponding to the 6th mode of the RER B tunniéie real part increases for
increasing values o, while the imaginary part becomes less negative, refledtiegabsence of
radiation damping in the soil for high valuesofFigure 6¢ shows the determinantkof and allows
to identify the dispersive behaviour of the waves propaggatiear the soil’s surface.

3.5 Response due to harmonic loading

Figure 7 shows the transfer functions (vertical displac@sjeat some points along the free surface
in the cross section where the load is applied, while figured®vs the transfer functions at points on
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Figure 6: Impedance of the soil for the RER B tunnel: (a) real @) imaginary part of{;(6,6) as a
function ofw andp, and (c) logabgdetK ;)) as a function ofu andp (30 modes).
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Figure 7: Transfer functions at the points Figure 8: Transfer functions at the points (-
along the free surface (0,0,0) (solid line), (- 2.50,-0.15,-8.25) on the tunnel invert (solid
2,0,0) (dashed), (-10,0,0) (dotted) and (-20,0,0) line), (0,-0.15,-2.30) on the tunnel apex (dashed)
(dashed-dotted). and (0,0,0) on the free surface (dotted).

a.t=0. b.t =T/8. c.t=2T/8. d.t = 3T/8.

Figure 9: Displacements of the tunnel and the soil due to mbaic excitation on the tunnel invert at
14 Hz at(ay =0, (b)t=T/8, (c)t =2T/8, and (d)t = 37"/8 for the RER B tunnel.

the tunnel invert, the tunnel apex and the free surface. Ea& pt 14 Hz is due to resonance of the
soil above the tunnel; figure 8 confirms that the displacemehthe tunnel apex and the soil above
the tunnel are equal. Figure 9 shows the displacements a¢fitimel and the soil due to a harmonic
loading on the tunnel invert at 14 Hz. The soil above the tunae be considered as a mass, which
is moving in phase with the tunnel, that behaves as a sprihg.peak at 14 Hz corresponds to the
eigenfrequency of this equivalent SDOF system, while dags due to the radiation of waves away
from the tunnel. Figure 10 shows similar results at a frequeri 80 Hz. On the free surface above
the tunnel, higher phase velocities (about 1920 m/s) arerebd along the tunnel axis than in the
direction perpendicular to the tunnel (about 650 m/s),Itegpin an elliptical wave front.



a.t=0. b.t =T/8. c.t =2T/8. d.t = 3T/8.

Figure 10: Displacements of the tunnel and the soil due tamaic excitation on the tunnel invert
at80Hzat(ay =0, (b)t=T/8, (c)t =2T/8, and (d)t = 37/8 for the RER B tunnel.

4 Numerical resultsfor the Bakerloo linetunnel in London

4.1 Site characteristics

The tunnel on the Bakerloo line of London Underground in Régéark is a deep bored tunnel with
a cast iron lining and a single track, embedded in London ataydepth of about 28 m. The tunnel
has an internal radius of 1.83 m and a wall thickness of 0.022hare are six longitudinal stiffeners
and one circumferential stiffener at an interval of 0.508@sulting in a periodic structure (figure 3).
The track is a non-ballasted concrete slab track with Budidh&il supported on hard Jarrah wooden
sleeper via cast iron chairs. The sleeper distance is 0.9ath &hds of a sleeper are concreted into
the invert and the space between the sleepers is filled wittigleh Resilience is mainly provided by
the timber sleepers, as the rails are not supported by rdd. pa

Geological maps show that the thickness of the London clggrlat the site is 40 m. GeoDelft
has performed CPT upto a depth of 21 m [7]. A shallow top lay#h & thickness of 4 to 6 m
has inclusions of sand and gravel and varying cone resista®ender element tests on undisturbed
samples at several confining pressures result in an avehmge wave velocity of 124 m/s and a
longitudinal wave velocity of 1604 m/s [7]. A material damgiratio of 0.042 in the top layer and
0.039 inthe second layer has been determined with freetopandulum tests [7]. SCPT upto a depth
of 21 m confirmed the presence of a shallow stiff layer withiekihess of 4 to 6 m and'; = 325 m/s
on top of a homogeneous halfspace with= 220 m/s [7]. SASW tests revealed the presence of a
homogeneous clay layer with; between 200 and 260 m/s.

In the numerical predictions, the tunnel is assumed to besdadd in a layered soil consisting of
a layer with a thickness of 5 nt;, = 275m/s,C, = 1964 m/s, p* = 1980 kg/m’ and 3* = 0.042 on
top of a halfspace with'; = 220 m/s,C, = 1571 m/s, p* = 1980 kg/n? and3* = 0.039.

4.2 Kinematics of the tunnel

The tunnel in London is periodic as its lining is made of cashisegments with circumferential
stiffeners. The lengtli of the cell is equal to the segment length of 0.508 m. The sledistance
is equal to 0.9 m and introduces a second periodicity, whalot accounted for as the track is not
included in the model. The finite element model of the refeeerell consists of 4-node quadrilateral
shell elements; the stiffeners are modelled with beam el¢ésnthat are rigidly connected to the shell.
Figure 11 shows the first two in-plane and the first out-ofiplélexible modes)? (&) of the
reference cell. The response of the tunnel-soil systemaaenarmonic load on the tunnel invert is
computed in the frequency range upto 80 Hz. Convergencgsisahows that 20 tunnel modes need
to be included, which is lower than for the RER B tunnel, duthohigher stiffness of the tunnel.



a. Mode 5 at 20.94 Hz. b. Mode 6 at 24.32 Hz. c. Mode 11 at 153.53 Hz.

Figure 11: The first (a,b) in-plane and (c) out-of-plane nwooliethe cell of the Bakerloo line tunnel.

4.3 Impedance of the tunnel
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Figure 12: Impedance of the Bakerloo line tunnel: £8}5, 5) as a function ofv andp, (b) K,(5,5)
as a function ofv for fixed values op, and (c) logabgdetK,)) as a function ofu andp (20 modes).
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Figure 13: Impedance of the soil for the Bakerloo line tunr(@)) real and (b) imaginary part of
K(5,5) as a function ofv andp, and (c) logabgdetK,)) as a function ofv andp (20 modes).

Figures 12a and 12b show the elemén(5,5) of the impedance matrix of the tunnel, corre-
sponding to the 5th mode of the reference cell that involagslane bending of the section (figure
11a). Figure 12c shows the determinant of the tunnel impsslaratrixK ; based on 20 modes of the
reference cell, from which the dispersive behaviour of theel modes can clearly be observed.
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4.4 Impedance of the soill

Figures 13a and 13b show the real and imaginary part of theegi(, (5, 5) of the impedance matrix
K of the soil, corresponding to the 5th mode of the tunnel. FEdiBc shows the determinantkf;
no dispersive waves are observed now, as the tunnel is emthéad deep, homogeneous clay layer.

4.5 Response due to harmonic loading

The Bakerloo line tunnel is embedded at a depth of 28 m in thedbo clay and the response is
not affected by resonance in the soil. Figure 14 shows thmores of the tunnel-soil system for a
harmonic excitation at 20 Hz on the tunnel invert. The turaness-section is relatively stiff but the
tunnel diameter is small, contributing to the flexibilitythe longitudinaly-direction. The propagation
of waves into the soil is concentric and similar to the wavitgea caused by a point load in the soil.

b.t=1T/8. c.t=2T/8. d.t=3T/8.

Figure 14: Displacements of the tunnel and the soil due tamdiaic excitation on the tunnel invert
at20Hz at (ay =0, (b)t =T/8, (c)t = 2T'/8, and (d)t = 3T'/8 for the Bakerloo line tunnel.

4.6 Floating slab track
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Figure 15: Displacements (a) at the tunnel apex and (b) atréeefield above the tunnel for the
Bakerloo line tunnel without (solid line) and with (dashéete) FST.

The hypothetical case of a floating slab track (FST) with amaace frequency of 11.68 Hz in
the Bakerloo line tunnel is considered, using the Craig-B@m substructuring technique. Figure
15 compares the displacements at the tunnel apex and ineth@did above the tunnel for the cases
without and with FST; the isolation effect above 20 Hz can bseoved. Figure 16 shows the dis-
placements of the tunnel with FST and the soil at a frequef&0dHz (different color scale than
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figure 14). The FST distributes (lower) vibrations along thenel that are radiated in the soil in
directions parallel to the tunnel.

d.t=3T/8.

b.t=1T/8. c.t=2T/8.
Figure 16: Displacements of the tunnel with FST and soil dug harmonic excitation on the tunnel
invertat 50 Hz at (a) = 0, (b)t = T'/8, (c) t = 2T'/8, and (d)t = 37'/8 for the Bakerloo line tunnel.

5 Conclusion

A periodic coupled FE-BE formulation is used to study theatyic interaction between a tunnel and
a layered soil due to harmonic excitation on the tunnel invé&wo cases have been considered: a
shallow cut-and-cover masonry tunnel on the RER B line of RANhd a deep bored tunnel on the
Bakerloo line of London underground. The solution of the gyovng equations in the frequency-
wavenumber domain allows to study the different waves tlwamidate the tunnel-soil interaction
problem. The Craig-Bampton technique allows to efficiermhalyse the effect of different track
structures on the vibrations radiated into the soil.
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