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Abstract—This paper reports on the synthesis of zinc oxide
(ZnO) nanostructures and examines the performance of nanocom-
posite thin-film transistors (TFTs) fabricated using ZnO dispersed
in both n- and p-type polymer host matrices. The ZnO nanostruc-
tures considered here comprise nanowires and tetrapods and were
synthesized using vapor phase deposition techniques involving
the carbothermal reduction of solid-phase zinc-containing com-
pounds. Measurement results of nanocomposite TFTs based on
dispersion of ZnO nanorods in an n-type organic semiconductor
([6, 6]-phenyl-C61-butyric acid methyl ester) show electron field-
effect mobilities in the range 0.3–0.6 cm2V−1s−1, representing an
approximate enhancement by as much as a factor of 40 from the
pristine state. The on/off current ratio of the nanocomposite TFTs
approach 106 at saturation with off-currents on the order of 10 pA.
The results presented here, although preliminary, show a highly
promising enhancement for realization of high-performance
solution-processable n-type organic TFTs.

Index Terms—High electron mobility, nanocomposite thin-film
transistors (TFTs), nanowires (NWs), organic semiconductors,
tetrapods, Zinc Oxide (ZnO).

I. INTRODUCTION

NANOSCALE crystalline structures such as nanowires
(NWs) and nanotubes are the topic of extensive study

as their unique properties have potential for use in novel
optical and electronic applications. The increasing need to
make smaller device structures with enhanced functionality has
led the move away from conventional top–down lithographic
approaches toward the utilization of self-assembled nanoscale
structures. Moreover, the unique morphologies exhibited by
many nanocrystals make them ideal for various applications
including gas sensors [1], photodetectors [2]–[4], light emitters
[5]–[7], transistors [8], [9], high-frequency oscillators [10],
interconnects [7], [11], and waveguides [12].
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Zinc oxide (ZnO) is a polar group II–VI semiconductor
material with a direct bandgap of 3.37 eV. ZnO also has several
advantages over other wide-bandgap semiconductors in that it
is amenable to wet chemical etching using bases such as potas-
sium hydroxide and that it is highly resistive to high-energy
radiation. ZnO nanoparticles have been widely used in paints,
rubber processing, and sunscreen lotions, while their polycrys-
talline forms have been used for more high-tech uses such
as phosphors, piezoelectric transducers, varistors, and trans-
parent conducting films [13]. Over the past decade, progress
in developing single-crystal bulk ZnO and recent results in
growing p-type material have brought ZnO’s promise as a wide-
bandgap semiconductor to the forefront. There is currently a
vibrant research effort into ZnO with the hope of creating new
kinds of devices such as spin-polarized light-emitting diodes
(LEDs) [14] and carrier-mediated ferromagnetism for magnetic
storage [15]. ZnO films show n-type conductivity that is often
attributed to the presence of H ions and Zn interstitials [16],
coupled with the fact that the broad conduction-band minimum
in this material results in the charge neutrality level being
above the middle of the bandgap [17]. Although ZnO can
be reliably produced in any conductivity ranging from semi-
insulating piezoelectric material to strongly n-type material
exhibiting metallic conduction, p-type material is far more
difficult to achieve [18]. Having already been the main reason
for past derailments of interest in ZnO, the pursuit of p-type
ZnO material, or of heterostructures circumventing the need for
p-ZnO material, constitutes a significant research effort.

ZnO also has a large exciton binding energy of 60 meV,
which is more than twice that of GaN and much greater than
thermal energies at room temperature (25 meV). This allows
ZnO to provide stable band-edge ultraviolet (UV) emission
at room temperature via an exciton recombination process as
opposed to the significantly less efficient electron–hole plasma
process employed in current GaN-based devices. The ability to
produce UV light efficiently from ZnO NWs has therefore al-
lowed the investigation of their use in LEDs [19] and NW lasers
[1]. GaN can also be used for the production of green, blue–UV,
and white LEDs, but zinc oxide has some advantages over
GaN such as the availability of high-quality ZnO bulk single
crystals and the ability to allow devices to work at, and above,
room temperature thanks to its thermal stability to temperatures
over 1200 ◦C [20]. The wide bandgap of ZnO (3.37 eV) offers
other potential optoelectronic applications for this material. For
example, ZnO NWs can be used to make transparent thin-
film transistors (TFTs) [21] and transparent electrodes for flat
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Fig. 1. Diagram of the NW growth setup.

panel displays [22]. They have also been used for making dye-
sensitized solar cells [23].

ZnO also forms a large family of self-assembled nanoscale
structures ranging from the simple rod shape to flowers and
belts [24]–[27]. Quantum-size effects in these nanostructures
make them interesting as we can observe and study physical
properties different from the bulk material. ZnO nanostruc-
tures may be synthesized using a number of techniques, with
the most common ones involving a chemical vapor transport
process (which can be further subdivided into chemical and
physical vapor deposition techniques) [27], [28], solution-based
synthesis, and template-based synthesis. Growth using the va-
por deposition method involving a carbothermal reaction with
zinc oxide and carbon has recently been a prevalent method
of growth due to its being safe, inexpensive, and simple [9],
[29], [30]. In this method, zinc oxide and carbon powders are
mixed together, usually in a ZnO:Zn ratio of 1 : 1 or 1 : 4 by
weight. These powders are heated in a tube furnace at high
temperatures in the presence of a flow of oxygen gas diluted
in argon, and the NW deposits are collected downstream where
they have condensed on a substrate placed at a cooler location
or on the walls of the tube furnace, as shown in Fig. 1 [30], [31].

Wurtzite ZnO is thermodynamically stable and lacks a center
of inversion giving rise to piezoelectricity. Metastable phases,
however, often exist in Group IV and compound semiconduc-
tors and can be stabilized through epitaxial growth [32], [33].
The coexistence of such phases during synthesis can result in
nanocrystals that exhibit more than one crystal structure. This
polytypism is what leads to the growth of branched nanostruc-
tures in which features of one crystal type branch out from a
central core of another. Such branched structures can be seen
in II–VI compound semiconductors such as CdSe, CdTe, ZnS,
and ZnO. The simplest of these structures is the tetrapod, which
consists of four ZnO nanorods joined at tetrahedral angles. This
work has focused mainly on the study of devices formed from
ZnO nanorods and tetrapods.

While there have been significant advances reported for the
synthesis of ZnO nanostructures, their solution processability
in the form of nanocomposite materials for device fabrication
is less known. Preliminary reports of TFTs based on ZnO
nanorods and tetrapods dispersed in a p-type poly[2-mehoxy,
5-(-ethylhexyloxy)-1, 4-phenylene vinylene] polymer matrix
[34] showed significant increase in hole field-effect mobility,
with values ranging from 10−4 cm2 · V−1 · s−1 in the pristine
state to 0.15 cm2 · V−1 · s−1 in the presence of ZnO.

In this paper, preliminary characterization of TFTs based on
a dispersion of ZnO nanorods in an n-type polymer semicon-
ductor, [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM),
is reported. The TFTs yield electron field-effect mobilities up
to 0.56 cm2 · V−1 · s−1 with an approximate enhancement by
a factor of 40 compared with pristine PCBM. TFTs based on
ZnO tetrapods dispersed in the p-type polymer semiconductor
poly(3-hexyl-thiophene) (P3HT) are also discussed.

II. MATERIALS GROWTH AND CHARACTERIZATION

A. ZnO NWs

In this paper, ZnO nanostructures were deposited by vapor
phase deposition using a carbothermal reaction between ZnO
and carbon powder, as described in Section I. For this type of
synthesis, a substrate was cleaned, and a thin layer (1–2 nm)
of catalyst metal, such as gold or silver, was deposited using
a thermal evaporator or sputter coater. The catalyst layer is
important as both the type of metal and its thickness can control
subsequent NW growth. The NW synthesis took place in an
80-cm quartz tube with a 2.5-cm diameter inside a Carbolite
tube furnace, as shown schematically in Fig. 1. The system was
pumped using a rotary pump which produced a base pressure of
∼3 × 10−2 mbar. Capacitance diaphragm pressure gauges
were attached both upstream and downstream of the quartz tube
to measure growth pressure. The source powder was placed in
the quartz tube with the substrates a specific distance down-
stream from the source. The furnace coils create a temperature
gradient down the length of the furnace. A gas mixture of
oxygen diluted in argon, or purified air, regulated by mass flow
controllers is subsequently flowed into the tube. The pump is
throttled to adjust the growth pressure. The source temperature
in the center of the furnace is increased to 1000 ◦C at a ramp rate
of 1 K · s−1 and is then maintained at that temperature from
anywhere between 1 and 90 min. After the deposition, the
pumping side and air inlet side are switched to reverse any gas
flow and thereby prevent further growth while the furnace is
left to cool. NW density, alignment, length, and diameter can
be controlled using variables such as the growth temperature,
pressure, flow rate, and time. NW growth was demonstrated
on several types of substrates such as sapphire, gallium nitride,
zinc oxide, and silicon.

The NWs were initially studied by scanning electron micros-
copy (SEM) [FEI Philips XL30 sFEG]. Fig. 2 shows an SEM
image of ZnO NWs grown on a sapphire substrate. Clear verti-
cal alignment of the NWs is observed, which is attributed to the
fact that a-plane sapphire has a similar lattice constant to ZnO.
Gallium nitride is also lattice matched to ZnO, and aligned
growth also occurs on this substrate material (see Fig. 2).

The crystalline structure of the NWs was measured using a
JEOL 3011 transmission electron microscope (TEM). Fig. 3(a)
shows the tip of the NWs. No catalyst metal was seen at the tip
of the NWs, suggesting that growth takes place from the base
of the wires. The NWs appear to have a hexagonal cross section
which is consistent with their wurtzite structure. Fig. 3(b) shows
a high-resolution TEM (HRTEM) image of a typical ZnO NW.
Planes of atoms perpendicular to the axial direction of the NW
with a separation of 0.26 nm are seen, which corresponds to
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Fig. 2. Aligned ZnO NWs on the sapphire substrate.

Fig. 3. (a) TEM of several NWs showing flat catalyst-free tips. (b) HRTEM
image of ZnO NW showing 0.26-nm spacing corresponding to (0002) growth
direction.

the distance between two (0002) planes, confirming that growth
occurs in the c-axis [0001] direction. X-ray diffraction (XRD)
spectra were taken by a Philips PW1820 diffractometer, and the
results for unaligned NWs are shown in Fig. 4(a). The peaks are
consistent with the hexagonal wurtzite phase of ZnO. Fig. 4(b)
shows the XRD spectrum for a sample of aligned NWs. Only
two peaks are now observed, namely, a very sharp (0002)
peak and a less intense (0004) peak. This confirms both the
growth direction and excellent alignment [35]. Auger electron
spectroscopy was performed using a PHI680 Auger nanoprobe
whose beam can be focused down to 13 nm, making it ideal
for use on nanostructures. This revealed that the composition
of the NW grown at 3 mbar with purified air is composed
of 45% O and 55% Zn, making the NWs slightly oxygen
deficient compared with the ideal ZnO stoichiometry. Electrical
measurements show that NWs grown with air as the carrier gas
have a resistivity of 11.3 Ω · cm, whereas those grown with 2%
O2 in Ar have a resistivity of 0.17 Ω · cm. Purified air has a
significantly higher oxygen partial pressure than the 2% O2 in
Ar, and so NWs grown in the latter environment are likely to be
even more oxygen deficient, and therefore more metalliclike in
conduction, resulting in a significantly lower resistivity.

X-ray photoemission spectroscopy (XPS) measurements
were made on the NWs using a VG ESCALAB MK-II photo-
electronic energy spectrometer. Two main oxygen binding
peaks are observed, as shown in Fig. 5. The peak at 530 eV is
assigned to Zn–O bonding, while the peak at 532 eV is believed
to be due to OH species, which are most likely located at the
NW’s surface [36].

The photoluminescence (PL) spectrum of the NWs is shown
in Fig. 6. A sharp peak is observed at ∼3.2 eV, which is believed
to be due to the transition of free electrons into acceptor states
(e, A0 transitions) caused by the unintentional incorporation of
nitrogen substitutionally for oxygen in the ZnO structure (NO

defects) [37]. A broad green PL peak is also observed close to
2.4 eV. The origin of this is more controversial, but the lack
of structure suggests that this is most likely caused by oxygen
vacancies (VO defects) which are known to be common in ZnO
material and are particularly likely in the metal-rich NWs pro-
duced in this paper [20]. ZnO is known to readily adsorb atoms
and, particularly, oxygen-containing species [38]–[40]. These
absorbed species are known to affect the surface conductivity of
the NWs. It is believed that this occurs because absorption takes
place at vacancy defect sites on the NW’s surface. A charge
transfer then occurs, resulting in the absorbed species gaining
a negative charge, and this causes the formation of a depletion
layer at the surface of the n-type ZnO. Exposure to UV light
causes the formation of electron–hole pairs in the ZnO, allow-
ing the negative charge on the absorbed oxygen species to be re-
moved and desorption to occur, resulting in a restoration of the
NW’s electrical characteristics [38]. A similar effect has been
observed on the surface of thin films of ZnO [41]. Whereas
this behavior has been successfully utilized for sensor applica-
tions [42]–[44], problems arising from formation of nonohmic
contacts and instability in threshold voltage of ZnO NW FETs
or decrease in mobility of ZnO NW networks can limit its
application.

ZnO is intrinsically n-type, and creating p-type ZnO has been
one of the greatest material challenges in this area. The major
problem is that impurities tend to be compensated by defects of
the opposite charge rather than forming a dopant with a shallow
state in the bandgap [17]. Consequently, although p-type ZnO
thin films have been reported, the doping is often unstable, and
the material can revert to being n-type [20]. However, p-type
ZnO NWs have been recently synthesized by using a simple
chemical vapor deposition method using phosphorus pentoxide
(P2O5) as the dopant source [45].

B. ZnO Tetrapods

As with ZnO nanorod growth, tetrapods are most commonly
synthesized through a carbothermal reduction process within
a horizontal tube furnace using a similar setup to that shown
in Fig. 1. Nucleation and growth of ZnO tetrapods, however,
proceed without the aid of a catalyst. Synthesis by heating Zn
metal is also reported but often yields less uniform growth.
In this paper, the source material—a mixture of graphite (C)
and a zinc carbonate (ZnCO3 • 2Zn(OH)2 • H2O)—is placed
in the center of the furnace where the temperature is in the
range of 600 ◦C–700 ◦C to collect the growth constituents. The
furnace is then heated to 900 ◦C in the region of the source
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Fig. 4. XRD spectra of (a) aligned and (b) unaligned NW samples.

Fig. 5. XPS spectrum showing two oxygen 1-s peaks possibly corresponding
to oxygen defects on surface.

Fig. 6. Typical PL spectrum showing a low-oxygen defect peak.

material in a flow of either Ar or N2 with an O2 partial pressure
of 0.5%–5% of the total pressure. A carbothermal reduction
process releases supersaturated Zn into the oxygen which con-
denses downstream in the form of tetrapod nanocrystals.

Fig. 7 shows an example of ZnO tetrapods that we have syn-
thesized. Control over the size and morphology of the nanocrys-

Fig. 7. SEM images of ZnO tetrapod nanocrystals. At low oxygen content
(< 5 sccm), (b) tetrapods are grown with needle-shaped arms. At low oxygen
content, (c) smaller tetrapods tend to form at lower temperature regions and
regain their cylindrical arm shape. As the oxygen content is increased to
25 sccm, (a) ZnO tetrapods are found with increased arm lengths and diameters.
At higher temperature regions, (d) tetrapods with trumpet-shaped arms form
under high oxygen content.

tals is achieved by varying the growth parameters such as the O2

content and substrate temperature during synthesis [46].
Room-temperature PL measurements were carried out on

ZnO tetrapod clusters and isolated individual ZnO tetrapods to
better understand the defect and impurity states in this material.
Light from a 325-nm He–Cd continuous-wave laser was used as
an excitation source and was focused onto the sample surface.
Fig. 8 shows the PL spectrum for an isolated individual tetrapod
and a cluster of tetrapod nanocrystals. As with the ZnO NWs, a
sharp (e, A0) transition peak is observed at ∼3.2 eV and a broad
VO defect peak at ∼2.4 eV. Randomly orientated tetrapod
clusters exhibit emission dominated by the broad peak at 2.4 eV,
while the spectrum of the isolated tetrapod is dominated by the
peak centered at 3.2 eV. ZnO tetrapod nanocrystals orientate
spontaneously with one arm normal to the substrate. As the
single optical axis is aligned along the arm, band-edge emission
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Fig. 8. Room-temperature PL of (a) ZnO tetrapod cluster and (b) isolated ZnO
tetrapod. The inset shows an optical image of a ZnO tetrapod at the center of
the crosshair.

is expected to be most intense in this direction. Enhancement
of the UV peak for an isolated ZnO tetrapod is therefore un-
derstood, as the UV emission points toward the detector normal
to the substrate. In the case of the VO defect peak at ∼2.4 eV,
however, the greater density of ZnO tetrapods in the clustered
sample results in a more intense emission at this photon energy.

III. TFTs

Bottom-gate bottom-contact TFTs featuring stamped or
solution-dispersed ZnO nanostructure networks with a solution-
processable organic-semiconductor host matrix were fabri-
cated on highly doped silicon substrate while also acted as
a common gate. Thermally grown silicon dioxide (SiO2)
or plasma-enhanced chemical-vapor-deposited silicon nitride
(SiNx) was used for the gate dielectric layer. Thermally evap-
orated chromium (Cr) or sputtered molybdenum (Mo) formed
the source and drain contacts.

Electrical characterization of the TFTs was carried out with
a Keithley 4200-SCS parameter analyzer or with an Agilent
B1500A semiconductor device analyzer. From the measured
transfer characteristic (ID versus VGS), the transconductance
(gm), threshold voltage (VT ), and effective field-effect mobility
(μFE) of the TFTs were extracted using the following expres-
sions governing MOSFET operation in the linear and saturation
regions:

ID =μFECi
W

L
(VGS − VT )VDS

gm =
∂ID

∂VGS
= μFECi

W

L
VDS (1)

ID,sat =
1
2
μFECi

W

L
(VGS − VT )2

gm =
∂ID,sat

∂VGS
= μFECi

W

L
(VGS − VT ). (2)

Here, ID is the drain current, VGS is the gate–source voltage,
VDS is the gate–source voltage, Ci is the gate dielectric capaci-

tance per unit area, W is the channel width, and L is the channel
length.

A. N-Type Nanocomposite OTFTs With ZnO NW Networks

Large-area and flexible electronics is a rapidly expanding re-
search area, where much attention has been focused on organic
semiconductors. Organic semiconductors have attracted much
interest by virtue of their solution processability [47]–[49].
However, the field-effect mobility and stability of organic TFTs
(OTFTs) may limit their widespread adoption. While OTFTs
often exhibit reasonably high on/off current ratios, attempts
to improve their mobilities (typically < 0.1 cm2 · V−1 · s−1)
and stability remain a subject of ongoing research [47]. These
limitations of organic materials have prompted the pursuit of
alternative material systems and options for use in large-area
and flexible electronics.

One-dimensional nanostructures, such as carbon nanotubes
(CNTs) and NWs, present feasible alternatives to fulfill these
motivations; these nanostructures can be used as the sole mater-
ial in a device structure or can be implemented as a complement
to organic semiconducting material to form nanocomposite-
based devices [46], [51]–[55]. Several groups have recently
considered CNTs for fabrication of solution-processed p-type
composite TFTs; they were incorporated into P3HT and poly[5,
5’-bis(3-dodecyl-2-thienyl)-2, 2’-bithiophene] (PQT-12) which
are organic semiconducting polymers [46], [52], [55]. However,
there are few reports concerning solution-processed n-type
OTFTs with high field-effect electron mobility [56]–[60]. Here,
we first report a means of enhancing n-type OTFT devices by
introducing random arrays of stamped semiconducting ZnO
NWs. An n-type solution-processed organic semiconductor,
PCBM, shown in Fig. 9(a) is utilized as the organic host
matrix in this paper. With pristine PCBM, typical field-effect
electron mobility is 10−3–10−2 cm2 · V−1 · s−1 [58]–[60]. Our
preliminary results reveal that the effective field effect mo-
bilities of ZnO nanowire–PCBM composite TFT devices are
increased by 20–40 times compared to pristine PCBM OTFT
devices, while the on/off current ratio is maintained in the
range of 105.

ZnO NWs are synthesized, as previously described in
Section II-A. The growth was performed for 30 min at 3 mbar
at 850 ◦C on a silicon substrate. The NWs were subsequently
transferred onto highly doped silicon substrates covered by
150-nm-thick SiO2 insulating layer by means of a contact
stamping method [61]. The density of NWs transferred onto
the SiO2 surface can be changed either by adjusting the applied
force during the stamping process or by varying the number of
as-grown NWs on the initial substrate that was stamped onto
the same area. A lubricant such as poly-L-lysine (Aldrich) was
sometimes used to increase the density of transferred NWs. An
SEM photograph of stamped ZnO NWs is shown in Fig. 9(b).
Source and drain contact patterns, defined by conventional
photolithography, used 50-nm-thick chromium (Cr) electrodes
thermally evaporated onto the substrates of stamped ZnO NWs.
Devices were bottom gate bottom contact geometry, as shown
schematically in Fig. 9(c), with channel length L of 10 μm and
width W of 30 μm.
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Fig. 9. (a) Chemical structure of PCBM. (b) Network of stamped ZnO NWs
with an average length of 5–7 μm and a diameter of 50–100 nm (Scale bar:
20 μm). (c) Schematic cross section of the composite ZnO–PCBM TFT
structure employed in this paper.

Prior to the deposition of organic-semiconductor layer, the
entire surface of stamped substrates with electrodes was treated
with hexamethyldisilazane (Aldrich). PCBM (99.9%, Aldrich),
in a 10-mg · mL−1 chloroform solution, was spin coated
(500 r/min for 5 s and then 1700 r/min for 60 s) onto the
substrates containing ZnO NWs and Cr electrodes inside a N2

glove box. Pristine PCBM devices were also fabricated by the
same manner without the ZnO stamping process. The devices
were then annealed at 100 ◦C in vacuum (10−4 mbar) for 12 h.
Electrical characterization of the transistor devices was per-
formed under a N2-purged atmosphere at room temperature and
in the dark. The performance of these composite ZnO–PCBM
TFTs is presented alongside that of the pristine PCBM OTFTs.

The output characteristics for a pristine PCBM device for
different gate voltages are shown in Fig. 10(a). The IDS–VDS

curves clearly resemble those of a typical n-type field-effect
transistor, where drain current increases and saturates when the
positive drain voltage is increased. Fig. 10(b) shows the output
characteristics for a composite ZnO–PCBM device. The IDS

increases up to 15 μA at VDS = 50 V and VGS = 50 V, which
is about 150 times higher than that of the pristine PCBM device.
We also note a small negative IDS observed at low source/drain
voltages and high gate voltages in the pristine PCBM device.
We believe that it is associated with a Poole–Frenkel electron–

Fig. 10. Output IDS–VDS characteristics of (a) the pristine PCBM TFT
device and (b) the composite ZnO–PCBM TFT device.

Fig. 11. Transfer IDS–VGS characteristics of pristine PCBM and ZnO–
PCBM TFT devices in the saturation regime at VDS = 40 V. The inset shows

the I
1/2
DS –VGS characteristics in the linear regime at VDS = 10 V.

hole generation mechanism in which the drain is now col-
lecting a hole current. This generation mechanism is strongly
dependent on the electric field and thus grows with increasing
VGS. Therefore, the PCBM, although an n-type material, shows
ambipolar behavior [59].

Fig. 11 shows the transfer characteristics of pristine PCBM
TFT and ZnO–PCBM TFT devices. In the saturation regime
(VDS = 40 V), the field-effect mobility is calculated by plotting
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TABLE I
FIELD-EFFECT MOBILITY (μFE), ON/OFF CURRENT RATIO, OFF-CURRENT (IOFF), THRESHOLD VOLTAGE (VT ), AND

SUBTHRESHOLD SWING (S) OF PRISTINE PCBM AND ZnO–PCBM TFT DEVICES AT VDS = 40 AND 10 V, RESPECTIVELY

the square root of the drain current versus the gate voltage
and fitting the data to (2). The saturation field-effect mobility
of pristine PCBM is 0.0334 cm2 · V−1 · s−1, and the on/off
current ratio is 9 × 105, which are comparable with the results
reported in the literature for PCBM devices [58], [60]. For the
ZnO–PCBM TFT device, the field-effect mobility is increased
to 0.561 cm2 · V−1 · s−1, representing an improvement of more
than 17 times over the pristine PCBM TFT device. The on/off
current ratio remains on the same order in both composite and
pristine TFTs. Furthermore, a sharper subthreshold slope is
observed in the ZnO–PCBM device. However, the improve-
ments in composite ZnO–PCBM TFTs come with a tradeoff
in terms of the off-current and are likely linked to the higher
conductivity of ZnO NWs compared with the organic semi-
conducting matrix. We believe that further process optimization
of the ZnO NW conductivity via refined control of the growth
process parameters can provide a remedy to suppress the OFF

state; this is currently under investigation.
When the transfer characteristics measured are close to

the linear regime (VDS = 10 V), shown in the inset of
Fig. 11, the field-effect mobility of the pristine PCBM TFT
extracted from transconductance measurements, based on (1), is
0.0071 cm2 · V−1 · s−1, and the on/off current ratio is 9 × 104.
In contrast, the composite ZnO–PCBM TFT exhibits mobility
of 0.285 cm2 · V−1 · s−1 and on/off current ratio of 1 × 105.
The field-effect mobility is improved markedly by 40 times by
incorporating ZnO NWs into the organic matrix.

The field-effect mobility, on/off current ratio, off-current,
threshold voltage, and subthreshold slope of pristine PCBM
and ZnO–PCBM TFT devices in the saturation and linear
regimes are summarized in Table I. The measurement results
of composite ZnO–PCBM TFTs are found to exhibit superior
performance compared with those of pristine PCBM TFTs.
The incorporation of ZnO NWs produces higher on-current
(∼10 μA), higher mobility, steeper subthreshold slope, and
reduced threshold voltage (closer to zero). The increase in the
field-effect mobility is probably due to the superior semicon-
ducting properties of the ZnO. In the most simplistic form,
the NWs could be viewed as conducting bridges which serve
to enhance electron transport between crystals in the PCBM
film. Furthermore, there may be an increased number of charge
carriers in the transport channel. For a better understanding
of the role of each material, further experiments will examine
the effect of different network densities of ZnO NWs on the
field-effect characteristics. Experiments will also need to be
conducted to optimize device properties and to examine the
stability of composite TFTs relative to OTFTs. In addition, ZnO

Fig. 12. Cross-sectional structure of the bottom-gate bottom-contact spin-
coated nanocomposite ZnO/P3HT TFT device.

NW networks without organic materials are being evaluated
for TFT performance, and these results will be presented
elsewhere.

Overall, the results reported here show a promising approach
for integrating 1-D nanostructures with solution-processed or-
ganic semiconductors to enhance TFT performance for large-
area electronic applications.

B. P-Type Nanocomposite OTFTs With ZnO Tetrapods

While we report n-type OTFT structures with enhanced
electron transport by incorporation of ZnO NWs, there are few
reports of similar effects in p-type host materials, with one
study suggesting that the p-channel enhancement effect is the
result of a reduction in the density of traps caused by ZnO
tetrapods [34]. Preliminary experiments suggest that the incor-
poration of ZnO nanostructures can enhance the mobility and
maximum on-current for a given p-type polymer device. How-
ever, challenges remain to be overcome in achieving the overall
device characteristics exhibited in similar n-type devices, with
increased off-currents degrading device performance.

ZnO nanoparticles (20 nm, Sigma Aldrich) and tetrapods
synthesized, as described in Section II-B, were dispersed in a
chlorobenzene solution of P3HT (Rieke Metals), and transistors
were fabricated by spin coating the ZnO/polymer nanocompos-
ite on a prepatterned substrate, with a bottom-gate transistor
structure being shown in Fig. 12. Compared to pristine polymer
devices, the incorporation of ZnO nanoparticles resulted in an
increase in the on-current and mobility in the saturation regime
for the composite TFTs. However, this was accompanied by a
rise in the off-current. Experiments to fabricate ZnO/polymer
composite TFTs with ZnO tetrapods were less successful, due
to difficulties in fully dispersing ZnO tetrapods in the polymer
semiconductor solution prior to deposition. A sonic bath was
used to disperse the tetrapods before mixing with polymer in
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solution; however, this was insufficient to promote full disper-
sion, with a clustering of tetrapods being visible.

An alternative method is to disperse ZnO tetrapods before
spin coating a polymer film from solution. A detailed study
here is necessary to assess the effect of the ZnO at the dielectric
interface, the surface treatment of which can lead to significant
enhancement of performance [62]. Should the ZnO interfere
with the organization of the polymer at the dielectric interface,
it may well reduce the effectiveness of surface treatments.

Another consideration is the size of ZnO tetrapods; channel
lengths are on the order of 10 μm, whereas the tetrapods are
1–2 μm in length, and the polymer films are several hundred
nanometers in thickness. Since film thicknesses rarely approach
the size of the tetrapods, the device characteristics can no longer
be considered simply in terms of a channel formed at the
dielectric interface; tetrapod orientation also becomes impor-
tant. It is hoped that the introduction of smaller tetrapods will
improve uniformity of characteristics, and reduce dependence
on geometry and anisotropy, as the size becomes comparable
with polymer film thickness at several hundred nanometers.

IV. CONCLUSION

This work demonstrated the synthesis of ZnO nanorods
and tetrapods and fabrication of nanocomposite TFTs based
on dispersion of the nanostructures in n- and p-type organic-
semiconductor host matrices. Measurement results of trans-
fer and input–output characteristics for n-type nanocompos-
ite transistors yield promising results with respect to device
mobility, on/off current ratio, and off-current. Although the
results presented here are preliminary, the observed enhance-
ment in device performance from the pristine state demon-
strates the promise for high-performance solution-processable
n-type OTFTs. While the enhancement in the presence of the
nanostructures is significant, we believe that there is room for
improvement. Further work will address the challenges associ-
ated with refining the synthesis procedure for improved control
of size and impurity doping of the ZnO tetrapods. In particular,
our present results of p-type nanocomposite TFTs have been
less successful in terms of device characteristics. This may be
attributed to a failure of the relatively large (submicrometer-
sized) tetrapods to fully disperse in the polymer solution prior
to deposition, despite sonication. However, we expect to see
improved results with smaller tetrapods. Work along these lines
is currently in progress.
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