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Surface Texturing Through
Cylinder Buckling
We consider the axial buckling of a thin-walled cylinder fitted onto a mandrel core with a
prescribed annular gap. The buckling pattern develops fully and uniformly to yield a sur-
face texture of regular diamond-shaped buckles, which we propose for novel morphing
structures. We describe experiments that operate well into the postbuckling regime,
where a classical analysis does not apply; we show that the size of buckles depends on
the cylinder radius and the gap width, but not on its thickness, and we formulate simple
relationships from kinematics alone for estimating the buckle proportions during loading.
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1 Introduction

In this paper, we complement the early work on cylindrical
shell buckling by Horton and Durham [1]. They devised a novel
experiment for enabling a well-developed buckle pattern over the
entire shell, in order to quantify the effect of initial geometrical
imperfections, which, at the time, was taken to be responsible for
premature buckling loads. Under axial compression, a thin-walled
tube tends to collapse after forming a locally buckled region at a
random location on the shell, at a much lower load than predicted
by a classical analysis. Attempts to reconcile matters for design
purposes considered, for example, the introduction of knockdown
factors applied to the theoretical load (a modern account is given
in [2]). Horton and Durham adopted a different approach by
repeating the experiment after placing a smaller, solid cylindrical
mandrel inside the shell before loading. Local buckles can no lon-
ger grow unrestrained because their radial displacements are
arrested by impingement on the mandrel, thereby allowing more
buckles to form, which eventually accumulate into a diamondlike
pattern over the entire cylinder. At this point, the mode-shape is
uniform and complete, and matches the doubly-periodic form
used in a linear stability analysis. Horton and Durham were then
able to confirm the classical buckling load with the measured axial
force, with excellent agreement between them when imperfections
were minimal.

The mandrel in their work enabled the classical result to be
“reached” in the sense of restabilizing the postbuckling response.
The annular gap was set equal to the thickness of the shell in all
experiments, for a single fixed geometry of cylinder. Once the
fully buckled form was established, only the total number of
buckles was recorded; the buckled geometry is evident in their
photographs but the axial and circumferential wavelengths were
not measured nor predicted because the buckling load, ultimately,
does not depend on their values. This also highlights the incredi-
ble focus of time by many researchers (see, e.g., [3] for a brief his-
torical review), upon reconciling the axial capacity to theory in
the sense of loads, that a regular mode-shape underpinned the cor-
relation to the classical load without needing to classify its proper-
ties. More recently, the question of buckle geometry was tackled
by Hunt et al. [4] for ordinary cylinder buckling, who chose a
short enough shell so that localized formation of buckles takes
place over a significant proportion of the total height of shell. The
mode-shape, which typically emerges as only one or two rings
of periodic displacements, is deemed to be periodic in both
directions, enabling Hunt et al. to adapt the familiar Koiter Circle

approach [5], based upon double-periodicity for estimating the
hoop-wise wave-number.

We are interested in characterizing the buckled geometry of
Horton and Durham in a modern context, for promoting shape-
changing, or “morphing,” structures in new technologies reliant
upon a controllable surface “texture,” for example, haptic elec-
tronic displays, building facades with tunable thermodynamical
properties, and aerodynamical surfaces that can switch from being
smooth to rough, and back again. In this sense, the behavior must
remain elastic well into the postbuckled regime, so we deal with
very thin shells whose radius-to-thickness is greater than 1000,
above the value of 800 used by Horton and Durham, and much
higher than the typical upper limit of 500 for practical shells. Cor-
respondingly, our cylinders resemble membrane tubes rather than
shells and, because of such thinness, postbuckling is dominated by
inextensible behavior, where a well-known, associated mode-
shape is the “Yoshimura” pattern [6], with commensurate features
observed here. We were originally focused on the torsional
“wrinkling” of membranes wrapped around tubes without knowl-
edge of Horton and Durham’s work when we noticed a distinctive
doubly-periodic buckled pattern after compressing the membrane
ends. We decided to change our focus and concentrate on the axial
case alone. There are also parallels with recent studies on the
buckling of thin films connected to compliant substrates, where
distinctive surface patterns are wrought by in-plane compressive
stresses [7–9], where the substrate elastically restrains the out-of-
plane deformations in the same way that the mandrel provides a
“hard” constraint. Many results come from simulations, because
experiments are notoriously difficult to arrange, whereas our pat-
terns can be quickly observed with inherent uniformity by wrap-
ping a thin sheet of paper loosely around a cardboard tube before
compressing it by hand. Another related study concerns the
“stamping” of initially constrained elastic plates by confining
them further between rigid surfaces [10]. This shows, rather ele-
gantly, the transition from a buckled state to a wrinkled state,
depending on the level of confinement, and this inspires our pro-
cedure as follows.

Foremost, we are concerned with how the overall buckled
shape performs when the initial annular gap between the shell and
mandrel is varied. In particular, experiments show that the cir-
cumferential wavelength, viz. the number of circumferential
buckles, appears to be governed only by the annular gap size and
the radius of mandrel (or shell), and not its thickness nor axial
length. This differs from the observations of Hunt et al., where,
recall, no mandrel is present, and the choice of length must be
contrived to fit with the expected buckle size. In our case, length
does not matter because the mode-shape is restabilized by the
mandrel and because inextensibility during postbuckling implies
that the thickness does not influence matters provided it is small
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enough. Furthermore, the number of circumferential buckles does
not depend on the load. This empirical observation allows us to
decouple our views of the buckle geometry along and around the
cylinder and thence to treat them separately. The corresponding
wavelengths are reasonably straightforward to deduce using the
assumption of inextensibility because we may view them as the
deformed loci of the shell in these directions, as if packaged
according to geometrical constraints. This approach is novel in its
kinematical basis; that we are able to deduce the loaded shape,
albeit approximately, without solving for the nonlinear governing
shell equations of deformation [11]. This study then concludes.

2 Experiments and Observations

Figure 1 shows a cylinder made of Mylar, a commercially
available membrane material used by the aerospace industry for
its resilience to fracture and tearing despite a thickness here of
just 0.044 mm. The cylinder has a nominal radius of 30 mm after
wrapping a flat sheet around a rigid aluminum tube. The tube
remains in place to form an inner mandrel, which differs in radius
from the Mylar by 1%. This gap is fashioned precisely by insert-
ing a rodlike shim between the Mylar and the mandrel before join-
ing the edges of the sheet along a narrow, overlapping seam of
width typically less than 2% of the circumference, see Fig. 4(a)
below. The shim is then removed so that the annular gap is free of
obstruction, and the mandrel is slightly shorter so that only the
Mylar cylinder is compressed by the end-plates. As expected,
local buckles form first at random positions on the cylinder,
Fig. 1, but each has a distinctive diamondlike shape depressed
across its middle with edge ridges that eventually become highly
creased. All diamonds are oriented with their axes of symmetry
aligned to the axial and circumferential directions, and all have
roughly the same size.

When the surface becomes entirely covered, the diamonds are
approximately square and subdivided into a pair of triangular fac-
ets by a circumferential crease. The overall layout now resembles
the well-known Yoshimura cylinder pattern [6] shown in
Figs. 2(a) and 2(b). This pattern, which may be formed by folding
a flat sheet, allows the cylinder to be compressed into a compact
stack of plates inextensibly; there is no local stretching or com-
pression of the material, only rotation about the hinge-lines. The
facet geometry is not predisposed to a particular shape although
many pictures show them as being equilateral, and Johnson et al.
[12] recognized that different triangular shapes yield diverse col-
lapse properties overall. Rotation about the creases in our Mylar

cylinders is not perfectly inextensible, because the creases are not
singular lines, rather, they are ridges with additional concentrated
features, see Figs. 2(c)–2(e). However, all tests develop the same
facetted pattern, and these attempt to close during compression so
that the diamonds are reduced in height. In doing so, each center
is forced inwards, and the crease begins to form a distributed con-
tact patch on the mandrel, evident in Fig. 1 and in close-up in
Figs. 2(c)–2(e). All patches continue to grow in size even though
the number of diamonds remains fixed; their height continues to
decrease and their peripheral ridges become more pronounced. As
the adherence increases, the axial capacity of the cylinder
increases significantly due to the build-up of frictional resistance.

In general, we observe that the diamond buckles are larger
when the initial gap is increased and when the cylinder is larger
overall, and vice versa. The “mismatch” in radii between the cyl-
inder and the mandrel, as well as their absolute sizes are key in
determining the shape and number of buckles, but so is the uni-
formity of radius. Figure 3 indicates three differently-shaped man-
drels: the standard cylindrical tube, a squashed cylinder that is
approximately elliptical, and an airfoil-like section made by bend-
ing an aluminum plate around a standard NACA profile. The
Mylar “sleeve” wrapped around each of them is made with the
same degree of mismatch. As the local radius of curvature of the
mandrel is reduced, so is the diamond width. This is most demon-
strable in the third case, which has a highly-curved and textured
leading edge feeding into the trailing, flatter part with diamonds
merging across the width and growing in size up to fivefold.

Returning to cylindrical mandrels, we note that the buckled tex-
ture can be wrought easily by hand, and their circumferential
properties quickly established. Later, we present results obtained
in this way for cylinders fitted onto three mandrel sizes of 29.6,
31.6, and 63.5 mm for a range of mismatches. In order to extract
accurate information, formal measurements are taken using an
Instron tensometer, and the schematic setup is shown in Fig. 4(b).
A single aluminum tube of radius 50 mm forms the mandrel, and a
thin-walled, sliding collar at the top end allows the Mylar cylinder
to be compressed while being supported radially. We ignore the
shape over this short region because the annular gap is slightly
different, and five cylinders were made in the same way as before,
with mismatches in radii ranging from 2.4% to 9.9% by using dif-
ferent sizes of rod shim during manufacture.

During compression, a very different response is presented:
local buckles accumulate into rings, which form successively
along the length of cylinder. Once the pattern is fully formed, the
buckles are typically nonuniformly sized axially, and sometimes

Fig. 1 Progressive formation of a surface texture during axial buckling of a thin-walled cylin-
der. (a) Initially, the cylinder is mounted as a close-fitting sleeve on a rigid cylindrical mandrel
(not in view), and the wooden end pieces, or platens, are pushed together; a small axial gap
allows the sleeve to compress without loading the mandrel. (b) Diamond-like buckles manifest
locally at first, and their tendency to displace inwards is arrested by the mandrel, which allows
their number to increase over the entire surface. (c) Further compression produces a high
level of contact between the cylinder and mandrel. (d) The cylinder has length 150 mm and
diameter 60 mm, and its radius differs from that of the mandrel by 1%. The material is Mylar
with a thickness of 0.044 mm.
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they do not form all the way along. Both effects are mainly due to
the previous friction preventing the applied axial force from being
transmitted equally along the length. This seems to be an artifact
of the testing setup because of the precise way in which the force
is applied. When the cylinders are compressed by hand by grip-
ping their ends, there is less local constraint in view of these
boundary conditions, and the pattern can form freely and uni-
formly. By running a hand over a compressed cylinder, we discov-
ered that the buckles can be rendered uniform in size. When the
cylinders are unloaded from this point, the response is uniform in
this direction, because the cylinder expands radially, thereby
relaxing contact, and hence lowering the internal friction.
Attempts to lower the coefficient of friction by other means, for
example, by spraying silicon lubricant onto the mandrel before-
hand, proved fruitless. Thus, for a more consistent view of the
buckled shape, we decided to record the unloading response for
all five cylinders in this way, and Fig. 5 indicates the axial force
versus the endwise displacement for unloading. At points in the
profile, we also measured properties of the buckles, namely, their
width, height, and their circumferential number, but it became
clear that the behavior was dominated by two responsive modes,
now described.

For the smallest mismatch, the buckles offload in unison by
increasing in height together. The applied force reduces nonli-
nearly so that the overall stiffness decreases to the point where it
approaches zero just before the original cylindrical shape is recov-
ered. Over this final phase of unloading, buckles “pop” back indi-
vidually, the stiffness rises sharply to a roughly linear value, and
the force decreases to zero over an axial strain of 0.4%. On the
other hand, buckles offload progressively for the largest mis-
match, with rings of buckles opening up successively, and then
increasing in height together and uniformly, with the rest of the
cylinder remaining static. The force response throughout is given
by small fluctuations about a mean value every time a static ring
begins to open and become absorbed into the general restoration
of shape. This phase resembles the force response of the foldable
cylinders of Guest and Pellegrino [13], which were designed
deliberately as collapse mechanisms. A final linear phase can also
be observed as the force approaches zero.

The difference in both of these modes, is again, due to friction.
A relatively smaller contact area within each buckle arises for
smaller mismatches, and the frictional forces can be overcome
everywhere so that the entire cylinder is capable of sliding against
the mandrel. With larger mismatches, there is more contact and

Fig. 3 Surface textures due to axial buckling of thin-walled tubes fitted onto three differently
shaped mandrels of (a) circular, (b) elliptical, and (c) airfoil sections. Each shows that the
buckle size is affected by the local radius of mandrel curvature. In (a), all are the same,
whereas in (b) and (c), they become larger when the section becomes flatter, and vice versa.
The wooden end-plates enable axial compression to be applied.

Fig. 2 (a) Yoshimura’s facetted cylinder, created by folding a flat sheet along prescribed
hinge lines, before joining the edges, courtesy of [6]. (b) Formal testing of our cylinders pro-
duces a distinctive Yoshimura pattern. (c)–(e) Close-up view of diamond buckle details for dif-
ferent cylinders. (c) The smallest mismatch gives ridges that curve and touch at adjacent
corners. (d) A larger mismatch produces a more distinctive polygonal outline for each dia-
mond, with significant adherence over the inner mandrel. (e) The largest mismatch produces
adjacent ridges that tend to be separated. The features in (c)–(e) help to inform upon the sim-
ple circumferential mode-shapes presented in Fig. 8.

Journal of Applied Mechanics JUNE 2014, Vol. 81 / 061001-3

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/01/2014 Terms of Use: http://asme.org/terms



higher friction, and it is energetically more favorable for the cylin-
der to offload one ring at a time. For the other three intermediate
mismatch values, the axial response is a proportionate combina-
tion of these. For the next smallest mismatch, there is some pro-
gressive unloading at first, usually at one end but not necessarily
so, until the general level of contact is small enough to favor over-
all sliding.

All of the force data is normalized by dividing by the material
area of the cross section, to yield a stress quantity, which is then
divided by the classical value of buckling stress for a perfect,
stress-free cylinder, given by Et=ðR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½1� �2�

p
Þ [5], where E

and � are the Young’s modulus (4905 MPa) and Poisson’s ratio
(0.34) of Mylar, and R2 and t are the radius and thickness of the
cylinder (R1 is used later for the mandrel). We assume that our
cylinders have buckled at the point when the force-displacement
curves become nonlinear close to zero displacement, and in all
cases, the equivalent stress is less than 0.06 times the classical
value. Although Horton and Durham [1] were able to match the
classical value, we expect a much lower load for two reasons
known to detract from the buckling capacity. Our cylinders are
unloaded, and we cannot guarantee a perfectly cylindrical form at
the point where linearity is recovered. Second, the shell is not free
of elastic stresses because wrapping a flat sheet introduces circum-
ferential and axial bending moment distributions, and associated
residual, sometimes compressive stresses.

In terms of the buckled shape, the number of diamonds remains
fixed for each cylinder, their width varies imperceptibly and only
their height changes during end-wise compression. Accordingly,
the circumferential wavelength remains approximately constant,
so this characteristic is equally defined by the number of circum-
ferential diamonds. Figure 6 records this number, denoted as n,
which is averaged over several axial positions for the Instron-
tested cases, along with data from informal hand-held tests. These
are plotted against the degree of initial mismatch, n, which is
defined to be R2=R1 � 1 in the sense of a circumferential strain,
and there is a clear, bounded trend in which n increases for
decreasing n. The variation of the height of diamonds, h, with
axial strain, �, is displayed in Fig. 7. Measuring h is performed
digitally from photographs of rings of diamonds at the top, mid-
dle, and bottom of the cylinder, before taking an average value
across all of them. � is the average strain given by the ratio of

Fig. 5 Force-displacement response of five cylinders tested as
per the schematic in Fig. 4(b). Before recording data, each is
nominally compressed so that buckles form everywhere, and
some manual adjustment is required to ensure an evenly dis-
tributed pattern. The axial load is then decreased to zero while
measuring the end displacement, so the data proceed from left
to right: at zero load, the displacement is set to be zero, and all
values referred to this datum. The cylinders have initial radii,
R2, of 51.2, 51.8, 52.5, 53.3, and 55.0 mm, length l of 322, 326,
330, 335, and 345 mm, and all have the same thickness,
t ¼ 0:044 mm, giving a radius-to-thickness range of 1164–1250.
The inner mandrel has a radius R1 of 50 mm, so that initial mis-
match strains, n, are equal to 2.4, 3.7, 5.1, 6.6, and 9.9%, respec-
tively, as stated in the legend. The axial strain, e, is the end-wise
displacement divided by the initial height, and the axial stress,
�r, is found by dividing the axial force by the area of contact,
2pR2t , and then again by the value of the classical axial buck-
ling stress for a cylinder, Et=ðR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½1� v2�

p
Þ, where E is the

Young’s modulus (4905 MPa) and m is the Poisson’s ratio (0.34)
of Mylar.

Fig. 6 Initial mismatch between the cylinder and mandrel,
n ¼ R2=R1 � 1, versus the number of circumferential buckles, n,
in the postbuckling regime. The circles are obtained from the
five Instron-tested cases in Fig. 5, where n is calculated by aver-
aging their number on several axial levels. The squares apply to
those manually compressed by hand on different mandrels (of
radii 29.6, 31.6, and 63.5 mm), where n is averaged on two cir-
cumferences. Solid lines are predictions by Eq. (1) and Fig.
8(b), and dashed lines are predictions by Eq. (3) and Fig. 8(c).

Fig. 4 (a) Manufacture of a cylinder by wrapping a flat Mylar
sheet around a cylindrical mandrel. In order to create a precise
annular gap, a rod is inserted as a shim to create extra circum-
ferential length. A seam is created from a small overlapping
joint. The shim is then removed to leave a slightly larger outer
cylinder, where the mismatch in radii can be characterized by
defining n ¼ ðR2=R1Þ � 1. For example, in one case tested later,
the radii of the mandrel and the shim rod are 50 mm and
4.76 mm, respectively, giving n ¼ 2:4%. (b) Formal compression
scheme using an Instron tensometer. A sliding collar is fitted to
the top platen so that only the cylinder is compressed while the
bulk of its surface is in contact with the mandrel. In all of these
experiments, the mandrel has a radius of 50 mm, and is approxi-
mately 300 mm tall.
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end-wise displacement to initial axial length. Plotting the variation
on logarithmic axes reveals that there is, potentially, a power-law
relationship but that this applies to the data in “clusters.” As the
mismatch becomes smaller, this relationship applies more uni-
formly across the data, but for larger mismatches, only part of the
data conforms, otherwise it is generally flat, signifying that the
height remains constant. The reason for this is due to whether or
not the cylinder unloads progressively. When it does, the buckle
height at all three axial positions cannot change simultaneously,
and locally, only when the ring of buckles has opened up. When
clusters conform to the power law, then all positions are

associated with rings that have already opened, which continue to
offload. Note that all measurements are performed well beyond
the nominal buckling limit, even for small strains.

3 Analysis

Figure 8 indicates a simple model for estimating the properties
of the diamond buckles. Since the number of circumferential
buckles does not depend on load, we can treat this separately from
the height of buckles. Consider a circumferential line bisecting a
given ring of diamond buckles, highlighted in Fig. 8(a). Assuming
inextensible behavior, the length of this line is equal to the origi-
nal cylindrical circumference, 2pR2, and takes one of two polygo-
nal forms of n sides. In Fig. 8(b), the polygon has straight edges
inspired by the Yoshimura pattern but interconnected by small
rounded corners of uniform radius, r, to account for the finite size
of adjacent creases. The center of all straight sides just touches
the mandrel, of radius R1. The form in Fig. 8(c) has instead uni-
formly curved sides to reflect those buckles which mostly adhere
over the mandrel. So that we avoid having to specify a complex
pattern with, for example, oppositely curved regions, the radius of
the sides is set equal to R > R1, and all sides are interconnected
by zero-width vertices. Both of these generic forms are evident in
the close-up detail in Fig. 2.

The angle subtended by r in Fig. 8(b) is 2p=n, and each straight
side has length 2ðR1 � rÞ tanðp=nÞ. A balance of circumferential
lengths reveals

n r2p=nþ 2ðR1 � rÞ tanðp=nÞ½ � ¼ 2pR2 )
r

R2

¼ ðR1=R2Þ tanðp=nÞ � p=n

tanðp=nÞ � p=n

Recalling that n ¼ R2=R1 � 1, the above may be expressed as

n1 ¼
tanðp=nÞ

p=nþ ðr=R2Þ tanðp=nÞ � p=n½ � � 1 (1)

after setting n equal to n1 for this first case. Note that this reduces
to

Fig. 7 Average buckle height, h, (Fig. 8) versus axial compres-
sive strain, �, for the five Instron-tested cases from Fig. 5 The
extra lines are predictions by Eq. (4), which uses n from Fig. 6
All have the same gradient of 1=

ffiffiffi
�
p

, their mismatch strains are
indicated alongside, and their colors match the legend sym-
bols. Note that, generally, when the mismatch strain is smallest,
all buckles deform in unison, and h is approximately governed
by 1=

ffiffiffi
�
p

. As the mismatch increases, buckles tend to form pro-
gressively rather than together, so that some of the buckles
have roughly constant height.

Fig. 8 Schematic details for estimating the buckled geometry. (a) The number of facets, n, on
a given circumference is given by the number of diamond features touching on adjacent cor-
ners. (b) Simplified polygonal description of the circumferential path in (a) with n straight sides
interconnected by a small regions of constant radius of curvature, r . When r is zero, the maxi-
mum radial distance from the center is p equal to R1=cosðp=nÞ. (c) The path is now described
by n curved buckles of radius, R, subtending angle, 2b, but meeting discontinuously at points
of infinite curvature. (d) Scheme for estimating the axial height, h, of buckles in which the edge
is treated as a rod buckling between the inner mandrel and a fictitious outer constraint defined
by the largest radial displacement, p, from (b). The axial displacement for a given facet is d and
the inner mandrel has radius, R1.
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n1 ¼
tanðp=nÞ

p=n
� 1 (2)

when r is zero. In Fig. 8(c), the circular sector formed by a single
side subtends the semiangle b, equal to pR2=nR when inextensi-
ble. Using similar triangles within the sector, we may state

R sin b
R1 sinðp=nÞ ¼

R1 � Rþ R cos b
R1 cosðp=nÞ ) R1

R2

¼ p
nb

sin b
tanðp=nÞ þ 1� cos b

� �

and for the same definition of mismatch but denoting as n2 for this
second case, it can be shown

n2 ¼
bn=p

1� cos bþ ðsin bÞ= tanðp=nÞ � 1 (3)

It is not possible to solve explicitly for n, so we specify n and cal-
culate n for given values of r and R. We note that both r and the
curvature, 1=R, are small in practice, and it makes sense to set
them equal to fixed proportions of R2 and 1=R2, respectively,
which implies the same proportion of b=ðp=nÞ for calculating n2.
When both ratios are zero, then we have a single upper bound, Eq.
(2), corresponding to a true polygon, and this is plotted in Fig. 6.
Additional values of r=R2 and R2=R are chosen to be 0.2 and 0.5,
arbitrarily, and n1 and n2 are calculated and added to the figure.
The upper bound naturally overestimates the mismatch for a given
n because of its simplicity, but the same downward trend is clearly
evinced. The other two values predict curves that better fit the
data with n1 diverging at a slower rate compared to n2 when the
ratio increases.

The axial height of buckles may be estimated from Fig. 8(d),
which interprets the deformed side profile of the cylinder as an
axial rod undergoing planar buckling between rigid vertical con-
straints. One of them is the mandrel surface, and the other is
foisted geometrically by considering the largest possible ampli-
tude of buckle in the radial direction. This is related to the vertex
distance p in Fig. 8(b), which is largest when r is zero, resulting in
p ¼ R1= cosðp=nÞ and a radial buckling gap of p� R1 in Fig. 8(d).
For an inextensible rod with a sinusoidal profile, elementary ge-
ometry gives

d
l
¼ p2

4

k
l

� �2

where l is the half-wavelength, equal to h=2, and k ¼ ðp� R1Þ=2
is the amplitude. Recognize that d=l is equivalent to the axial
strain, �, when d is the change in axial length over a single
buckled wavelength. Thus, we see

� ¼ p2

4

ðp� R1Þ2

4

4

h2
) h ¼ pR1

2
ffiffi
�
p 1

cosðp=nÞ � 1

� �
(4)

Using experimental values of n from Fig. 6, this relationship is
plotted on logarithmic axes in Fig. 7, where the power-law rela-
tionship of 1=

ffiffi
�
p

manifests as straight lines of slope �0.5. Com-
pared to the experimental data, the predicted heights are rather
promising in that their absolute values are not too dissimilar, and
rather good for the intermediate values of mismatch. The power-
law trend is clear except for the largest mismatch even though the
model is rather simple and given the difficulties encountered dur-
ing testing. In all cases, the data for the smallest strain diverges
from this relationship as the facets begin to disappear altogether,
when the constraint effect is minimal and the model is least
effective.

4 Conclusions and Discussion

Horton and Durham [1] were interested in verifying the classi-
cal buckling load by ensuring that imperfections were minimized
while enabling the mode-shape to fully develop over its surface
by means of a mandrel. Our buckling limits are rather lower,
because we do not pay much attention to ensuring a perfectly cy-
lindrical form initially. Instead, we compress the cylinders to
some nominal value, manually adjust the buckling pattern to give
a uniform mode-shape, before unloading to zero force, where our
focus has been on the shape of individual buckles. The number of
circumferential buckles, n, is set by the sizes of the cylinder and
mandrel and not by the thickness of shell. The wavelength, or
height, h, of axial buckles is governed by n indirectly, but is pri-
marily set by the amount of end-wise compression. Because of
large displacements, we are able to treat the deformation in terms
of curving displacements alone, and simple but effective estimates
of n and h have been garnered using approximate waveforms sep-
arately contrived in both directions.

We have deliberately avoided solving governing equations of
deformation in pursuit of the simple formulas given by Eqs. (2)
and (4). But there are other reasons, most notably, because we are
working well within the postbuckling regime, where displace-
ments are significant, and crucially, because we need to be able to
incorporate the effect of the mandrel in a meaningful way. A lin-
ear stability analysis is, essentially, an eigenvalue solution in
which the amplitude of displacement is indeterminate, so there is
no way of accounting for the mandrel dimensions. A Koiter’s
circle approach [5] can provide information about the buckle size
in the sense of respective wave numbers, but it too follows from
the eigensolution, and it is a relative specification, in that one of
the wave numbers is needed to define the other, as adopted by
Hunt et al. [4], within a family of possible solutions. On the other
hand, postbuckling analysis of the wrinkling of thin films has gar-
nered recent momentum, where various authors propose appropri-
ate displacement fields for describing their deformed shape and
field profile. Most studies pursue an energy formulation with mul-
tiple components expressed as nonlinear functions of a particular
deformation parameter. After minimization, a natural length for
this parameter becomes apparent. This type of approach is not
amenable here for establishing the circumferential wavelength,
because the mandrel presents a rigid constraint, as noted in Sec. 1.
However, connecting a wrapped sheet to a compliant core such as
a sponge foam is not inconceivable, where axial compression may
induce surface patterns similar to here. We are currently devising
a simple physical demonstrator of this, but we note, in closing,
that a possible hint at performance may be gleaned from the recent
analytical work of [14] on the formation of texture along the inter-
nal walls of a cylindrical gut during differential growth where,
again, different mode-shapes and patterns can emerge.
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