
Page 1

EIST Part IIa Design Project Electronic Data Logger

Xilinx Design Tools: Foundation Series Version 3.1i

The Field Programmable Gate Array (FPGA) design in this project will be undertaken using
the Xilinx Foundation CAD package. This is a complex package which allows you to
undertake schematic design of a circuit, simulate it, and then configure it so that it can be
downloaded to a FPGA device. The Foundation software package contains some features that
are not used in this project; therefore we attempt to provide you with enough information so
that you can use the package sensibly, but not be overwhelmed by a mass of unnecessary
detail.

You should work through this document at a computer having Xilinx Foundation installed,
with a copy of the blue XACT Libraries Guide, which gives the actual schematic components
you will use.

1. INTRODUCTION TO THE DESIGN FLOW, AND FOUNDATION 3.1i

The design process adopted for this project, using Foundation 3.1i and leading to a
configured FPGA, consists typically of the following steps:

1. Producing a circuit design; Foundation offers Schematic Capture, VHDL design, and
State Machine design; we will use the first of these;

2. Functional Simulation of the design;
3. Implementing the design; this is the process of converting the electronic circuit design

of stage 1 into configuration data which will be downloaded to the FPGA;
4. Downloading the design to the FPGA in the target hardware system and checking the

design interfaces correctly with external hardware (eg. ADC, DAC & memory).

Stage 4 is then followed by system test. Both stages 2 and 4 are likely initially to lead to
circuit design revisions.

Page 2

Logging onto Foundation
The instructions which follow assume that you are using one of the computers in the EIETL
Lab. If you are working elsewhere the start-up procedure and location of files may be slightly
different. To log on

1. Switch on the computer and monitor and allow the machine to boot up in Windows
NT.

2. Login using the user name and password given to you by your project supervisor. If
the “Domain” field in the login box is not already set to “EIETL2”, drop down the list
and select “EIETL2”.

Logging Off
Make sure you do this at the end of a design session, otherwise anyone that enters the Inglis
Electrical lab has access to your files. Exit Project Manager, then click
 Start -> shut down -> Close all programs and log on as different user -> OK

Note: Each person has their own logon. Only one person (PC) should be logged on using the
same logon at once otherwise Foundation Will screw up your files. If you wish to transfer
files between logons you can copy them to a floppy disk and then back again.

There is one computer allocated per pair though if there are spares you may use one each..

On-Line Help
While this document will get you started on using Foundation, the on-line Help facility
should be used to add detail. There are also on-line documents, distinct from the Help facility,
available for background reading. To find these, click

Start -> Programs -> Xilinx Foundation Series -> Online Document Viewer.

Useful references, accessed through Xilinx Books CD, are Foundation Series Quick Start
Guide, and Foundation Series User Guide. Please do not attempt to print these, apart from
the occasional pages. You will block the printer for other users, and run the risk of giving
yourself information overload. (Note however that Chapter 6 of the Quick Start Guide is
included as an Appendix to this document).

Page 3

Project Manager
The Foundation Series uses the Project Manager to play a coordinating role in controlling the
design process. You will be working on one project though this will contain more than one
schematic. Schematics that are in the current project will be combined into the final FPGA.

Having logged on, click on the Xilinx icon to launch the Foundation Series Project Manager.
Click Create New Project->OK. You will now be asked to specify some project details.
Make the project name unique by including your group number, it is this name that identifies
your printout. Set Project Type to Foundation series V3.1i. Change the Xilinx family shown
in the dialog box to XC3000A, the part to 3042APC84, and the speed to 7. This is the device
type normally fitted on the Data Logger Project CDCC (Configurable Data Conversion
Card).

The Project Manager window is
broken into three sub windows.

The left hand window shows the
files that are in the current project.

The right hand window shows the
parts that make up the Foundation
software, we will be using Design
Entry, Simulation, and
Implementation.

The lower window logs the
commands that are run when you
ask Foundation to perform an
action. These can mostly be
ignored, but do tell you if a
problem has occurred (eg. in
implementing your design).

It is possible to create, copy and delete projects by using the commands in the File menu, and
transfer files to and from a project using the Document menu. Note that removing a file from
a project does not delete it, you can add it again later by using the Add command in the
Document menu.

There are several ways to use Foundation Projects in the Data Logger project. The thing to
bear in mind is that when Foundation comes to implement the design, it attempts to configure
the whole of the specified project. You can create more than one project if you wish or just
add and remove schematics from the project (Document…Remove).

Your projects will be saved on H: drive, on the server. Do not change this drive letter or you
will not be able to use your files when working on another PC.

Page 4

2. SCHEMATIC DESIGN

Start the schematic editor from the Project Manager by clicking the AND gate symbol
on the Design Entry button.

Page Setup
Click File -> Page Setup and set your page size to A3 or A2. This should be appropriate for
the scale of design you are likely to be doing. Most schematics fit into Landscape setting best.

Familiarisation
The diagram below shows the Schematic Capture toolbars. The vertical bar allows the user to
enter the main schematic capture operating modes; exit from these is achieved by the Esc
key, or by returning to "Select and Drag". While in any mode a right click on the mouse
generally brings up a menu showing options relevant to the mode.

Adding Components
Click on the Symbols Toolbox icon. This brings up the Symbols

library window. The library contains all the schematic symbols which
are listed in the blue libraries book. Have a look at the Device Summary
on the inside front cover of the book, and familiarise yourself with the
naming convention used. To add a component either select the item from
the list or type its name in the dialog box at the bottom of the window.

Ground and Vcc connections are treated as components, and should be
called from the library (GND and VCC). You can also add when
placing a wire by right clicking to bring up a menu and selecting Add
PWR (this has both power and ground on its pull-down menu; beware
however that it allows you to put down a ground symbol labeled Vcc, if
you don't enter the name correctly).

Page 5

Components can by rotated by selecting them (see below), and entering Ctrl R/L/M (for
right, left, mirror).

Repeated components are placed by clicking on the desired original component, and placing
the one which is then displayed.

Connecting Components - Wires and Buses
Foundation tends to use the terminology Wire for a single connection, and Net to describe a
set of connected wires forming a single electrical node, but is not always consistent.

Drawing Wires
Click on the Draw Wires icon .
Click on the starting point, and then on the end point; the wire will automatically be
routed the best way. If you wish the wire to follow a particular path click at every corner you
wish it to take. If you wish to leave a wire trailing at one end you can either start at the
trailing end and finish at a component, or start where you like and right click and select End
Net.

Labelling Wires
In some cases wire labelling is optional, in other situations it carries an essential function. To
label wires double click on the wire and enter the name in the dialog box which appears. The
name will be added about in the middle of the wire, you can later move this to any point on
the wire.

 Labelling is essential:
• if wires connect to a bus (see below);
• when connecting wires not otherwise joined; once a wire in a schematic is labelled, it is

automatically connected to all other wires carrying the same label (called the connect by
name facility), using this can greatly simplify the appearance of a schematic design;

• to identify nodes which are monitored in the simulation process.

Drawing Buses
Buses are groups of wires and are used in a similar way to wires. Wires can be connected into
buses, and by adding appropriate labels, the connection is fully defined. To draw a bus, click
on the Draw Buses icon, and proceed as with drawing wires. With buses you are
quite likely to want to leave one end floating, as you take off the wires one by
one. To do this, right click on your furry friend. Among other things you will be offered Add
Bus Terminal and Add Bus End. Choose the latter for self-contained schematics. The
former acts as a Hierarchy Connector, discussed below under Grouping a Circuit into a
Macro Symbol.

Labelling Buses
Buses are labelled using the same procedure as wires. Always label busses starting with the
msb first ie A[10:0] not A[0:10] Example legal bus label formats are

A[7:0] 8-bit bus, A7 (msb) to A0 (lsb)
Q[7:0],SET,CLK 10-bit bus, Q7 to Q0, SET and CLK

The dialog box offers Simple Bus (default) or Complex Bus format, which you must select. In
the list above the first two are examples of simple bus, and the second of complex bus.
You must label all busses otherwise foundation will merge them all together.

Page 6

Tapping a Wire from a Bus
To connect a wire to a bus use the Draw Wire icon and add a label to
the wire (don’t bother with the bus taps icon).

Note that you are not allowed to connect bus lines together. This
becomes a problem if you want to connect several to a common point,
eg ground. In this case you will have to take each one individually
through a buffer.

Adding Attributes
In Foundation attributes can be used to define certain characteristics of circuit elements, for
example how an element is configured in the FPGA for optimum performance. In simple
and/or low-speed designs their use is not so important however. In this project you will
probably only need to use one type of attribute, LOC.

Page 7

The Location (LOC) Attribute
Connections into and out of the FPGA are made through special pads (eg IPAD, OPAD in
the libraries book), and must be buffered (eg with IBUF, OBUF). For IPADs and OPADs the
FPGA pin number to which they are connected must be specified; this is added as a LOC
attribute.

To add a Location to an IPAD or OPAD:
• double click the IPAD or OPAD,
• select LOC from the pull-down menu at Name,
• enter Pn in the Description (where n is the pin

number), and click on Add.
LOC=Pn should appear in the dialog box below,
There should be two bullets to the left of this. If an
item is shown with two bullets it will be displayed
in full, if it is shown with one bullet it will be
displayed in a shortened form, if there are no
bullets then the item will not be displayed. To
change the number of bullets double click on the
item in the dialog box.

As with labels, attributes can be moved to any preferred position on the schematic. Below is
an example of an AND gate that is connected to input and output pins.

Editing the Title Block
A Title Block is automatically placed bottom right of the sheet. To edit this go to
File -> Table Setup, and enter appropriate titles.

Completing the Schematic Design: Design Rule Checking and Netlists
When you have completed the first iteration of schematic design, you will be going on to
simulation or implementation. In either case Foundation will convert the schematic into a
netlist. This is a listing of connections between the schematic components, and is given an
.alb extension. In Foundation the netlist is normally created automatically at appropriate
moments (ie as you enter simulation or implementation). The netlist can only be made if your
design obeys certain design rules, so it is a useful check. To make use of this checking
process, you can create a netlist whenever you want, by invoking Options -> Create Netlist.
A more exhaustive design rule check is provided by the Integrity Test, invoked through
Options -> Integrity Test. This claims to detect naming errors, bus errors, and hanging
wires. Neither of these tests is foolproof however, and of course neither guarantees a working
circuit.

Proceed to Section 4, Implementing Your Design, when working through this document
for the first time.

Page 8

Grouping a Circuit into a Macro Symbol
The design you are developing will inevitably be modular. The overall design ("top level
design") will be prepared by the pair working together, and then each individual will
contribute sub-sections of that design. These sub-sections can (should) be developed as
independent blocks, which can be converted into symbols by Foundation, and then entered on
the top-level design. This approach is fundamental to a Foundation-based design, in that
many of the symbols that you call up from the library are actually created from logic
primitives.

Hierarchy Connectors
To create a Macro Symbol from a schematic, first add Hierarchy Connectors to all
connections which will be inputs and outputs to the symbol. Do this by clicking the icon on
the left hand toolbar. In the dialog box which follows give the connection a name,
and be sure to define it correctly as Input/Output etc (horrible problems with
simulation or implementation can arise later with small errors made here). If the hierarchy
connector is connected to a wire which is already labelled, then give it the same name. A
very simple example appears below.

Hierarchy connectors for a bus are selected by clicking the above icon while in bus draw
mode, or by right clicking on the rodent while laying down the bus, and selecting Add Bus
Terminal.

Creating and Editing the Symbol
To create the symbol select Hierarchy -> Create Macro Symbol From Current Sheet.
Enter a descriptive name for the symbol, and leave other settings as default. Select Yes when
asked if you wish to overwrite the schematic file. Once saved this symbol can be used in
another schematic, by selecting it from the component library.

 If you wish to edit the appearance of the symbol, eg its size, position of pins etc, place it on
the sheet, left click on it and enter Symbol Editor via the Options menu (or right click on it
again when selected, and choose Symbol Editor from the pop-up menu). Use the on-line
Help for details on symbol editing.

To move between hierarchical levels, select Hierarchy -> Hierarchy Push, or Hierarchy ->
Hierarchy Pop as appropriate, or use the Hierarchy button on the left toolbar. You can
modify the schematic at any level. If you Push into a symbol from the top level and then
modify it, you will be asked whether you wish to over-write the design as you Pop out of it.
It is also interesting to Push into some of the larger Foundation symbols (eg multiplexers or
counters).

Creating a Top-Level Design with Empty Symbols
It is an apparent contradiction that you create symbols before their internal circuit has been
designed, but you need to develop a top level design showing those symbols as a very first
design stage. In fact, as symbols can be edited without difficulty, you can create them empty
apart from their input/output connections, and enter them on the top level design. You can
then add detail later. To create an empty symbol simply lay down hierarchy connections, with
suitable names, on an empty sheet, and convert the sheet to a symbol. Then make up your
top-level design using these symbols.

Page 9

When you draw your top-level design in Foundation, it is strongly recommended (for ease
of later debugging) that you put all FPGA input/outputs at this level, rather than hiding
them within macro symbols.

3. FUNCTIONAL SIMULATION
Functional simulation uses the circuit as you have designed it in your schematic, and does not
take account of Xilinx characteristics. A copy of Chapter 6 of the Foundation Series Quick
Start Guide from the Xilinx documentation is provided as an appendix to this document to
guide you in using the Functional Simulator

Some Additional Notes
1. To start with, you are advised to define signals using "Probes" in the schematic capture

window, and to add stimuli with "custom formulae" (yes, this does make sense when you
read the guide!).

2. You can move directly between Schematic Capture and the Simulator using the buttons
on the top toolbars, without returning to Project Manager. If you change the schematic
however you should force a new netlist to be written, (from schematic editor
Tools...Update simulation). You don't need to do this if you only change the probe
selection.

3. When identifying signals as stimuli in large designs, do so with Probe at the top design
level, and as far "upstream" as possible. This should ensure that the signal gets to all the
places it's meant to. If you place the stimulus within a macro symbol it may not get to
points "upstream", due for example to the presence of hierarchy connectors.

4. If it appears signals are just not getting through, then check and double check your
schematic labelling. Many simulation malfunctions arise from labelling errors.

5. Reset simulation time to 0 with the "Power on" toolbar button, and clear old waveforms
with the "Delete Waveforms" button.

6. When you simulate a schematic you simulate everything that is included in the project.
Use Document..Add in Project Manager to remove any schematics that you do not want
to simulate.

7. See appendix 2 for more details

Timing Simulation
After the design has been routed in the FPGA it is possible to perform a timing simulation,
which includes timing delays based on the FPGA characteristics. This is called Verification
in Xilinx. For the purposes of this project we do not do a timing simulation.

Page 10

4. IMPLEMENTING YOUR DESIGN
Once your design has been verified in terms of logic functionality, it is ready for design
implementation. This is the process of converting the logic design into configuration data for
the FPGA.

To implement the design click on the Implementation icon in Project
Manager.

Foundation may ask you if you wish to update the netlist, click Yes.

An Implement Design dialog box appears, most people
will be using a 3042APC84 speed 7, check this
corresponds with the chip that is on your CDCC FPGA
board. If you do not need the old .rbt file then tick the
Overwrite current version check box to save disc
space.

Within this dialog box click on Options,
and in the new dialog box click on Edit
Options opposite the Configuration
option. Another dialog box appears, which
controls the configuration parameters of a
device.

Make sure the Produce ASCII Configuration
File check box is ticked. This ensures the .rbt file
(raw bits) that you will download to the Xilinx
chip will be produced. You should only need to
do this the first time you run.

Click OK -> OK -> Run to clear all three dialog boxes and start implementation.

A Flow Engine window will appear and
Xilinx will then implement your design,
going through the stages of Translate, Map,
Place & Route, Timing & configure. This can
take up to ½ hour for a large design. Text
reporting progress will appear in the bottom
half of the screen. Check
Reports...Implementation log file – if design
has compiled correctly then the last line will
start xcpy logger.rbt (where logger is the
name of your project).

Page 11

If you have any errors then your design cannot be implemented. If you have warnings your
design has been implemented, but there is something that may need your attention. Some
warnings can be ignored but you should always check these.

To get information about the implementation (eg
for errors, warnings or CLB count) you can view
reports by selecting the Report tag in Project
Manager. Clicking on the Implementation Report
Files will bring up the screen opposite. Check
reports for the following information:

Map Report: for removed logic; don't worry when you see some logic removed, this
is typically from Xilinx macro symbols that you have not fully utilised. Worry if
everything seems to have been removed!
Place and Route Report: for the number of CLBs used.
Pad Report: for the I/O pins used.

For a successfully completed implementation there is considerable repetition between these
reports. For an implementation which failed due to errors, the later reports may be missing.
The message containing the error can usually be found in the last report present.

Note When you implement a design you implement every schematic that is included in the
project. Use Document..Add in Project Manager to remove any schematics that you do not
want to implement.

Viewing Layout in FPGA Chip
To view the actual connection of the logic blocks start from the Project Manager window.
From the top menu click Tools -> Implementation -> FPGA Editor.

You can check in a limited way how your chip has been configured. Check especially that the
input/output pins that you expected are being used. Clicking the mouse pointer above a pin
causes the pin number to be displayed at the bottom of the screen. Pan around by holding the
right mouse button down while moving it around. Xilinx offers editing capability at this level,
but for this project we do not attempt to use it.

If your implementation has errors
Click on the Reports tab in project manager. Foundation usually stops implementation when
it finds an error so the error should be in the last file (reading left to right). Double click on
this report and use the search menu to search for the word error. If this does not give you joy
then try searching the other report & log files and also searching for the word warning.

Searching for errors in schematic
If a log or report file shows an error with a specific net/bus/component you can find it by
selecting Mode..Query from the schematic editor. Either click on a net/bus/component to find
its details or type the details in the box to get it to find the net/bus/component.

Page 12

5. DOWNLOADING CONFIGURATION DATA INTO THE FPGA
Downloading is done by connecting a special cable from the PC parallel port to the CDCC. A
dedicated computer has been set up for this purpose, and you will need to bring your CDCC,
and configuration file on floppy disc, to that computer for download.

A communications program called SEND, running under DOS, allows the CDCC to be
programmed from the PC. The .rbt file (“rawbits”) is the one that is downloaded. To achieve
a SEND you will need to do the following:
• In Windows Explorer go to H:\projectname, and find the .rbt file,
• Copy the .rbt file to the floppy,
• Put the floppy into the Configuration PC, connect the CDCC and ensure it is powered,
• At the DOS prompt type send store a:projectname.rbt lpt1

This saves the configuration data into the on-board EEPROM, and then configures the FPGA.
You can also eter

Send direct a:projectame.rbt.

This sends the configuration data directly to the FPGA. It will however be lost when the
CDCC is powered down.

To display the Help screen for this communications program, enter SEND at the command
line.

Note: On Send Store the program occasionally and incorrectly reports an error at the
Configure FPGA stage. If all has gone well to here, then ignore the error message.

RT/TJW April, 1999
RT 11/4/00
RT 18/5/01
RT 07/4/02

Page 13

Appendix 1: Designing with Xilinx

Note: It is useful to have the blue XACT Libraries Guide book with you as you read this
document, as a number of abbreviations used below, eg OPAD, OBUF etc, are names of
logic symbols found in it.

1. Features of the FPGA

CLB's, IOB's, Routing -- What's in the FPGA?
As described in the Xilinx XC3000 FPGA Data Booklet, there are 3 main resources in the
Xilinx FPGA chip:

Configurable Logic Blocks (CLBs). Each CLB contains 2 D-type flip-flops and a
configurable logic circuit, together with the necessary multiplexer switches to link them
together. The function performed by a block is fixed when the chip is configured, and
can't be changed by your logic circuit. It can (of course) be changed by reconfiguring the
chip.
Input Output Blocks (IOBs). These units link your circuit (built up from CLBs) to the
outside world. Each one contains a 3-state output buffer, an input buffer, and 2 D-type
flip-flops, one of which is used for output (the logic symbol OFD) and one for input
(IFD).
Routing Resources. These form the "wires" that link the CLBs and IOBs together.

The only combinational logic in the device is in the CLBs, and consists of a circuit that can
be configured either as a single function with 5 inputs, or as a pair of functions of the same 4
inputs. (OK, this is a simplification; if you know exactly what circuits can be fitted into a
single CLB, then you should be writing this.) A function can be a lot more complex than an
AND gate, though -- if you took 4 signals, ANDed them in pairs, ORed the result, and then
XOR'ed the result with a fifth signal, that counts as a single function of 5 inputs.

It is possible to run out of combinational logic (or more precisely the combinational parts of
CLBs) and it's possible to make a circuit that's so complex that it is impossible to route,
particularly if you have several large buses. Since there are, in general, plenty of D-type flip-
flops, you should use these in preference to combinational logic whenever possible. If you
need for example to serialise a data word, use a shift register, not a counter and multiplexer.

Linking up to the outside world
In order to link up your internal Xilinx design to the package pins you need to use the IOBs,
entering them explicitly on the schematic. There are 3 main cases to consider.

Debouncing Inputs. It is possible to use the IFD to debounce switch inputs, as shown in
the diagram below left.

Bidirectional Lines You need these when you want to connect, say, to the bidirectional
data pins of a memory chip. The physical connection is represented by the IOPAD
symbol, and 2 possible configurations are shown below. You still need to design the logic
to control the 3-state enable line(s).

Page 14

IOPAD
OBUFE

IBUF

D Q

IFD

"Bouncy"
Signal

Slow Clock
(T > bounce time)

IOPAD
OBUFE

IBUFBUFE

E2

E1

Bidirectional I/O

Bidirectional Bus I/O

Using the IFD for Synchronisation and Debouncing

Connecting to the right pins
Normally, you don't care how the logic is positioned within the Xilinx chip -- all the CLBs
are equivalent. But, of course, IOBs correspond to physical pins on the package (ignoring
"unbonded" IOBs here) and these pins are connected to the external circuitry. Therefore you
must position Input/Output blocks yourself. You do this by Adding an Attribute to the pad.
The format is given in the "Adding Attributes" section of this document.

You can only have 1 pad located at a given pin. If you want to have a bidirection I/O buffer
as described above, you must use an IOPAD symbol, and not a separate IPAD and OPAD,
even if these are located in different blocks of the schematic.

The correspondence between the IOB's on the silicon die and the pins on the package is
dependent on the type of package, and you must make sure that you compile the circuit not
only for the right type of device but also for the right package type.

Page 15

Clock Nets -- GCLK and ACLK
As well as the general routing resources described above, there are 2 special routing nets that
can only be used for clocks. The first is the global clock, driven by the GCLK buffer, and is
used by simply linking the appropriate clock inputs to the output of the GCLK buffer symbol.

The output of the GCLK buffer can only drive CLB flip-flop clock inputs, or inverters that
drive CLB flip-flop clock inputs. (Strictly these inverters are not CLB combinational
functions - they're implemented by a separate gate on the flip-flop clock input). It can't drive
any combinational functions, and can't be gated.

The input of the GCLK buffer can be driven either from any normal logic signal, or from a
special IPAD called TCLKIN. This IPAD is directly linked to the input of the GCLK buffer
without using an IBUF. In this project, the main 32kHz clock is externally connected to
TCLKIN. You use a LOC attribute to correctly place this IPAD.

The other net is the alternate clock, and is driven by the ACLK buffer. The output of this
buffer has the same restrictions as those for the GCLK buffer, while the input can be driven
from any normal signal (Yes, there are other possibilities in the data book, but none of them
are useful for this project). The routing resources used by the ACLK net may be used for
other purposes if this net is not in use, so it may be best to avoid using it.

The main advantage of these clock nets is the lack of skew. There are significant delays in the
routing of signal across the Xilinx chip, so that 2 flip-flops clocked from the same signal
routed on normal nets may not change at the same time. This may cause problems in complex
circuitry. The GCLK net avoids this problem, and flip-flops clocked by it all change at the
same time (at least to within the typical propagation delay of a CLB). You can only use one
each of GCLK and ACLK in a single FPGA, so in shared designs you must determine where
these components are placed.

Ground and Power Supply Connections
Ground and Vcc connections are treated as components, and should be called from the
XC3000 library (GND and VCC).

2. Some Tips on Circuit Design with FPGAs

If possible make it synchronous
One of the biggest problems with designing for the Xilinx chip is that the switching time of a
gate or flip-flop may be less than the time it takes for a signal to go across the chip (through
various routing switches), or the difference in propagation delays from 2 inputs on a single
CLB to its output.

This means that circuits that would appear to be glitch-free may, in fact, fail to work when
implemented in a Xilinx device. A typical example is that (when using normal discrete
chips), the outputs of a synchronous counter all change at the same time, and a simple AND
decode of these outputs is glitch-free (at least compared to the switching time of most logic
families). In a Xilinx, this is not the case. If you make this circuit, you may find glitches on
the output of that AND gate. And if you then use that output to trigger a flip-flop, it is likely
to mistrigger.

Notice that we said "may" and "likely". The width of these glitches is dependent on how the
circuit is placed within the chip, and how the signals are routed. In general, you don't control

Page 16

that yourself, you let the software do it. So you may have a circuit that appears to work until
you add some more, totally unrelated, logic to it. Then the compiler places the circuit in a
different way, and the glitches become noticeable.

To avoid these problems, you should try and make a synchronous design. Clock all the flip-
flops off a single, ungated, clock (preferably GCLK). Control the Enable and D inputs to the
flip-flops with your logic - glitches here, especially if far from the active edge of the clock,
cause few problems.

Needless to say you should avoid asynchronous counters unless you simply want to divide
down a clock by a power of 2. An Asynchronous counter seems to use a few less CLB's than
a synchronous counter the same length, although the savings are not that sizeable (about 2
CLB's on a 16 bit counter, typically), so you should consider using one only if you are very
short of CLB's.

Use the clock enable inputs
Each CLB flip-flop (Although not the IOB flip-flops, alas) in the Xilinx chip has a clock
enable input. This is sampled on the active edge of the clock, and glitches away from the
clock edge (no matter what the level of the clock input) have no effect. Whether this is the
rising or falling edge is selected by a multiplexer in the CLB (it's shown in the XC3000 data
booklet), and it is set when the chip is configured.

It's therefore a lot safer than ANDing a clock signal with a possibly glitchy enable signal. If
you do that, glitches on the enable signal while the clock is high may cause false clock
signals to be given to the flip-flop, which will cause your circuit to malfunction.

Use Synchronous Resets
Most counters are available in 2 versions, one with an asynchronous clear input (this signal
clears the counter irrespective of the clock input), and the other with a synchronous reset
input (it is examined on the active edge of the clock, and clears the counter on that edge if it
is asserted). If possible use the latter one. Suppose you want to design a counter that counts
from 0 to 5 and than back to 0. There are 2 ways to do this : The wrong way is to use an
asynchronous clear, and to clear the counter when the state 110 (=6) is reached. The other is
to use a synchronous reset and to assert this reset signal when the counter is set to 101 (=5).

There are 2 problems with the first approach. The first is the obvious one - the "runt" state (of
110) may exist for long enough to cause problems. The second problem is more subtle. The
state may not exist for long enough - that is long enough to clear the counter. As soon as the
counter state moves from 110, the clear signal is deasserted. This could occur after only one
of the flip-flops has been cleared, and the other one may not see a long enough clear signal to
be set to 0. In other words the counter may reset to 100 (=4) or 010 (=2) instead of the
required 000.

Again, this problem may be layout dependent. The circuit may work fine until you add
something else. It's therefore best to avoid it totally.

Page 17

Don't depend on gate delays
If you have ever designed a circuit using TTL chips, you may be aware of the trick of using a
couple of inverters to delay a signal by a few nanoseconds, for example to ensure a clock
pulse arrives after a reset.

Don't try to do this on a Xilinx circuit -- it won't work for several reasons. Firstly, the
individual gates don't exist as they appear on the schematic - they are combined into the
Xilinx CLB's. Secondly, the logic optimiser will remove "unnecessary" inverters -- including
pairs of them linked in a chain. And thirdly, the switching time of a CLB is comparable to the
time it takes for a signal to be sent across the chip through the routing switches.

If you need a delay, use a D-type flip-flop clocked from a suitable fast clock.

Tie unused "Enables" to the correct state
Most Xilinx enables on the macro circuits used are active high. Make sure you tie them to the
correct state, or you may find that large sections of your logic are "optimised out" by the
compiler.

Design complex combinational circuits using multiplexers
You may already know that you can use a 2n-input multiplexer to make an n input
combinatorial circuit. You simply connect the n inputs to the select lines of the multiplexer
and tie the data inputs high or low according to the truth table.

Although in general a multiplexer is a large combinational circuit with many inputs, and thus
does not fit nicely into the Xilinx CLB's, a multiplexer with the inputs tied high or low is
reduced by the logic compiler into a simple combinational circuit of n inputs, and will fit into
a single CLB, at least if n is 5 or less. It's therefore just as efficient in Xilinx resources to do
this, rather than to optimise the logic by hand (e.g. by using Karnaugh Maps or Quine-
McCluskey reduction), and it's a lot quicker to do. The logic optimiser will reduce your logic
to the minimal form, and implement it for you. (It's a pity we have to go through these
shenanigans. The CLB logic is implemented as a RAM-based look-up table - in other words a
multiplexer fed with the truth table. But there's no easy way to set up a CLB to a given truth
table).

Designing State Machines
A State Machine is a sequential logic circuit which produces a sequence of output states
which depend both on the previous state, and on the value of input signals.

A simple counter is one type of state machine, except that it has no dependence on any input.
An up-down counter, whose count direction depends on an "up-down" input, is a better
example of a general-case state machine.

Several models of machine exist, in particular Moore and Mealy. You may also come across
the "One Hot" state machine. This can be particularly useful in some FPGA applications, but
we will not introduce it for this project.

Page 18

Combinational
Logic for Next
State.

Inputs

Outputs

Clock

State Register

Comb.
Logic for
Outputs

Combinational
Logic for Next
State and

Inputs Outputs

Clock

State Register

Outputs.

 Moore Model Block Diagram Mealy Model Block Diagram

Combinational
Logic for Next
State and

Inputs Outputs

Clock

State RegisterOutputs.

Clock

Synchronous Mealy Model Block Diagram

Many of the state machines in this project will be required to produce a simple sequence on
receipt of a trigger input.

This type of circuit fits rather neatly into the Xilinx CLB structure using the D-type flip-flops
to store the current state, and the combinational blocks for the feedback logic. Flip-flops can
in principal be J-K or D-type, but the Xilinx CLB structure favours a D-type solution.

A procedure for designing state machines is as follows:

1. Determine which model you wish to use.
2. Work out how many flip-flops you need. For a simple Moore configuration, n flip-
flops gives you 2n states.
3. Draw the state transition diagram (which states can come from each states, and under
what conditions). Label the states with the values of all the flip-flop outputs.
4. Work out the truth table for the D-input of each flip-flop, based on the output of all the
flip-flops and the external inputs.
5. Design the combinational logic & implement the logic using multiplexers. Dont bother
simplifying logic using Karnaugh maps or Quine-McCluskey reduction on the truth table,
the logic optimiser will do this hard work for you.
6. Enter the logic into the schematic capture program.

We will do an example.

Page 19

Debugging the old-fashioned way
For complex circuits, it's often easier to debug the design on the real hardware, rather than
setting up and using the simulator. One problem is that you can't connect your logic analyser,
oscilloscope, or whatever to internal Xilinx signals, and you may want to check their state.
The way round that is to add an extra OBUF and OPAD to your design, connected to the
signal that you want to monitor. LOCate the OPAD on one of the pins that are connected to
the test points on the Data Logger board, and monitor that testpoint with your instruments

It doesn't work!
It is extremely rare for a Xilinx design to work first time, and in many cases the reason for
failure is simple. Here are a few things to check - we would appreciate receiving others to
include in this section.

• Make sure that you have positioned I/O blocks on the right pins. Check the attributes. Use
the Epic Design Viewer (as described earlier in this document) to check that the pins are,
in fact, in the right place.

• Check there are no labeling errors.
• Read the Log File from the compilation. If large sections of logic have been removed

because they are "disabled", find out why. You may have tied an enable signal to the
wrong state.

• Check that you have correctly tied all enable signals, resets, clears, etc.
• Make sure you've not mixed up the MSB and LSB of buses, counter outputs, multiplexer

select inputs, etc
• Check very carefully that all clock signals (and those to external circuitry) are glitch-free.

Do not gate clocks with glitchy signals unless you are sure you know what you are doing.
• Check your state machine logic. Make sure the machine can't get into a state (even at

power-up) from which it can't get into one of the states in the normal sequence.
• Sometimes (and for no apparent reason) labels or attributes are ignored by the compiler.

If you are getting "strange" results, such as the Epic Design Viewer showing no signal
going to a pin that you know you've assigned, then it sometimes helps to delete the label
or attribute and retype it.

• Like all other chips, the Xilinx FPGA needs a stable power supply. Check that you've got
5V at the board and at the pins of the chip, particularly if you're using a supply of your
own design.

• If all else fails, ask a demonstrator. Don't spend a long time worrying about a particular
problem.

ARD/TJW

	Xilinx Design Tools: Foundation Series Version 3.1i
	INTRODUCTION TO THE DESIGN FLOW, AND FOUNDATION 3.1i
	The design process adopted for this project, using Foundatio
	Logging onto Foundation
	Logging Off
	Note: Each person has their own logon. Only one person (PC)
	There is one computer allocated per pair though if there are
	On-Line Help

	2. SCHEMATIC DESIGN
	Start the schematic editor from the Project Manager by click
	Page Setup

	Familiarisation
	Connecting Components - Wires and Buses
	Drawing Wires
	Labelling Wires
	The dialog box offers Simple Bus (default) or Complex Bus fo
	Adding Attributes

	Editing the Title Block
	Completing the Schematic Design: Design Rule Checking and Ne
	Proceed to Section 4, Implementing Your Design, when working
	Grouping a Circuit into a Macro Symbol

	3. FUNCTIONAL SIMULATION
	Timing Simulation
	For a successfully completed implementation there is conside
	Viewing Layout in FPGA Chip
	Send direct a:projectame.rbt.

