Fast-Switching Flexoelectric Display Device with High Contrast

F. Castles, S. M. Morris and H. J. Coles

Centre of Molecular Materials for Photonics and Electronics (CMMPE)
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA

Abstract
The flexoelectro-optic effect provides a fast switching mechanism ($\tau_{90\,-\,10} \sim 10\,-\,100$ µs) suitable for use in field-sequential-color, full motion video displays. An in-plane field is applied to a short-pitch chiral nematic liquid crystal aligned in the Uniform Standing Helix (or Grandjean) texture [1,2]. The display performance is presented as a function of device parameters.

Background
The flexoelectro-optic effect in N* LCs is a result of flexoelectricity, which is caused by a linear coupling between the distortion of the LC and the applied electric field [3,4]. It is similar to piezoelectricity in normal, solid, crystals. Highly flexoelectric materials have been developed for use in such devices [5,6].

Switching mechanism
Short-pitch chiral nematic \rightarrow birefringent uniaxial structure

Analogous to Vertically Aligned Nematic (VAN) device

Response Time
The response time is a function of the pitch
Response times are typically 10-100 µs.

Off (dark) state
The electro-optic curve plots the transmitted intensity as a function of applied electric field. (Calculated using the Berreman method [7].)

Viewing angle dependence
The viewing angle may be widened by using a c-plate compensation film.

www-g.eng.cam.ac.uk/CMMPE