High speed vacuum deposition of organic TFTs in a roll-to-roll facility

Dr Hazel Assender

University of Oxford

DALMATIAN TECHNOLOGY

Prof Long Lin

Prof Steve Yeates Dr John Morrison

Dr Hazel Assender Dr Gamal Abbas, Ziqian Ding

Manufacturing capability

Roll-to-roll processing

Camvac

Oxford Webspeed up to 5 ms⁻¹ Web width 350 mm

vacuum web coating

15th March 2011

Solvent vs. Vacuum deposition

Solvent:

No pumping

Outgassing

Most development recently

Patterning methods relatively established

Vacuum:

- No solvent/low energy
- Rapid process (PVD)
- Multilayers easier

High performance metal and ceramic layers

No requirement for orthogonal solvents/wettability

Roll-to-roll deposition

Circuit design

- e.g. product tracking tag
- In collaboration with Prof. Martin Taylor, University of Bangor

Model circuits based on measured device performances

- Design circuits around transistor performance and patterning capability
- Minimise number of transistors
- Circuit design defines manufacturing priorities

Polymer deposition

- Flash evaporation of a monomer
- Condenses as a liquid on substrate
- Cure (e.g. e-beam) to solid
 - High speed process
 - Already used for capacitor technology
 - Free of pin-holes over large area

Getting the manufacture right: pentacene deposition

Self-assembling molecules π -orbital overlap gives good carrier mobility. (001) 1x 30x 10x (001)(002)(002)p₇ orbital overlap: plane of sp² π bond bonding (rings) Mobility Mobility Mobility

 $\sim 10^{-8} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ $\sim 10^{-6} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ $\sim 10^0 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

Ordered organic material has higher charge transport mobility

15th March 2011

IBM J. RES. & DEV. VOL. 45 NO. 1 2001

Pentacene Phases

 The 'thin film' phase is believed to be responsible for a high mobility in pentacene thin-films FETs

Microfocal Raman Spectroscopy

• The optimal π -orbital overlap was obtained in the 25-nm pentacene film.

Deposition onto Acrylate or SiOx

 Pentacene film (90nm-thick) grown on acrylate (1.5 μm-thick) is more single phase compared with that grown onto SiO₂ (300 nm-thick).

Oxygen Plasma Treatment

AFM micrographsImage: Second strain s

Oxygen-plasma treatment showed a noticeable effect on the diffraction intensities of pentacene films, grown on Si, with longer treatment time. larger grain size associated with higher mobility

15th March 2011

Effect of Background Gases

• Pentacene grown in N₂ ambience best crystalline material.

Getting the manufacture right: insulator layer

Comparison of I-V and output characteristics of bottom gate pentacene TFT on (a, b) 960 nm and (c, d) 425 nm thick TRPGDA polymeric dielectric with a 250µm channel length and an aspect ratio of 16.

15th March 2011

Curing the acrylic

I-V and output characteristics of bottom gate pentacene TFT on plasma cured TRPGDA dielectric of thickness 960nm and 425nm with a 250µm channel length and an aspect ratio of 16. No interfacial modification.

15th March 2011

OxfordMaterials

Shelf-life stability of as-deposited FETs

•Plasma cured

No encapsulation

Week	1	15
I _{on} /I _{off}	2.0x10 ³	1.8x10 ²
$V_{\mathrm{th}}\left(V ight)$	10	-13
μ (cm²/Vs)	0.10	0.07

Summary

- Can make organic electronics in a R2R
 environment
- Vacuum technology uses solventless, high-speed processes
- Build complete devices from multilayers

